WORST_CASE(Omega(n^1),?) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 1697 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LAST(nil) -> c LAST(cons(z0, nil)) -> c1 LAST(cons(z0, cons(z1, z2))) -> c2(LAST(cons(z1, z2))) DEL(z0, nil) -> c3 DEL(z0, cons(z1, z2)) -> c4(IF(eq(z0, z1), z0, z1, z2), EQ(z0, z1)) IF(true, z0, z1, z2) -> c5 IF(false, z0, z1, z2) -> c6(DEL(z0, z2)) EQ(0, 0) -> c7 EQ(0, s(z0)) -> c8 EQ(s(z0), 0) -> c9 EQ(s(z0), s(z1)) -> c10(EQ(z0, z1)) REVERSE(nil) -> c11 REVERSE(cons(z0, z1)) -> c12(LAST(cons(z0, z1))) REVERSE(cons(z0, z1)) -> c13(REVERSE(del(last(cons(z0, z1)), cons(z0, z1))), DEL(last(cons(z0, z1)), cons(z0, z1)), LAST(cons(z0, z1))) The (relative) TRS S consists of the following rules: last(nil) -> 0 last(cons(z0, nil)) -> z0 last(cons(z0, cons(z1, z2))) -> last(cons(z1, z2)) del(z0, nil) -> nil del(z0, cons(z1, z2)) -> if(eq(z0, z1), z0, z1, z2) if(true, z0, z1, z2) -> z2 if(false, z0, z1, z2) -> cons(z1, del(z0, z2)) eq(0, 0) -> true eq(0, s(z0)) -> false eq(s(z0), 0) -> false eq(s(z0), s(z1)) -> eq(z0, z1) reverse(nil) -> nil reverse(cons(z0, z1)) -> cons(last(cons(z0, z1)), reverse(del(last(cons(z0, z1)), cons(z0, z1)))) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LAST(nil) -> c LAST(cons(z0, nil)) -> c1 LAST(cons(z0, cons(z1, z2))) -> c2(LAST(cons(z1, z2))) DEL(z0, nil) -> c3 DEL(z0, cons(z1, z2)) -> c4(IF(eq(z0, z1), z0, z1, z2), EQ(z0, z1)) IF(true, z0, z1, z2) -> c5 IF(false, z0, z1, z2) -> c6(DEL(z0, z2)) EQ(0, 0) -> c7 EQ(0, s(z0)) -> c8 EQ(s(z0), 0) -> c9 EQ(s(z0), s(z1)) -> c10(EQ(z0, z1)) REVERSE(nil) -> c11 REVERSE(cons(z0, z1)) -> c12(LAST(cons(z0, z1))) REVERSE(cons(z0, z1)) -> c13(REVERSE(del(last(cons(z0, z1)), cons(z0, z1))), DEL(last(cons(z0, z1)), cons(z0, z1)), LAST(cons(z0, z1))) The (relative) TRS S consists of the following rules: last(nil) -> 0 last(cons(z0, nil)) -> z0 last(cons(z0, cons(z1, z2))) -> last(cons(z1, z2)) del(z0, nil) -> nil del(z0, cons(z1, z2)) -> if(eq(z0, z1), z0, z1, z2) if(true, z0, z1, z2) -> z2 if(false, z0, z1, z2) -> cons(z1, del(z0, z2)) eq(0, 0) -> true eq(0, s(z0)) -> false eq(s(z0), 0) -> false eq(s(z0), s(z1)) -> eq(z0, z1) reverse(nil) -> nil reverse(cons(z0, z1)) -> cons(last(cons(z0, z1)), reverse(del(last(cons(z0, z1)), cons(z0, z1)))) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LAST(nil) -> c LAST(cons(z0, nil)) -> c1 LAST(cons(z0, cons(z1, z2))) -> c2(LAST(cons(z1, z2))) DEL(z0, nil) -> c3 DEL(z0, cons(z1, z2)) -> c4(IF(eq(z0, z1), z0, z1, z2), EQ(z0, z1)) IF(true, z0, z1, z2) -> c5 IF(false, z0, z1, z2) -> c6(DEL(z0, z2)) EQ(0, 0) -> c7 EQ(0, s(z0)) -> c8 EQ(s(z0), 0) -> c9 EQ(s(z0), s(z1)) -> c10(EQ(z0, z1)) REVERSE(nil) -> c11 REVERSE(cons(z0, z1)) -> c12(LAST(cons(z0, z1))) REVERSE(cons(z0, z1)) -> c13(REVERSE(del(last(cons(z0, z1)), cons(z0, z1))), DEL(last(cons(z0, z1)), cons(z0, z1)), LAST(cons(z0, z1))) The (relative) TRS S consists of the following rules: last(nil) -> 0 last(cons(z0, nil)) -> z0 last(cons(z0, cons(z1, z2))) -> last(cons(z1, z2)) del(z0, nil) -> nil del(z0, cons(z1, z2)) -> if(eq(z0, z1), z0, z1, z2) if(true, z0, z1, z2) -> z2 if(false, z0, z1, z2) -> cons(z1, del(z0, z2)) eq(0, 0) -> true eq(0, s(z0)) -> false eq(s(z0), 0) -> false eq(s(z0), s(z1)) -> eq(z0, z1) reverse(nil) -> nil reverse(cons(z0, z1)) -> cons(last(cons(z0, z1)), reverse(del(last(cons(z0, z1)), cons(z0, z1)))) Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence LAST(cons(z0, cons(z1, z2))) ->^+ c2(LAST(cons(z1, z2))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z2 / cons(z1, z2)]. The result substitution is [z0 / z1]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LAST(nil) -> c LAST(cons(z0, nil)) -> c1 LAST(cons(z0, cons(z1, z2))) -> c2(LAST(cons(z1, z2))) DEL(z0, nil) -> c3 DEL(z0, cons(z1, z2)) -> c4(IF(eq(z0, z1), z0, z1, z2), EQ(z0, z1)) IF(true, z0, z1, z2) -> c5 IF(false, z0, z1, z2) -> c6(DEL(z0, z2)) EQ(0, 0) -> c7 EQ(0, s(z0)) -> c8 EQ(s(z0), 0) -> c9 EQ(s(z0), s(z1)) -> c10(EQ(z0, z1)) REVERSE(nil) -> c11 REVERSE(cons(z0, z1)) -> c12(LAST(cons(z0, z1))) REVERSE(cons(z0, z1)) -> c13(REVERSE(del(last(cons(z0, z1)), cons(z0, z1))), DEL(last(cons(z0, z1)), cons(z0, z1)), LAST(cons(z0, z1))) The (relative) TRS S consists of the following rules: last(nil) -> 0 last(cons(z0, nil)) -> z0 last(cons(z0, cons(z1, z2))) -> last(cons(z1, z2)) del(z0, nil) -> nil del(z0, cons(z1, z2)) -> if(eq(z0, z1), z0, z1, z2) if(true, z0, z1, z2) -> z2 if(false, z0, z1, z2) -> cons(z1, del(z0, z2)) eq(0, 0) -> true eq(0, s(z0)) -> false eq(s(z0), 0) -> false eq(s(z0), s(z1)) -> eq(z0, z1) reverse(nil) -> nil reverse(cons(z0, z1)) -> cons(last(cons(z0, z1)), reverse(del(last(cons(z0, z1)), cons(z0, z1)))) Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LAST(nil) -> c LAST(cons(z0, nil)) -> c1 LAST(cons(z0, cons(z1, z2))) -> c2(LAST(cons(z1, z2))) DEL(z0, nil) -> c3 DEL(z0, cons(z1, z2)) -> c4(IF(eq(z0, z1), z0, z1, z2), EQ(z0, z1)) IF(true, z0, z1, z2) -> c5 IF(false, z0, z1, z2) -> c6(DEL(z0, z2)) EQ(0, 0) -> c7 EQ(0, s(z0)) -> c8 EQ(s(z0), 0) -> c9 EQ(s(z0), s(z1)) -> c10(EQ(z0, z1)) REVERSE(nil) -> c11 REVERSE(cons(z0, z1)) -> c12(LAST(cons(z0, z1))) REVERSE(cons(z0, z1)) -> c13(REVERSE(del(last(cons(z0, z1)), cons(z0, z1))), DEL(last(cons(z0, z1)), cons(z0, z1)), LAST(cons(z0, z1))) The (relative) TRS S consists of the following rules: last(nil) -> 0 last(cons(z0, nil)) -> z0 last(cons(z0, cons(z1, z2))) -> last(cons(z1, z2)) del(z0, nil) -> nil del(z0, cons(z1, z2)) -> if(eq(z0, z1), z0, z1, z2) if(true, z0, z1, z2) -> z2 if(false, z0, z1, z2) -> cons(z1, del(z0, z2)) eq(0, 0) -> true eq(0, s(z0)) -> false eq(s(z0), 0) -> false eq(s(z0), s(z1)) -> eq(z0, z1) reverse(nil) -> nil reverse(cons(z0, z1)) -> cons(last(cons(z0, z1)), reverse(del(last(cons(z0, z1)), cons(z0, z1)))) Rewrite Strategy: INNERMOST