WORST_CASE(?,O(n^3)) proof of input_v3L9h91xZb.trs # AProVE Commit ID: 5b976082cb74a395683ed8cc7acf94bd611ab29f fuhs 20230524 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxWeightedTrs (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedTrs (15) CompletionProof [UPPER BOUND(ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxTypedWeightedCompleteTrs (19) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 87 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 74 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 189 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 191 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 65 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 349 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 94 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 737 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 55 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 939 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 234 ms] (60) CpxRNTS (61) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 98 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (66) CpxRNTS (67) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 492 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (72) CpxRNTS (73) FinalProof [FINISHED, 0 ms] (74) BOUNDS(1, n^3) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) terms(X) -> n__terms(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Tuples: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0) -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0) -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0, z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0, z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 S tuples: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0) -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0) -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0, z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0, z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 K tuples:none Defined Rule Symbols: terms_1, sqr_1, dbl_1, add_2, first_2, activate_1 Defined Pair Symbols: TERMS_1, SQR_1, DBL_1, ADD_2, FIRST_2, ACTIVATE_1 Compound Symbols: c_1, c1, c2, c3_2, c4_2, c5, c6_1, c7, c8_1, c9, c10_1, c11, c12_1, c13_1, c14 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 7 trailing nodes: FIRST(z0, z1) -> c11 FIRST(0, z0) -> c9 ACTIVATE(z0) -> c14 ADD(0, z0) -> c7 TERMS(z0) -> c1 SQR(0) -> c2 DBL(0) -> c5 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Tuples: TERMS(z0) -> c(SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(s(z0)) -> c6(DBL(z0)) ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) S tuples: TERMS(z0) -> c(SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(s(z0)) -> c6(DBL(z0)) ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) K tuples:none Defined Rule Symbols: terms_1, sqr_1, dbl_1, add_2, first_2, activate_1 Defined Pair Symbols: TERMS_1, SQR_1, DBL_1, ADD_2, FIRST_2, ACTIVATE_1 Compound Symbols: c_1, c3_2, c4_2, c6_1, c8_1, c10_1, c12_1, c13_1 ---------------------------------------- (5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Tuples: TERMS(z0) -> c(SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) DBL(s(z0)) -> c6(DBL(z0)) ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) SQR(s(z0)) -> c1(ADD(sqr(z0), dbl(z0))) SQR(s(z0)) -> c1(DBL(z0)) S tuples: TERMS(z0) -> c(SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) DBL(s(z0)) -> c6(DBL(z0)) ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) SQR(s(z0)) -> c1(ADD(sqr(z0), dbl(z0))) SQR(s(z0)) -> c1(DBL(z0)) K tuples:none Defined Rule Symbols: terms_1, sqr_1, dbl_1, add_2, first_2, activate_1 Defined Pair Symbols: TERMS_1, SQR_1, DBL_1, ADD_2, FIRST_2, ACTIVATE_1 Compound Symbols: c_1, c3_2, c6_1, c8_1, c10_1, c12_1, c13_1, c1_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) Tuples: TERMS(z0) -> c(SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) DBL(s(z0)) -> c6(DBL(z0)) ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) SQR(s(z0)) -> c1(ADD(sqr(z0), dbl(z0))) SQR(s(z0)) -> c1(DBL(z0)) S tuples: TERMS(z0) -> c(SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) DBL(s(z0)) -> c6(DBL(z0)) ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) SQR(s(z0)) -> c1(ADD(sqr(z0), dbl(z0))) SQR(s(z0)) -> c1(DBL(z0)) K tuples:none Defined Rule Symbols: sqr_1, add_2, dbl_1 Defined Pair Symbols: TERMS_1, SQR_1, DBL_1, ADD_2, FIRST_2, ACTIVATE_1 Compound Symbols: c_1, c3_2, c6_1, c8_1, c10_1, c12_1, c13_1, c1_1 ---------------------------------------- (9) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) DBL(s(z0)) -> c6(DBL(z0)) ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) SQR(s(z0)) -> c1(ADD(sqr(z0), dbl(z0))) SQR(s(z0)) -> c1(DBL(z0)) The (relative) TRS S consists of the following rules: sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) Rewrite Strategy: INNERMOST ---------------------------------------- (11) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) [1] DBL(s(z0)) -> c6(DBL(z0)) [1] ADD(s(z0), z1) -> c8(ADD(z0, z1)) [1] FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) [1] ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) [1] ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) [1] SQR(s(z0)) -> c1(ADD(sqr(z0), dbl(z0))) [1] SQR(s(z0)) -> c1(DBL(z0)) [1] sqr(0) -> 0 [0] sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) [1] DBL(s(z0)) -> c6(DBL(z0)) [1] ADD(s(z0), z1) -> c8(ADD(z0, z1)) [1] FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) [1] ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) [1] ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) [1] SQR(s(z0)) -> c1(ADD(sqr(z0), dbl(z0))) [1] SQR(s(z0)) -> c1(DBL(z0)) [1] sqr(0) -> 0 [0] sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] The TRS has the following type information: TERMS :: s:0 -> c c :: c3:c1 -> c SQR :: s:0 -> c3:c1 s :: s:0 -> s:0 c3 :: c6:c8 -> c3:c1 -> c3:c1 ADD :: s:0 -> s:0 -> c6:c8 sqr :: s:0 -> s:0 dbl :: s:0 -> s:0 DBL :: s:0 -> c6:c8 c6 :: c6:c8 -> c6:c8 c8 :: c6:c8 -> c6:c8 FIRST :: s:0 -> cons -> c10 cons :: a -> n__terms:n__first -> cons c10 :: c12:c13 -> c10 ACTIVATE :: n__terms:n__first -> c12:c13 n__terms :: s:0 -> n__terms:n__first c12 :: c -> c12:c13 n__first :: s:0 -> cons -> n__terms:n__first c13 :: c10 -> c12:c13 c1 :: c6:c8 -> c3:c1 0 :: s:0 add :: s:0 -> s:0 -> s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (15) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: TERMS_1 SQR_1 DBL_1 ADD_2 FIRST_2 ACTIVATE_1 (c) The following functions are completely defined: sqr_1 add_2 dbl_1 Due to the following rules being added: sqr(v0) -> 0 [0] add(v0, v1) -> 0 [0] dbl(v0) -> 0 [0] And the following fresh constants: const, const1, const2, const3, const4, const5, const6, const7 ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) [1] DBL(s(z0)) -> c6(DBL(z0)) [1] ADD(s(z0), z1) -> c8(ADD(z0, z1)) [1] FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) [1] ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) [1] ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) [1] SQR(s(z0)) -> c1(ADD(sqr(z0), dbl(z0))) [1] SQR(s(z0)) -> c1(DBL(z0)) [1] sqr(0) -> 0 [0] sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] sqr(v0) -> 0 [0] add(v0, v1) -> 0 [0] dbl(v0) -> 0 [0] The TRS has the following type information: TERMS :: s:0 -> c c :: c3:c1 -> c SQR :: s:0 -> c3:c1 s :: s:0 -> s:0 c3 :: c6:c8 -> c3:c1 -> c3:c1 ADD :: s:0 -> s:0 -> c6:c8 sqr :: s:0 -> s:0 dbl :: s:0 -> s:0 DBL :: s:0 -> c6:c8 c6 :: c6:c8 -> c6:c8 c8 :: c6:c8 -> c6:c8 FIRST :: s:0 -> cons -> c10 cons :: a -> n__terms:n__first -> cons c10 :: c12:c13 -> c10 ACTIVATE :: n__terms:n__first -> c12:c13 n__terms :: s:0 -> n__terms:n__first c12 :: c -> c12:c13 n__first :: s:0 -> cons -> n__terms:n__first c13 :: c10 -> c12:c13 c1 :: c6:c8 -> c3:c1 0 :: s:0 add :: s:0 -> s:0 -> s:0 const :: c const1 :: c3:c1 const2 :: c6:c8 const3 :: c10 const4 :: cons const5 :: a const6 :: n__terms:n__first const7 :: c12:c13 Rewrite Strategy: INNERMOST ---------------------------------------- (17) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (18) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] SQR(s(0)) -> c3(ADD(0, 0), SQR(0)) [1] SQR(s(0)) -> c3(ADD(0, 0), SQR(0)) [1] SQR(s(s(z0'))) -> c3(ADD(s(add(sqr(z0'), dbl(z0'))), s(s(dbl(z0')))), SQR(s(z0'))) [1] SQR(s(s(z0'))) -> c3(ADD(s(add(sqr(z0'), dbl(z0'))), 0), SQR(s(z0'))) [1] SQR(s(0)) -> c3(ADD(0, 0), SQR(0)) [1] SQR(s(s(z0''))) -> c3(ADD(0, s(s(dbl(z0'')))), SQR(s(z0''))) [1] SQR(s(z0)) -> c3(ADD(0, 0), SQR(z0)) [1] DBL(s(z0)) -> c6(DBL(z0)) [1] ADD(s(z0), z1) -> c8(ADD(z0, z1)) [1] FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) [1] ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) [1] ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) [1] SQR(s(0)) -> c1(ADD(0, 0)) [1] SQR(s(0)) -> c1(ADD(0, 0)) [1] SQR(s(s(z01))) -> c1(ADD(s(add(sqr(z01), dbl(z01))), s(s(dbl(z01))))) [1] SQR(s(s(z01))) -> c1(ADD(s(add(sqr(z01), dbl(z01))), 0)) [1] SQR(s(0)) -> c1(ADD(0, 0)) [1] SQR(s(s(z02))) -> c1(ADD(0, s(s(dbl(z02))))) [1] SQR(s(z0)) -> c1(ADD(0, 0)) [1] SQR(s(z0)) -> c1(DBL(z0)) [1] sqr(0) -> 0 [0] sqr(s(0)) -> s(add(0, 0)) [0] sqr(s(0)) -> s(add(0, 0)) [0] sqr(s(s(z03))) -> s(add(s(add(sqr(z03), dbl(z03))), s(s(dbl(z03))))) [0] sqr(s(s(z03))) -> s(add(s(add(sqr(z03), dbl(z03))), 0)) [0] sqr(s(0)) -> s(add(0, 0)) [0] sqr(s(s(z04))) -> s(add(0, s(s(dbl(z04))))) [0] sqr(s(z0)) -> s(add(0, 0)) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] sqr(v0) -> 0 [0] add(v0, v1) -> 0 [0] dbl(v0) -> 0 [0] The TRS has the following type information: TERMS :: s:0 -> c c :: c3:c1 -> c SQR :: s:0 -> c3:c1 s :: s:0 -> s:0 c3 :: c6:c8 -> c3:c1 -> c3:c1 ADD :: s:0 -> s:0 -> c6:c8 sqr :: s:0 -> s:0 dbl :: s:0 -> s:0 DBL :: s:0 -> c6:c8 c6 :: c6:c8 -> c6:c8 c8 :: c6:c8 -> c6:c8 FIRST :: s:0 -> cons -> c10 cons :: a -> n__terms:n__first -> cons c10 :: c12:c13 -> c10 ACTIVATE :: n__terms:n__first -> c12:c13 n__terms :: s:0 -> n__terms:n__first c12 :: c -> c12:c13 n__first :: s:0 -> cons -> n__terms:n__first c13 :: c10 -> c12:c13 c1 :: c6:c8 -> c3:c1 0 :: s:0 add :: s:0 -> s:0 -> s:0 const :: c const1 :: c3:c1 const2 :: c6:c8 const3 :: c10 const4 :: cons const5 :: a const6 :: n__terms:n__first const7 :: c12:c13 Rewrite Strategy: INNERMOST ---------------------------------------- (19) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const => 0 const1 => 0 const2 => 0 const3 => 0 const4 => 0 const5 => 0 const6 => 0 const7 => 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z0) :|: z = 1 + z0, z0 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 1 + ADD(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 DBL(z) -{ 1 }-> 1 + DBL(z0) :|: z = 1 + z0, z0 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 1 + DBL(z0) :|: z = 1 + z0, z0 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z = 1 + z0, z0 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z02))) :|: z = 1 + (1 + z02), z02 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z01), dbl(z01)), 0) :|: z = 1 + (1 + z01), z01 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z01), dbl(z01)), 1 + (1 + dbl(z01))) :|: z = 1 + (1 + z01), z01 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z0) :|: z = 1 + z0, z0 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z0''))) + SQR(1 + z0'') :|: z = 1 + (1 + z0''), z0'' >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z0'), dbl(z0')), 0) + SQR(1 + z0') :|: z = 1 + (1 + z0'), z0' >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z0'), dbl(z0')), 1 + (1 + dbl(z0'))) + SQR(1 + z0') :|: z = 1 + (1 + z0'), z0' >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z0) :|: z = z0, z0 >= 0 add(z, z') -{ 0 }-> z0 :|: z0 >= 0, z = 0, z' = z0 add(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 add(z, z') -{ 0 }-> 1 + add(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z0)) :|: z = 1 + z0, z0 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + z0, z0 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z04))) :|: z04 >= 0, z = 1 + (1 + z04) sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z03), dbl(z03)), 0) :|: z = 1 + (1 + z03), z03 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z03), dbl(z03)), 1 + (1 + dbl(z03))) :|: z = 1 + (1 + z03), z03 >= 0 ---------------------------------------- (21) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 ---------------------------------------- (23) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { DBL } { ADD } { dbl } { add } { sqr } { SQR } { TERMS } { FIRST, ACTIVATE } ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {DBL}, {ADD}, {dbl}, {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {DBL}, {ADD}, {dbl}, {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: DBL after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {DBL}, {ADD}, {dbl}, {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: ?, size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: DBL after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {ADD}, {dbl}, {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {ADD}, {dbl}, {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: ADD after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {ADD}, {dbl}, {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: ?, size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: ADD after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: dbl after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: dbl after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s10), 1 + (1 + s11)) :|: s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s12), 0) :|: s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s9 + SQR(1 + (z - 2)) :|: s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s5), 1 + (1 + s6)) + SQR(1 + (z - 2)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s7), 0) + SQR(1 + (z - 2)) :|: s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + s18)) :|: s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s15), 1 + (1 + s16)) :|: s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s17), 0) :|: s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: add after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s10), 1 + (1 + s11)) :|: s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s12), 0) :|: s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s9 + SQR(1 + (z - 2)) :|: s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s5), 1 + (1 + s6)) + SQR(1 + (z - 2)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s7), 0) + SQR(1 + (z - 2)) :|: s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + s18)) :|: s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s15), 1 + (1 + s16)) :|: s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s17), 0) :|: s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {add}, {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: add after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s10), 1 + (1 + s11)) :|: s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s12), 0) :|: s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s9 + SQR(1 + (z - 2)) :|: s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s5), 1 + (1 + s6)) + SQR(1 + (z - 2)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s7), 0) + SQR(1 + (z - 2)) :|: s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + s18)) :|: s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s15), 1 + (1 + s16)) :|: s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s17), 0) :|: s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s10), 1 + (1 + s11)) :|: s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s12), 0) :|: s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s9 + SQR(1 + (z - 2)) :|: s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s5), 1 + (1 + s6)) + SQR(1 + (z - 2)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s7), 0) + SQR(1 + (z - 2)) :|: s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s15), 1 + (1 + s16)) :|: s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s17), 0) :|: s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 3 + 8*z + 6*z^2 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s10), 1 + (1 + s11)) :|: s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s12), 0) :|: s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s9 + SQR(1 + (z - 2)) :|: s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s5), 1 + (1 + s6)) + SQR(1 + (z - 2)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s7), 0) + SQR(1 + (z - 2)) :|: s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s15), 1 + (1 + s16)) :|: s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s17), 0) :|: s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {sqr}, {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: ?, size: O(n^2) [3 + 8*z + 6*z^2] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s10), 1 + (1 + s11)) :|: s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s12), 0) :|: s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s9 + SQR(1 + (z - 2)) :|: s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s5), 1 + (1 + s6)) + SQR(1 + (z - 2)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s7), 0) + SQR(1 + (z - 2)) :|: s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s15), 1 + (1 + s16)) :|: s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s17), 0) :|: s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 2 + s31 }-> 1 + s32 :|: s30 >= 0, s30 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s31 >= 0, s31 <= s30 + s10, s32 >= 0, s32 <= 0, s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s34 }-> 1 + s35 :|: s33 >= 0, s33 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s34 >= 0, s34 <= s33 + s12, s35 >= 0, s35 <= 0, s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 2 + s25 }-> 1 + s26 + SQR(1 + (z - 2)) :|: s24 >= 0, s24 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s25 >= 0, s25 <= s24 + s5, s26 >= 0, s26 <= 0, s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s28 }-> 1 + s29 + SQR(1 + (z - 2)) :|: s27 >= 0, s27 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s28 >= 0, s28 <= s27 + s7, s29 >= 0, s29 <= 0, s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s9 + SQR(1 + (z - 2)) :|: s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s38 :|: s36 >= 0, s36 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s37 >= 0, s37 <= s36 + s15, s38 >= 0, s38 <= 1 + s37 + (1 + (1 + s16)), s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s41 :|: s39 >= 0, s39 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s40 >= 0, s40 <= s39 + s17, s41 >= 0, s41 <= 1 + s40 + 0, s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: SQR after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 2 + s31 }-> 1 + s32 :|: s30 >= 0, s30 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s31 >= 0, s31 <= s30 + s10, s32 >= 0, s32 <= 0, s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s34 }-> 1 + s35 :|: s33 >= 0, s33 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s34 >= 0, s34 <= s33 + s12, s35 >= 0, s35 <= 0, s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 2 + s25 }-> 1 + s26 + SQR(1 + (z - 2)) :|: s24 >= 0, s24 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s25 >= 0, s25 <= s24 + s5, s26 >= 0, s26 <= 0, s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s28 }-> 1 + s29 + SQR(1 + (z - 2)) :|: s27 >= 0, s27 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s28 >= 0, s28 <= s27 + s7, s29 >= 0, s29 <= 0, s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s9 + SQR(1 + (z - 2)) :|: s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s38 :|: s36 >= 0, s36 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s37 >= 0, s37 <= s36 + s15, s38 >= 0, s38 <= 1 + s37 + (1 + (1 + s16)), s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s41 :|: s39 >= 0, s39 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s40 >= 0, s40 <= s39 + s17, s41 >= 0, s41 <= 1 + s40 + 0, s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {SQR}, {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: ?, size: O(n^1) [z] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: SQR after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 29 + 66*z + 48*z^2 + 12*z^3 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 2 + s31 }-> 1 + s32 :|: s30 >= 0, s30 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s31 >= 0, s31 <= s30 + s10, s32 >= 0, s32 <= 0, s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s34 }-> 1 + s35 :|: s33 >= 0, s33 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s34 >= 0, s34 <= s33 + s12, s35 >= 0, s35 <= 0, s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s'' + SQR(0) :|: s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 1 }-> 1 + s1 + SQR(z - 1) :|: s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 2 + s25 }-> 1 + s26 + SQR(1 + (z - 2)) :|: s24 >= 0, s24 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s25 >= 0, s25 <= s24 + s5, s26 >= 0, s26 <= 0, s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s28 }-> 1 + s29 + SQR(1 + (z - 2)) :|: s27 >= 0, s27 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s28 >= 0, s28 <= s27 + s7, s29 >= 0, s29 <= 0, s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s9 + SQR(1 + (z - 2)) :|: s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s38 :|: s36 >= 0, s36 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s37 >= 0, s37 <= s36 + s15, s38 >= 0, s38 <= 1 + s37 + (1 + (1 + s16)), s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s41 :|: s39 >= 0, s39 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s40 >= 0, s40 <= s39 + s17, s41 >= 0, s41 <= 1 + s40 + 0, s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [29 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [z] ---------------------------------------- (61) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 2 + s31 }-> 1 + s32 :|: s30 >= 0, s30 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s31 >= 0, s31 <= s30 + s10, s32 >= 0, s32 <= 0, s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s34 }-> 1 + s35 :|: s33 >= 0, s33 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s34 >= 0, s34 <= s33 + s12, s35 >= 0, s35 <= 0, s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 30 }-> 1 + s'' + s43 :|: s43 >= 0, s43 <= 0, s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s1 + s47 :|: s47 >= 0, s47 <= z - 1, s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 + s25 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s26 + s44 :|: s44 >= 0, s44 <= 1 + (z - 2), s24 >= 0, s24 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s25 >= 0, s25 <= s24 + s5, s26 >= 0, s26 <= 0, s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s28 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s29 + s45 :|: s45 >= 0, s45 <= 1 + (z - 2), s27 >= 0, s27 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s28 >= 0, s28 <= s27 + s7, s29 >= 0, s29 <= 0, s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s9 + s46 :|: s46 >= 0, s46 <= 1 + (z - 2), s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 TERMS(z) -{ 30 + 66*z + 48*z^2 + 12*z^3 }-> 1 + s42 :|: s42 >= 0, s42 <= z, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s38 :|: s36 >= 0, s36 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s37 >= 0, s37 <= s36 + s15, s38 >= 0, s38 <= 1 + s37 + (1 + (1 + s16)), s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s41 :|: s39 >= 0, s39 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s40 >= 0, s40 <= s39 + s17, s41 >= 0, s41 <= 1 + s40 + 0, s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [29 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [z] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: TERMS after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 2 + s31 }-> 1 + s32 :|: s30 >= 0, s30 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s31 >= 0, s31 <= s30 + s10, s32 >= 0, s32 <= 0, s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s34 }-> 1 + s35 :|: s33 >= 0, s33 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s34 >= 0, s34 <= s33 + s12, s35 >= 0, s35 <= 0, s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 30 }-> 1 + s'' + s43 :|: s43 >= 0, s43 <= 0, s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s1 + s47 :|: s47 >= 0, s47 <= z - 1, s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 + s25 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s26 + s44 :|: s44 >= 0, s44 <= 1 + (z - 2), s24 >= 0, s24 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s25 >= 0, s25 <= s24 + s5, s26 >= 0, s26 <= 0, s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s28 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s29 + s45 :|: s45 >= 0, s45 <= 1 + (z - 2), s27 >= 0, s27 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s28 >= 0, s28 <= s27 + s7, s29 >= 0, s29 <= 0, s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s9 + s46 :|: s46 >= 0, s46 <= 1 + (z - 2), s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 TERMS(z) -{ 30 + 66*z + 48*z^2 + 12*z^3 }-> 1 + s42 :|: s42 >= 0, s42 <= z, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s38 :|: s36 >= 0, s36 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s37 >= 0, s37 <= s36 + s15, s38 >= 0, s38 <= 1 + s37 + (1 + (1 + s16)), s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s41 :|: s39 >= 0, s39 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s40 >= 0, s40 <= s39 + s17, s41 >= 0, s41 <= 1 + s40 + 0, s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {TERMS}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [29 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [z] TERMS: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: TERMS after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 30 + 66*z + 48*z^2 + 12*z^3 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 2 + s31 }-> 1 + s32 :|: s30 >= 0, s30 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s31 >= 0, s31 <= s30 + s10, s32 >= 0, s32 <= 0, s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s34 }-> 1 + s35 :|: s33 >= 0, s33 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s34 >= 0, s34 <= s33 + s12, s35 >= 0, s35 <= 0, s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 30 }-> 1 + s'' + s43 :|: s43 >= 0, s43 <= 0, s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s1 + s47 :|: s47 >= 0, s47 <= z - 1, s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 + s25 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s26 + s44 :|: s44 >= 0, s44 <= 1 + (z - 2), s24 >= 0, s24 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s25 >= 0, s25 <= s24 + s5, s26 >= 0, s26 <= 0, s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s28 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s29 + s45 :|: s45 >= 0, s45 <= 1 + (z - 2), s27 >= 0, s27 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s28 >= 0, s28 <= s27 + s7, s29 >= 0, s29 <= 0, s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s9 + s46 :|: s46 >= 0, s46 <= 1 + (z - 2), s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 TERMS(z) -{ 30 + 66*z + 48*z^2 + 12*z^3 }-> 1 + s42 :|: s42 >= 0, s42 <= z, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s38 :|: s36 >= 0, s36 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s37 >= 0, s37 <= s36 + s15, s38 >= 0, s38 <= 1 + s37 + (1 + (1 + s16)), s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s41 :|: s39 >= 0, s39 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s40 >= 0, s40 <= s39 + s17, s41 >= 0, s41 <= 1 + s40 + 0, s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [29 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [z] TERMS: runtime: O(n^3) [30 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [1 + z] ---------------------------------------- (67) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s48 :|: s48 >= 0, s48 <= z - 1 + 1, z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 2 + s31 }-> 1 + s32 :|: s30 >= 0, s30 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s31 >= 0, s31 <= s30 + s10, s32 >= 0, s32 <= 0, s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s34 }-> 1 + s35 :|: s33 >= 0, s33 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s34 >= 0, s34 <= s33 + s12, s35 >= 0, s35 <= 0, s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 30 }-> 1 + s'' + s43 :|: s43 >= 0, s43 <= 0, s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s1 + s47 :|: s47 >= 0, s47 <= z - 1, s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 + s25 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s26 + s44 :|: s44 >= 0, s44 <= 1 + (z - 2), s24 >= 0, s24 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s25 >= 0, s25 <= s24 + s5, s26 >= 0, s26 <= 0, s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s28 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s29 + s45 :|: s45 >= 0, s45 <= 1 + (z - 2), s27 >= 0, s27 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s28 >= 0, s28 <= s27 + s7, s29 >= 0, s29 <= 0, s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s9 + s46 :|: s46 >= 0, s46 <= 1 + (z - 2), s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 TERMS(z) -{ 30 + 66*z + 48*z^2 + 12*z^3 }-> 1 + s42 :|: s42 >= 0, s42 <= z, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s38 :|: s36 >= 0, s36 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s37 >= 0, s37 <= s36 + s15, s38 >= 0, s38 <= 1 + s37 + (1 + (1 + s16)), s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s41 :|: s39 >= 0, s39 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s40 >= 0, s40 <= s39 + s17, s41 >= 0, s41 <= 1 + s40 + 0, s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [29 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [z] TERMS: runtime: O(n^3) [30 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [1 + z] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: FIRST after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' Computed SIZE bound using CoFloCo for: ACTIVATE after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s48 :|: s48 >= 0, s48 <= z - 1 + 1, z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 2 + s31 }-> 1 + s32 :|: s30 >= 0, s30 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s31 >= 0, s31 <= s30 + s10, s32 >= 0, s32 <= 0, s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s34 }-> 1 + s35 :|: s33 >= 0, s33 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s34 >= 0, s34 <= s33 + s12, s35 >= 0, s35 <= 0, s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 30 }-> 1 + s'' + s43 :|: s43 >= 0, s43 <= 0, s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s1 + s47 :|: s47 >= 0, s47 <= z - 1, s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 + s25 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s26 + s44 :|: s44 >= 0, s44 <= 1 + (z - 2), s24 >= 0, s24 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s25 >= 0, s25 <= s24 + s5, s26 >= 0, s26 <= 0, s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s28 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s29 + s45 :|: s45 >= 0, s45 <= 1 + (z - 2), s27 >= 0, s27 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s28 >= 0, s28 <= s27 + s7, s29 >= 0, s29 <= 0, s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s9 + s46 :|: s46 >= 0, s46 <= 1 + (z - 2), s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 TERMS(z) -{ 30 + 66*z + 48*z^2 + 12*z^3 }-> 1 + s42 :|: s42 >= 0, s42 <= z, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s38 :|: s36 >= 0, s36 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s37 >= 0, s37 <= s36 + s15, s38 >= 0, s38 <= 1 + s37 + (1 + (1 + s16)), s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s41 :|: s39 >= 0, s39 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s40 >= 0, s40 <= s39 + s17, s41 >= 0, s41 <= 1 + s40 + 0, s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [29 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [z] TERMS: runtime: O(n^3) [30 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [1 + z] FIRST: runtime: ?, size: O(n^1) [1 + z'] ACTIVATE: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: FIRST after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 8*z' + 12*z'^2 + 12*z'^3 Computed RUNTIME bound using KoAT for: ACTIVATE after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 3 + 14*z + 24*z^2 + 24*z^3 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s48 :|: s48 >= 0, s48 <= z - 1 + 1, z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ z }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z' >= 0, z - 1 >= 0 DBL(z) -{ z }-> 1 + s :|: s >= 0, s <= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + s14 :|: s13 >= 0, s13 <= 2 * (z - 2), s14 >= 0, s14 <= 0, z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0 SQR(z) -{ 2 + s31 }-> 1 + s32 :|: s30 >= 0, s30 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s31 >= 0, s31 <= s30 + s10, s32 >= 0, s32 <= 0, s10 >= 0, s10 <= 2 * (z - 2), s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 2 + s34 }-> 1 + s35 :|: s33 >= 0, s33 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s34 >= 0, s34 <= s33 + s12, s35 >= 0, s35 <= 0, s12 >= 0, s12 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0 SQR(z) -{ 30 }-> 1 + s'' + s43 :|: s43 >= 0, s43 <= 0, s'' >= 0, s'' <= 0, z = 1 + 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s1 + s47 :|: s47 >= 0, s47 <= z - 1, s1 >= 0, s1 <= 0, z - 1 >= 0 SQR(z) -{ 1 + s25 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s26 + s44 :|: s44 >= 0, s44 <= 1 + (z - 2), s24 >= 0, s24 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s25 >= 0, s25 <= s24 + s5, s26 >= 0, s26 <= 0, s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s28 + 6*z + 12*z^2 + 12*z^3 }-> 1 + s29 + s45 :|: s45 >= 0, s45 <= 1 + (z - 2), s27 >= 0, s27 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s28 >= 0, s28 <= s27 + s7, s29 >= 0, s29 <= 0, s7 >= 0, s7 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 6*z + 12*z^2 + 12*z^3 }-> 1 + s9 + s46 :|: s46 >= 0, s46 <= 1 + (z - 2), s8 >= 0, s8 <= 2 * (z - 2), s9 >= 0, s9 <= 0, z - 2 >= 0 TERMS(z) -{ 30 + 66*z + 48*z^2 + 12*z^3 }-> 1 + s42 :|: s42 >= 0, s42 <= z, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s19) :|: s19 >= 0, s19 <= 2 * (z - 1), z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s20 :|: s20 >= 0, s20 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s21 :|: s21 >= 0, s21 <= 0 + (1 + (1 + s18)), s18 >= 0, s18 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s22 :|: s22 >= 0, s22 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s38 :|: s36 >= 0, s36 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s37 >= 0, s37 <= s36 + s15, s38 >= 0, s38 <= 1 + s37 + (1 + (1 + s16)), s15 >= 0, s15 <= 2 * (z - 2), s16 >= 0, s16 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s41 :|: s39 >= 0, s39 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s40 >= 0, s40 <= s39 + s17, s41 >= 0, s41 <= 1 + s40 + 0, s17 >= 0, s17 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: Previous analysis results are: DBL: runtime: O(n^1) [z], size: O(1) [0] ADD: runtime: O(n^1) [z], size: O(1) [0] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [29 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [z] TERMS: runtime: O(n^3) [30 + 66*z + 48*z^2 + 12*z^3], size: O(n^1) [1 + z] FIRST: runtime: O(n^3) [1 + 8*z' + 12*z'^2 + 12*z'^3], size: O(n^1) [1 + z'] ACTIVATE: runtime: O(n^3) [3 + 14*z + 24*z^2 + 24*z^3], size: O(n^1) [1 + z] ---------------------------------------- (73) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (74) BOUNDS(1, n^3)