WORST_CASE(Omega(n^1),O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 257 ms] (2) CpxRelTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) CompleteCoflocoProof [FINISHED, 129 ms] (12) BOUNDS(1, n^1) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 4 ms] (14) TRS for Loop Detection (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: D'(t) -> c D'(constant) -> c1 D'(+(z0, z1)) -> c2(D'(z0)) D'(+(z0, z1)) -> c3(D'(z1)) D'(*(z0, z1)) -> c4(D'(z0)) D'(*(z0, z1)) -> c5(D'(z1)) D'(-(z0, z1)) -> c6(D'(z0)) D'(-(z0, z1)) -> c7(D'(z1)) The (relative) TRS S consists of the following rules: D(t) -> 1 D(constant) -> 0 D(+(z0, z1)) -> +(D(z0), D(z1)) D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) D(-(z0, z1)) -> -(D(z0), D(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: D'(t) -> c D'(constant) -> c1 D'(+(z0, z1)) -> c2(D'(z0)) D'(+(z0, z1)) -> c3(D'(z1)) D'(*(z0, z1)) -> c4(D'(z0)) D'(*(z0, z1)) -> c5(D'(z1)) D'(-(z0, z1)) -> c6(D'(z0)) D'(-(z0, z1)) -> c7(D'(z1)) The (relative) TRS S consists of the following rules: D(t) -> 1 D(constant) -> 0 D(+(z0, z1)) -> +(D(z0), D(z1)) D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) D(-(z0, z1)) -> -(D(z0), D(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: D'(t) -> c [1] D'(constant) -> c1 [1] D'(+(z0, z1)) -> c2(D'(z0)) [1] D'(+(z0, z1)) -> c3(D'(z1)) [1] D'(*(z0, z1)) -> c4(D'(z0)) [1] D'(*(z0, z1)) -> c5(D'(z1)) [1] D'(-(z0, z1)) -> c6(D'(z0)) [1] D'(-(z0, z1)) -> c7(D'(z1)) [1] D(t) -> 1 [0] D(constant) -> 0 [0] D(+(z0, z1)) -> +(D(z0), D(z1)) [0] D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) [0] D(-(z0, z1)) -> -(D(z0), D(z1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: D'(t) -> c [1] D'(constant) -> c1 [1] D'(+(z0, z1)) -> c2(D'(z0)) [1] D'(+(z0, z1)) -> c3(D'(z1)) [1] D'(*(z0, z1)) -> c4(D'(z0)) [1] D'(*(z0, z1)) -> c5(D'(z1)) [1] D'(-(z0, z1)) -> c6(D'(z0)) [1] D'(-(z0, z1)) -> c7(D'(z1)) [1] D(t) -> 1 [0] D(constant) -> 0 [0] D(+(z0, z1)) -> +(D(z0), D(z1)) [0] D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) [0] D(-(z0, z1)) -> -(D(z0), D(z1)) [0] The TRS has the following type information: D' :: t:constant:+:*:-:1:0 -> c:c1:c2:c3:c4:c5:c6:c7 t :: t:constant:+:*:-:1:0 c :: c:c1:c2:c3:c4:c5:c6:c7 constant :: t:constant:+:*:-:1:0 c1 :: c:c1:c2:c3:c4:c5:c6:c7 + :: t:constant:+:*:-:1:0 -> t:constant:+:*:-:1:0 -> t:constant:+:*:-:1:0 c2 :: c:c1:c2:c3:c4:c5:c6:c7 -> c:c1:c2:c3:c4:c5:c6:c7 c3 :: c:c1:c2:c3:c4:c5:c6:c7 -> c:c1:c2:c3:c4:c5:c6:c7 * :: t:constant:+:*:-:1:0 -> t:constant:+:*:-:1:0 -> t:constant:+:*:-:1:0 c4 :: c:c1:c2:c3:c4:c5:c6:c7 -> c:c1:c2:c3:c4:c5:c6:c7 c5 :: c:c1:c2:c3:c4:c5:c6:c7 -> c:c1:c2:c3:c4:c5:c6:c7 - :: t:constant:+:*:-:1:0 -> t:constant:+:*:-:1:0 -> t:constant:+:*:-:1:0 c6 :: c:c1:c2:c3:c4:c5:c6:c7 -> c:c1:c2:c3:c4:c5:c6:c7 c7 :: c:c1:c2:c3:c4:c5:c6:c7 -> c:c1:c2:c3:c4:c5:c6:c7 D :: t:constant:+:*:-:1:0 -> t:constant:+:*:-:1:0 1 :: t:constant:+:*:-:1:0 0 :: t:constant:+:*:-:1:0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: D(v0) -> null_D [0] D'(v0) -> null_D' [0] And the following fresh constants: null_D, null_D' ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: D'(t) -> c [1] D'(constant) -> c1 [1] D'(+(z0, z1)) -> c2(D'(z0)) [1] D'(+(z0, z1)) -> c3(D'(z1)) [1] D'(*(z0, z1)) -> c4(D'(z0)) [1] D'(*(z0, z1)) -> c5(D'(z1)) [1] D'(-(z0, z1)) -> c6(D'(z0)) [1] D'(-(z0, z1)) -> c7(D'(z1)) [1] D(t) -> 1 [0] D(constant) -> 0 [0] D(+(z0, z1)) -> +(D(z0), D(z1)) [0] D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) [0] D(-(z0, z1)) -> -(D(z0), D(z1)) [0] D(v0) -> null_D [0] D'(v0) -> null_D' [0] The TRS has the following type information: D' :: t:constant:+:*:-:1:0:null_D -> c:c1:c2:c3:c4:c5:c6:c7:null_D' t :: t:constant:+:*:-:1:0:null_D c :: c:c1:c2:c3:c4:c5:c6:c7:null_D' constant :: t:constant:+:*:-:1:0:null_D c1 :: c:c1:c2:c3:c4:c5:c6:c7:null_D' + :: t:constant:+:*:-:1:0:null_D -> t:constant:+:*:-:1:0:null_D -> t:constant:+:*:-:1:0:null_D c2 :: c:c1:c2:c3:c4:c5:c6:c7:null_D' -> c:c1:c2:c3:c4:c5:c6:c7:null_D' c3 :: c:c1:c2:c3:c4:c5:c6:c7:null_D' -> c:c1:c2:c3:c4:c5:c6:c7:null_D' * :: t:constant:+:*:-:1:0:null_D -> t:constant:+:*:-:1:0:null_D -> t:constant:+:*:-:1:0:null_D c4 :: c:c1:c2:c3:c4:c5:c6:c7:null_D' -> c:c1:c2:c3:c4:c5:c6:c7:null_D' c5 :: c:c1:c2:c3:c4:c5:c6:c7:null_D' -> c:c1:c2:c3:c4:c5:c6:c7:null_D' - :: t:constant:+:*:-:1:0:null_D -> t:constant:+:*:-:1:0:null_D -> t:constant:+:*:-:1:0:null_D c6 :: c:c1:c2:c3:c4:c5:c6:c7:null_D' -> c:c1:c2:c3:c4:c5:c6:c7:null_D' c7 :: c:c1:c2:c3:c4:c5:c6:c7:null_D' -> c:c1:c2:c3:c4:c5:c6:c7:null_D' D :: t:constant:+:*:-:1:0:null_D -> t:constant:+:*:-:1:0:null_D 1 :: t:constant:+:*:-:1:0:null_D 0 :: t:constant:+:*:-:1:0:null_D null_D :: t:constant:+:*:-:1:0:null_D null_D' :: c:c1:c2:c3:c4:c5:c6:c7:null_D' Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: t => 3 c => 0 constant => 2 c1 => 1 1 => 1 0 => 0 null_D => 0 null_D' => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: D(z) -{ 0 }-> 1 :|: z = 3 D(z) -{ 0 }-> 0 :|: z = 2 D(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 D(z) -{ 0 }-> 1 + D(z0) + D(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 D(z) -{ 0 }-> 1 + (1 + z1 + D(z0)) + (1 + z0 + D(z1)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 D'(z) -{ 1 }-> 1 :|: z = 2 D'(z) -{ 1 }-> 0 :|: z = 3 D'(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 D'(z) -{ 1 }-> 1 + D'(z0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 D'(z) -{ 1 }-> 1 + D'(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (11) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V),0,[fun(V, Out)],[V >= 0]). eq(start(V),0,[fun1(V, Out)],[V >= 0]). eq(fun(V, Out),1,[],[Out = 0,V = 3]). eq(fun(V, Out),1,[],[Out = 1,V = 2]). eq(fun(V, Out),1,[fun(V2, Ret1)],[Out = 1 + Ret1,V1 >= 0,V2 >= 0,V = 1 + V1 + V2]). eq(fun(V, Out),1,[fun(V3, Ret11)],[Out = 1 + Ret11,V3 >= 0,V4 >= 0,V = 1 + V3 + V4]). eq(fun1(V, Out),0,[],[Out = 1,V = 3]). eq(fun1(V, Out),0,[],[Out = 0,V = 2]). eq(fun1(V, Out),0,[fun1(V6, Ret01),fun1(V5, Ret12)],[Out = 1 + Ret01 + Ret12,V5 >= 0,V6 >= 0,V = 1 + V5 + V6]). eq(fun1(V, Out),0,[fun1(V7, Ret011),fun1(V8, Ret111)],[Out = 3 + Ret011 + Ret111 + V7 + V8,V8 >= 0,V7 >= 0,V = 1 + V7 + V8]). eq(fun1(V, Out),0,[],[Out = 0,V9 >= 0,V = V9]). eq(fun(V, Out),0,[],[Out = 0,V10 >= 0,V = V10]). input_output_vars(fun(V,Out),[V],[Out]). input_output_vars(fun1(V,Out),[V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [fun/2] 1. recursive [multiple] : [fun1/2] 2. non_recursive : [start/1] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into fun/2 1. SCC is partially evaluated into fun1/2 2. SCC is partially evaluated into start/1 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations fun/2 * CE 3 is refined into CE [11] * CE 6 is refined into CE [12] * CE 4 is refined into CE [13] * CE 5 is refined into CE [14] ### Cost equations --> "Loop" of fun/2 * CEs [14] --> Loop 9 * CEs [11,12] --> Loop 10 * CEs [13] --> Loop 11 ### Ranking functions of CR fun(V,Out) * RF of phase [9]: [V] #### Partial ranking functions of CR fun(V,Out) * Partial RF of phase [9]: - RF of loop [9:1]: V ### Specialization of cost equations fun1/2 * CE 8 is refined into CE [15] * CE 7 is refined into CE [16] * CE 10 is refined into CE [17] * CE 9 is refined into CE [18] ### Cost equations --> "Loop" of fun1/2 * CEs [17] --> Loop 12 * CEs [18] --> Loop 13 * CEs [15] --> Loop 14 * CEs [16] --> Loop 15 ### Ranking functions of CR fun1(V,Out) * RF of phase [12,13]: [V] #### Partial ranking functions of CR fun1(V,Out) * Partial RF of phase [12,13]: - RF of loop [12:1,12:2,13:1,13:2]: V ### Specialization of cost equations start/1 * CE 1 is refined into CE [19,20] * CE 2 is refined into CE [21,22] ### Cost equations --> "Loop" of start/1 * CEs [19,20,21,22] --> Loop 16 ### Ranking functions of CR start(V) #### Partial ranking functions of CR start(V) Computing Bounds ===================================== #### Cost of chains of fun(V,Out): * Chain [[9],11]: 1*it(9)+1 Such that:it(9) =< V with precondition: [Out>=2,V>=Out+1] * Chain [[9],10]: 1*it(9)+1 Such that:it(9) =< V with precondition: [Out>=1,V>=Out] * Chain [11]: 1 with precondition: [V=2,Out=1] * Chain [10]: 1 with precondition: [Out=0,V>=0] #### Cost of chains of fun1(V,Out): * Chain [15]: 0 with precondition: [V=3,Out=1] * Chain [14]: 0 with precondition: [Out=0,V>=0] * Chain [multiple([12,13],[[15],[14]])]: 0 with precondition: [V>=1,Out>=1] #### Cost of chains of start(V): * Chain [16]: 2*s(4)+1 Such that:s(3) =< V s(4) =< s(3) with precondition: [V>=0] Closed-form bounds of start(V): ------------------------------------- * Chain [16] with precondition: [V>=0] - Upper bound: 2*V+1 - Complexity: n ### Maximum cost of start(V): 2*V+1 Asymptotic class: n * Total analysis performed in 114 ms. ---------------------------------------- (12) BOUNDS(1, n^1) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: D'(t) -> c D'(constant) -> c1 D'(+(z0, z1)) -> c2(D'(z0)) D'(+(z0, z1)) -> c3(D'(z1)) D'(*(z0, z1)) -> c4(D'(z0)) D'(*(z0, z1)) -> c5(D'(z1)) D'(-(z0, z1)) -> c6(D'(z0)) D'(-(z0, z1)) -> c7(D'(z1)) The (relative) TRS S consists of the following rules: D(t) -> 1 D(constant) -> 0 D(+(z0, z1)) -> +(D(z0), D(z1)) D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) D(-(z0, z1)) -> -(D(z0), D(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (15) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence D'(+(z0, z1)) ->^+ c3(D'(z1)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z1 / +(z0, z1)]. The result substitution is [ ]. ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: D'(t) -> c D'(constant) -> c1 D'(+(z0, z1)) -> c2(D'(z0)) D'(+(z0, z1)) -> c3(D'(z1)) D'(*(z0, z1)) -> c4(D'(z0)) D'(*(z0, z1)) -> c5(D'(z1)) D'(-(z0, z1)) -> c6(D'(z0)) D'(-(z0, z1)) -> c7(D'(z1)) The (relative) TRS S consists of the following rules: D(t) -> 1 D(constant) -> 0 D(+(z0, z1)) -> +(D(z0), D(z1)) D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) D(-(z0, z1)) -> -(D(z0), D(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: D'(t) -> c D'(constant) -> c1 D'(+(z0, z1)) -> c2(D'(z0)) D'(+(z0, z1)) -> c3(D'(z1)) D'(*(z0, z1)) -> c4(D'(z0)) D'(*(z0, z1)) -> c5(D'(z1)) D'(-(z0, z1)) -> c6(D'(z0)) D'(-(z0, z1)) -> c7(D'(z1)) The (relative) TRS S consists of the following rules: D(t) -> 1 D(constant) -> 0 D(+(z0, z1)) -> +(D(z0), D(z1)) D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) D(-(z0, z1)) -> -(D(z0), D(z1)) Rewrite Strategy: INNERMOST