WORST_CASE(Omega(n^1),?) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 525 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 8 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: MIN(z0, 0) -> c MIN(0, z0) -> c1 MIN(s(z0), s(z1)) -> c2(MIN(z0, z1)) MAX(z0, 0) -> c3 MAX(0, z0) -> c4 MAX(s(z0), s(z1)) -> c5(MAX(z0, z1)) -'(z0, 0) -> c6 -'(s(z0), s(z1)) -> c7(-'(z0, z1)) GCD(s(z0), 0) -> c8 GCD(0, s(z0)) -> c9 GCD(s(z0), s(z1)) -> c10(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), -'(max(z0, z1), min(z0, z1)), MAX(z0, z1)) GCD(s(z0), s(z1)) -> c11(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), -'(max(z0, z1), min(z0, z1)), MIN(z0, z1)) GCD(s(z0), s(z1)) -> c12(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), MIN(z0, z1)) The (relative) TRS S consists of the following rules: min(z0, 0) -> 0 min(0, z0) -> 0 min(s(z0), s(z1)) -> s(min(z0, z1)) max(z0, 0) -> z0 max(0, z0) -> z0 max(s(z0), s(z1)) -> s(max(z0, z1)) -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) gcd(s(z0), 0) -> s(z0) gcd(0, s(z0)) -> s(z0) gcd(s(z0), s(z1)) -> gcd(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: MIN(z0, 0) -> c MIN(0, z0) -> c1 MIN(s(z0), s(z1)) -> c2(MIN(z0, z1)) MAX(z0, 0) -> c3 MAX(0, z0) -> c4 MAX(s(z0), s(z1)) -> c5(MAX(z0, z1)) -'(z0, 0) -> c6 -'(s(z0), s(z1)) -> c7(-'(z0, z1)) GCD(s(z0), 0) -> c8 GCD(0, s(z0)) -> c9 GCD(s(z0), s(z1)) -> c10(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), -'(max(z0, z1), min(z0, z1)), MAX(z0, z1)) GCD(s(z0), s(z1)) -> c11(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), -'(max(z0, z1), min(z0, z1)), MIN(z0, z1)) GCD(s(z0), s(z1)) -> c12(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), MIN(z0, z1)) The (relative) TRS S consists of the following rules: min(z0, 0) -> 0 min(0, z0) -> 0 min(s(z0), s(z1)) -> s(min(z0, z1)) max(z0, 0) -> z0 max(0, z0) -> z0 max(s(z0), s(z1)) -> s(max(z0, z1)) -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) gcd(s(z0), 0) -> s(z0) gcd(0, s(z0)) -> s(z0) gcd(s(z0), s(z1)) -> gcd(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: MIN(z0, 0) -> c MIN(0, z0) -> c1 MIN(s(z0), s(z1)) -> c2(MIN(z0, z1)) MAX(z0, 0) -> c3 MAX(0, z0) -> c4 MAX(s(z0), s(z1)) -> c5(MAX(z0, z1)) -'(z0, 0) -> c6 -'(s(z0), s(z1)) -> c7(-'(z0, z1)) GCD(s(z0), 0) -> c8 GCD(0, s(z0)) -> c9 GCD(s(z0), s(z1)) -> c10(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), -'(max(z0, z1), min(z0, z1)), MAX(z0, z1)) GCD(s(z0), s(z1)) -> c11(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), -'(max(z0, z1), min(z0, z1)), MIN(z0, z1)) GCD(s(z0), s(z1)) -> c12(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), MIN(z0, z1)) The (relative) TRS S consists of the following rules: min(z0, 0) -> 0 min(0, z0) -> 0 min(s(z0), s(z1)) -> s(min(z0, z1)) max(z0, 0) -> z0 max(0, z0) -> z0 max(s(z0), s(z1)) -> s(max(z0, z1)) -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) gcd(s(z0), 0) -> s(z0) gcd(0, s(z0)) -> s(z0) gcd(s(z0), s(z1)) -> gcd(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))) Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence MIN(s(z0), s(z1)) ->^+ c2(MIN(z0, z1)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z0 / s(z0), z1 / s(z1)]. The result substitution is [ ]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: MIN(z0, 0) -> c MIN(0, z0) -> c1 MIN(s(z0), s(z1)) -> c2(MIN(z0, z1)) MAX(z0, 0) -> c3 MAX(0, z0) -> c4 MAX(s(z0), s(z1)) -> c5(MAX(z0, z1)) -'(z0, 0) -> c6 -'(s(z0), s(z1)) -> c7(-'(z0, z1)) GCD(s(z0), 0) -> c8 GCD(0, s(z0)) -> c9 GCD(s(z0), s(z1)) -> c10(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), -'(max(z0, z1), min(z0, z1)), MAX(z0, z1)) GCD(s(z0), s(z1)) -> c11(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), -'(max(z0, z1), min(z0, z1)), MIN(z0, z1)) GCD(s(z0), s(z1)) -> c12(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), MIN(z0, z1)) The (relative) TRS S consists of the following rules: min(z0, 0) -> 0 min(0, z0) -> 0 min(s(z0), s(z1)) -> s(min(z0, z1)) max(z0, 0) -> z0 max(0, z0) -> z0 max(s(z0), s(z1)) -> s(max(z0, z1)) -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) gcd(s(z0), 0) -> s(z0) gcd(0, s(z0)) -> s(z0) gcd(s(z0), s(z1)) -> gcd(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))) Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: MIN(z0, 0) -> c MIN(0, z0) -> c1 MIN(s(z0), s(z1)) -> c2(MIN(z0, z1)) MAX(z0, 0) -> c3 MAX(0, z0) -> c4 MAX(s(z0), s(z1)) -> c5(MAX(z0, z1)) -'(z0, 0) -> c6 -'(s(z0), s(z1)) -> c7(-'(z0, z1)) GCD(s(z0), 0) -> c8 GCD(0, s(z0)) -> c9 GCD(s(z0), s(z1)) -> c10(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), -'(max(z0, z1), min(z0, z1)), MAX(z0, z1)) GCD(s(z0), s(z1)) -> c11(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), -'(max(z0, z1), min(z0, z1)), MIN(z0, z1)) GCD(s(z0), s(z1)) -> c12(GCD(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))), MIN(z0, z1)) The (relative) TRS S consists of the following rules: min(z0, 0) -> 0 min(0, z0) -> 0 min(s(z0), s(z1)) -> s(min(z0, z1)) max(z0, 0) -> z0 max(0, z0) -> z0 max(s(z0), s(z1)) -> s(max(z0, z1)) -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) gcd(s(z0), 0) -> s(z0) gcd(0, s(z0)) -> s(z0) gcd(s(z0), s(z1)) -> gcd(-(max(z0, z1), min(z0, z1)), s(min(z0, z1))) Rewrite Strategy: INNERMOST