WORST_CASE(Omega(n^1),O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 286 ms] (2) CpxRelTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (6) CdtProblem (7) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 28 ms] (12) CdtProblem (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (14) BOUNDS(1, 1) (15) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (16) TRS for Loop Detection (17) DecreasingLoopProof [LOWER BOUND(ID), 38 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: PERFECTP(0) -> c PERFECTP(s(z0)) -> c1(F(z0, s(0), s(z0), s(z0))) F(0, z0, 0, z1) -> c2 F(0, z0, s(z1), z2) -> c3 F(s(z0), 0, z1, z2) -> c4(F(z0, z2, minus(z1, s(z0)), z2)) F(s(z0), s(z1), z2, z3) -> c5(F(s(z0), minus(z1, z0), z2, z3)) F(s(z0), s(z1), z2, z3) -> c6(F(z0, z3, z2, z3)) The (relative) TRS S consists of the following rules: perfectp(0) -> false perfectp(s(z0)) -> f(z0, s(0), s(z0), s(z0)) f(0, z0, 0, z1) -> true f(0, z0, s(z1), z2) -> false f(s(z0), 0, z1, z2) -> f(z0, z2, minus(z1, s(z0)), z2) f(s(z0), s(z1), z2, z3) -> if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3)) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: PERFECTP(0) -> c PERFECTP(s(z0)) -> c1(F(z0, s(0), s(z0), s(z0))) F(0, z0, 0, z1) -> c2 F(0, z0, s(z1), z2) -> c3 F(s(z0), 0, z1, z2) -> c4(F(z0, z2, minus(z1, s(z0)), z2)) F(s(z0), s(z1), z2, z3) -> c5(F(s(z0), minus(z1, z0), z2, z3)) F(s(z0), s(z1), z2, z3) -> c6(F(z0, z3, z2, z3)) The (relative) TRS S consists of the following rules: perfectp(0) -> false perfectp(s(z0)) -> f(z0, s(0), s(z0), s(z0)) f(0, z0, 0, z1) -> true f(0, z0, s(z1), z2) -> false f(s(z0), 0, z1, z2) -> f(z0, z2, minus(z1, s(z0)), z2) f(s(z0), s(z1), z2, z3) -> if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: perfectp(0) -> false perfectp(s(z0)) -> f(z0, s(0), s(z0), s(z0)) f(0, z0, 0, z1) -> true f(0, z0, s(z1), z2) -> false f(s(z0), 0, z1, z2) -> f(z0, z2, minus(z1, s(z0)), z2) f(s(z0), s(z1), z2, z3) -> if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3)) PERFECTP(0) -> c PERFECTP(s(z0)) -> c1(F(z0, s(0), s(z0), s(z0))) F(0, z0, 0, z1) -> c2 F(0, z0, s(z1), z2) -> c3 F(s(z0), 0, z1, z2) -> c4(F(z0, z2, minus(z1, s(z0)), z2)) F(s(z0), s(z1), z2, z3) -> c5(F(s(z0), minus(z1, z0), z2, z3)) F(s(z0), s(z1), z2, z3) -> c6(F(z0, z3, z2, z3)) Tuples: PERFECTP'(0) -> c7 PERFECTP'(s(z0)) -> c8(F'(z0, s(0), s(z0), s(z0))) F'(0, z0, 0, z1) -> c9 F'(0, z0, s(z1), z2) -> c10 F'(s(z0), 0, z1, z2) -> c11(F'(z0, z2, minus(z1, s(z0)), z2)) F'(s(z0), s(z1), z2, z3) -> c12(F'(s(z0), minus(z1, z0), z2, z3), F'(z0, z3, z2, z3)) PERFECTP''(0) -> c13 PERFECTP''(s(z0)) -> c14(F''(z0, s(0), s(z0), s(z0))) F''(0, z0, 0, z1) -> c15 F''(0, z0, s(z1), z2) -> c16 F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c18(F''(s(z0), minus(z1, z0), z2, z3)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) S tuples: PERFECTP''(0) -> c13 PERFECTP''(s(z0)) -> c14(F''(z0, s(0), s(z0), s(z0))) F''(0, z0, 0, z1) -> c15 F''(0, z0, s(z1), z2) -> c16 F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c18(F''(s(z0), minus(z1, z0), z2, z3)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) K tuples:none Defined Rule Symbols: PERFECTP_1, F_4, perfectp_1, f_4 Defined Pair Symbols: PERFECTP'_1, F'_4, PERFECTP''_1, F''_4 Compound Symbols: c7, c8_1, c9, c10, c11_1, c12_2, c13, c14_1, c15, c16, c17_1, c18_1, c19_1 ---------------------------------------- (5) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: PERFECTP'(s(z0)) -> c8(F'(z0, s(0), s(z0), s(z0))) PERFECTP''(s(z0)) -> c14(F''(z0, s(0), s(z0), s(z0))) Removed 7 trailing nodes: PERFECTP'(0) -> c7 PERFECTP''(0) -> c13 F''(0, z0, s(z1), z2) -> c16 F''(0, z0, 0, z1) -> c15 F'(0, z0, s(z1), z2) -> c10 F''(s(z0), s(z1), z2, z3) -> c18(F''(s(z0), minus(z1, z0), z2, z3)) F'(0, z0, 0, z1) -> c9 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: perfectp(0) -> false perfectp(s(z0)) -> f(z0, s(0), s(z0), s(z0)) f(0, z0, 0, z1) -> true f(0, z0, s(z1), z2) -> false f(s(z0), 0, z1, z2) -> f(z0, z2, minus(z1, s(z0)), z2) f(s(z0), s(z1), z2, z3) -> if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3)) PERFECTP(0) -> c PERFECTP(s(z0)) -> c1(F(z0, s(0), s(z0), s(z0))) F(0, z0, 0, z1) -> c2 F(0, z0, s(z1), z2) -> c3 F(s(z0), 0, z1, z2) -> c4(F(z0, z2, minus(z1, s(z0)), z2)) F(s(z0), s(z1), z2, z3) -> c5(F(s(z0), minus(z1, z0), z2, z3)) F(s(z0), s(z1), z2, z3) -> c6(F(z0, z3, z2, z3)) Tuples: F'(s(z0), 0, z1, z2) -> c11(F'(z0, z2, minus(z1, s(z0)), z2)) F'(s(z0), s(z1), z2, z3) -> c12(F'(s(z0), minus(z1, z0), z2, z3), F'(z0, z3, z2, z3)) F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) S tuples: F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) K tuples:none Defined Rule Symbols: PERFECTP_1, F_4, perfectp_1, f_4 Defined Pair Symbols: F'_4, F''_4 Compound Symbols: c11_1, c12_2, c17_1, c19_1 ---------------------------------------- (7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: perfectp(0) -> false perfectp(s(z0)) -> f(z0, s(0), s(z0), s(z0)) f(0, z0, 0, z1) -> true f(0, z0, s(z1), z2) -> false f(s(z0), 0, z1, z2) -> f(z0, z2, minus(z1, s(z0)), z2) f(s(z0), s(z1), z2, z3) -> if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3)) PERFECTP(0) -> c PERFECTP(s(z0)) -> c1(F(z0, s(0), s(z0), s(z0))) F(0, z0, 0, z1) -> c2 F(0, z0, s(z1), z2) -> c3 F(s(z0), 0, z1, z2) -> c4(F(z0, z2, minus(z1, s(z0)), z2)) F(s(z0), s(z1), z2, z3) -> c5(F(s(z0), minus(z1, z0), z2, z3)) F(s(z0), s(z1), z2, z3) -> c6(F(z0, z3, z2, z3)) Tuples: F'(s(z0), 0, z1, z2) -> c11(F'(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) F'(s(z0), s(z1), z2, z3) -> c12(F'(z0, z3, z2, z3)) S tuples: F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) K tuples:none Defined Rule Symbols: PERFECTP_1, F_4, perfectp_1, f_4 Defined Pair Symbols: F'_4, F''_4 Compound Symbols: c11_1, c17_1, c19_1, c12_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: perfectp(0) -> false perfectp(s(z0)) -> f(z0, s(0), s(z0), s(z0)) f(0, z0, 0, z1) -> true f(0, z0, s(z1), z2) -> false f(s(z0), 0, z1, z2) -> f(z0, z2, minus(z1, s(z0)), z2) f(s(z0), s(z1), z2, z3) -> if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3)) PERFECTP(0) -> c PERFECTP(s(z0)) -> c1(F(z0, s(0), s(z0), s(z0))) F(0, z0, 0, z1) -> c2 F(0, z0, s(z1), z2) -> c3 F(s(z0), 0, z1, z2) -> c4(F(z0, z2, minus(z1, s(z0)), z2)) F(s(z0), s(z1), z2, z3) -> c5(F(s(z0), minus(z1, z0), z2, z3)) F(s(z0), s(z1), z2, z3) -> c6(F(z0, z3, z2, z3)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F'(s(z0), 0, z1, z2) -> c11(F'(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) F'(s(z0), s(z1), z2, z3) -> c12(F'(z0, z3, z2, z3)) S tuples: F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F'_4, F''_4 Compound Symbols: c11_1, c17_1, c19_1, c12_1 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) We considered the (Usable) Rules:none And the Tuples: F'(s(z0), 0, z1, z2) -> c11(F'(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) F'(s(z0), s(z1), z2, z3) -> c12(F'(z0, z3, z2, z3)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(F'(x_1, x_2, x_3, x_4)) = x_1 POL(F''(x_1, x_2, x_3, x_4)) = [2]x_1 POL(c11(x_1)) = x_1 POL(c12(x_1)) = x_1 POL(c17(x_1)) = x_1 POL(c19(x_1)) = x_1 POL(minus(x_1, x_2)) = x_1 POL(s(x_1)) = [2] + x_1 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F'(s(z0), 0, z1, z2) -> c11(F'(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) F'(s(z0), s(z1), z2, z3) -> c12(F'(z0, z3, z2, z3)) S tuples:none K tuples: F''(s(z0), 0, z1, z2) -> c17(F''(z0, z2, minus(z1, s(z0)), z2)) F''(s(z0), s(z1), z2, z3) -> c19(F''(z0, z3, z2, z3)) Defined Rule Symbols:none Defined Pair Symbols: F'_4, F''_4 Compound Symbols: c11_1, c17_1, c19_1, c12_1 ---------------------------------------- (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (14) BOUNDS(1, 1) ---------------------------------------- (15) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: PERFECTP(0) -> c PERFECTP(s(z0)) -> c1(F(z0, s(0), s(z0), s(z0))) F(0, z0, 0, z1) -> c2 F(0, z0, s(z1), z2) -> c3 F(s(z0), 0, z1, z2) -> c4(F(z0, z2, minus(z1, s(z0)), z2)) F(s(z0), s(z1), z2, z3) -> c5(F(s(z0), minus(z1, z0), z2, z3)) F(s(z0), s(z1), z2, z3) -> c6(F(z0, z3, z2, z3)) The (relative) TRS S consists of the following rules: perfectp(0) -> false perfectp(s(z0)) -> f(z0, s(0), s(z0), s(z0)) f(0, z0, 0, z1) -> true f(0, z0, s(z1), z2) -> false f(s(z0), 0, z1, z2) -> f(z0, z2, minus(z1, s(z0)), z2) f(s(z0), s(z1), z2, z3) -> if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3)) Rewrite Strategy: INNERMOST ---------------------------------------- (17) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence F(s(s(z01_1)), s(z1), z2, s(z12_1)) ->^+ c6(c6(F(z01_1, s(z12_1), z2, s(z12_1)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [z01_1 / s(s(z01_1))]. The result substitution is [z1 / z12_1]. ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: PERFECTP(0) -> c PERFECTP(s(z0)) -> c1(F(z0, s(0), s(z0), s(z0))) F(0, z0, 0, z1) -> c2 F(0, z0, s(z1), z2) -> c3 F(s(z0), 0, z1, z2) -> c4(F(z0, z2, minus(z1, s(z0)), z2)) F(s(z0), s(z1), z2, z3) -> c5(F(s(z0), minus(z1, z0), z2, z3)) F(s(z0), s(z1), z2, z3) -> c6(F(z0, z3, z2, z3)) The (relative) TRS S consists of the following rules: perfectp(0) -> false perfectp(s(z0)) -> f(z0, s(0), s(z0), s(z0)) f(0, z0, 0, z1) -> true f(0, z0, s(z1), z2) -> false f(s(z0), 0, z1, z2) -> f(z0, z2, minus(z1, s(z0)), z2) f(s(z0), s(z1), z2, z3) -> if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3)) Rewrite Strategy: INNERMOST ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: PERFECTP(0) -> c PERFECTP(s(z0)) -> c1(F(z0, s(0), s(z0), s(z0))) F(0, z0, 0, z1) -> c2 F(0, z0, s(z1), z2) -> c3 F(s(z0), 0, z1, z2) -> c4(F(z0, z2, minus(z1, s(z0)), z2)) F(s(z0), s(z1), z2, z3) -> c5(F(s(z0), minus(z1, z0), z2, z3)) F(s(z0), s(z1), z2, z3) -> c6(F(z0, z3, z2, z3)) The (relative) TRS S consists of the following rules: perfectp(0) -> false perfectp(s(z0)) -> f(z0, s(0), s(z0), s(z0)) f(0, z0, 0, z1) -> true f(0, z0, s(z1), z2) -> false f(s(z0), 0, z1, z2) -> f(z0, z2, minus(z1, s(z0)), z2) f(s(z0), s(z1), z2, z3) -> if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3)) Rewrite Strategy: INNERMOST