WORST_CASE(Omega(n^1),?) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 230 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__AND(tt, z0) -> c(MARK(z0)) A__AND(z0, z1) -> c1 A__PLUS(z0, 0) -> c2(MARK(z0)) A__PLUS(z0, s(z1)) -> c3(A__PLUS(mark(z0), mark(z1)), MARK(z0)) A__PLUS(z0, s(z1)) -> c4(A__PLUS(mark(z0), mark(z1)), MARK(z1)) A__PLUS(z0, z1) -> c5 MARK(and(z0, z1)) -> c6(A__AND(mark(z0), z1), MARK(z0)) MARK(plus(z0, z1)) -> c7(A__PLUS(mark(z0), mark(z1)), MARK(z0)) MARK(plus(z0, z1)) -> c8(A__PLUS(mark(z0), mark(z1)), MARK(z1)) MARK(tt) -> c9 MARK(0) -> c10 MARK(s(z0)) -> c11(MARK(z0)) The (relative) TRS S consists of the following rules: a__and(tt, z0) -> mark(z0) a__and(z0, z1) -> and(z0, z1) a__plus(z0, 0) -> mark(z0) a__plus(z0, s(z1)) -> s(a__plus(mark(z0), mark(z1))) a__plus(z0, z1) -> plus(z0, z1) mark(and(z0, z1)) -> a__and(mark(z0), z1) mark(plus(z0, z1)) -> a__plus(mark(z0), mark(z1)) mark(tt) -> tt mark(0) -> 0 mark(s(z0)) -> s(mark(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__AND(tt, z0) -> c(MARK(z0)) A__AND(z0, z1) -> c1 A__PLUS(z0, 0) -> c2(MARK(z0)) A__PLUS(z0, s(z1)) -> c3(A__PLUS(mark(z0), mark(z1)), MARK(z0)) A__PLUS(z0, s(z1)) -> c4(A__PLUS(mark(z0), mark(z1)), MARK(z1)) A__PLUS(z0, z1) -> c5 MARK(and(z0, z1)) -> c6(A__AND(mark(z0), z1), MARK(z0)) MARK(plus(z0, z1)) -> c7(A__PLUS(mark(z0), mark(z1)), MARK(z0)) MARK(plus(z0, z1)) -> c8(A__PLUS(mark(z0), mark(z1)), MARK(z1)) MARK(tt) -> c9 MARK(0) -> c10 MARK(s(z0)) -> c11(MARK(z0)) The (relative) TRS S consists of the following rules: a__and(tt, z0) -> mark(z0) a__and(z0, z1) -> and(z0, z1) a__plus(z0, 0) -> mark(z0) a__plus(z0, s(z1)) -> s(a__plus(mark(z0), mark(z1))) a__plus(z0, z1) -> plus(z0, z1) mark(and(z0, z1)) -> a__and(mark(z0), z1) mark(plus(z0, z1)) -> a__plus(mark(z0), mark(z1)) mark(tt) -> tt mark(0) -> 0 mark(s(z0)) -> s(mark(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__AND(tt, z0) -> c(MARK(z0)) A__AND(z0, z1) -> c1 A__PLUS(z0, 0) -> c2(MARK(z0)) A__PLUS(z0, s(z1)) -> c3(A__PLUS(mark(z0), mark(z1)), MARK(z0)) A__PLUS(z0, s(z1)) -> c4(A__PLUS(mark(z0), mark(z1)), MARK(z1)) A__PLUS(z0, z1) -> c5 MARK(and(z0, z1)) -> c6(A__AND(mark(z0), z1), MARK(z0)) MARK(plus(z0, z1)) -> c7(A__PLUS(mark(z0), mark(z1)), MARK(z0)) MARK(plus(z0, z1)) -> c8(A__PLUS(mark(z0), mark(z1)), MARK(z1)) MARK(tt) -> c9 MARK(0) -> c10 MARK(s(z0)) -> c11(MARK(z0)) The (relative) TRS S consists of the following rules: a__and(tt, z0) -> mark(z0) a__and(z0, z1) -> and(z0, z1) a__plus(z0, 0) -> mark(z0) a__plus(z0, s(z1)) -> s(a__plus(mark(z0), mark(z1))) a__plus(z0, z1) -> plus(z0, z1) mark(and(z0, z1)) -> a__and(mark(z0), z1) mark(plus(z0, z1)) -> a__plus(mark(z0), mark(z1)) mark(tt) -> tt mark(0) -> 0 mark(s(z0)) -> s(mark(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence MARK(plus(z0, z1)) ->^+ c8(A__PLUS(mark(z0), mark(z1)), MARK(z1)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [z1 / plus(z0, z1)]. The result substitution is [ ]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__AND(tt, z0) -> c(MARK(z0)) A__AND(z0, z1) -> c1 A__PLUS(z0, 0) -> c2(MARK(z0)) A__PLUS(z0, s(z1)) -> c3(A__PLUS(mark(z0), mark(z1)), MARK(z0)) A__PLUS(z0, s(z1)) -> c4(A__PLUS(mark(z0), mark(z1)), MARK(z1)) A__PLUS(z0, z1) -> c5 MARK(and(z0, z1)) -> c6(A__AND(mark(z0), z1), MARK(z0)) MARK(plus(z0, z1)) -> c7(A__PLUS(mark(z0), mark(z1)), MARK(z0)) MARK(plus(z0, z1)) -> c8(A__PLUS(mark(z0), mark(z1)), MARK(z1)) MARK(tt) -> c9 MARK(0) -> c10 MARK(s(z0)) -> c11(MARK(z0)) The (relative) TRS S consists of the following rules: a__and(tt, z0) -> mark(z0) a__and(z0, z1) -> and(z0, z1) a__plus(z0, 0) -> mark(z0) a__plus(z0, s(z1)) -> s(a__plus(mark(z0), mark(z1))) a__plus(z0, z1) -> plus(z0, z1) mark(and(z0, z1)) -> a__and(mark(z0), z1) mark(plus(z0, z1)) -> a__plus(mark(z0), mark(z1)) mark(tt) -> tt mark(0) -> 0 mark(s(z0)) -> s(mark(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__AND(tt, z0) -> c(MARK(z0)) A__AND(z0, z1) -> c1 A__PLUS(z0, 0) -> c2(MARK(z0)) A__PLUS(z0, s(z1)) -> c3(A__PLUS(mark(z0), mark(z1)), MARK(z0)) A__PLUS(z0, s(z1)) -> c4(A__PLUS(mark(z0), mark(z1)), MARK(z1)) A__PLUS(z0, z1) -> c5 MARK(and(z0, z1)) -> c6(A__AND(mark(z0), z1), MARK(z0)) MARK(plus(z0, z1)) -> c7(A__PLUS(mark(z0), mark(z1)), MARK(z0)) MARK(plus(z0, z1)) -> c8(A__PLUS(mark(z0), mark(z1)), MARK(z1)) MARK(tt) -> c9 MARK(0) -> c10 MARK(s(z0)) -> c11(MARK(z0)) The (relative) TRS S consists of the following rules: a__and(tt, z0) -> mark(z0) a__and(z0, z1) -> and(z0, z1) a__plus(z0, 0) -> mark(z0) a__plus(z0, s(z1)) -> s(a__plus(mark(z0), mark(z1))) a__plus(z0, z1) -> plus(z0, z1) mark(and(z0, z1)) -> a__and(mark(z0), z1) mark(plus(z0, z1)) -> a__plus(mark(z0), mark(z1)) mark(tt) -> tt mark(0) -> 0 mark(s(z0)) -> s(mark(z0)) Rewrite Strategy: INNERMOST