WORST_CASE(?,O(n^1)) proof of input_C2IdGi6mpm.trs # AProVE Commit ID: 5b976082cb74a395683ed8cc7acf94bd611ab29f fuhs 20230524 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRelTRS (13) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxWeightedTrs (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTypedWeightedTrs (17) CompletionProof [UPPER BOUND(ID), 0 ms] (18) CpxTypedWeightedCompleteTrs (19) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) CompleteCoflocoProof [FINISHED, 126 ms] (22) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: natsFrom(N) -> cons(N, n__natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, activate(XS)), N, X, activate(XS)) u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> activate(XS) sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) natsFrom(X) -> n__natsFrom(X) activate(n__natsFrom(X)) -> natsFrom(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) fst(pair(z0, z1)) -> z0 snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> u(splitAt(z0, activate(z2)), z0, z1, activate(z2)) u(pair(z0, z1), z2, z3, z4) -> pair(cons(activate(z3), z0), z1) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) sel(z0, z1) -> head(afterNth(z0, z1)) take(z0, z1) -> fst(splitAt(z0, z1)) afterNth(z0, z1) -> snd(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: NATSFROM(z0) -> c NATSFROM(z0) -> c1 FST(pair(z0, z1)) -> c2 SND(pair(z0, z1)) -> c3 SPLITAT(0, z0) -> c4 SPLITAT(s(z0), cons(z1, z2)) -> c5(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), SPLITAT(z0, activate(z2)), ACTIVATE(z2)) SPLITAT(s(z0), cons(z1, z2)) -> c6(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), ACTIVATE(z2)) U(pair(z0, z1), z2, z3, z4) -> c7(ACTIVATE(z3)) HEAD(cons(z0, z1)) -> c8 TAIL(cons(z0, z1)) -> c9(ACTIVATE(z1)) SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) ACTIVATE(n__natsFrom(z0)) -> c13(NATSFROM(z0)) ACTIVATE(z0) -> c14 S tuples: NATSFROM(z0) -> c NATSFROM(z0) -> c1 FST(pair(z0, z1)) -> c2 SND(pair(z0, z1)) -> c3 SPLITAT(0, z0) -> c4 SPLITAT(s(z0), cons(z1, z2)) -> c5(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), SPLITAT(z0, activate(z2)), ACTIVATE(z2)) SPLITAT(s(z0), cons(z1, z2)) -> c6(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), ACTIVATE(z2)) U(pair(z0, z1), z2, z3, z4) -> c7(ACTIVATE(z3)) HEAD(cons(z0, z1)) -> c8 TAIL(cons(z0, z1)) -> c9(ACTIVATE(z1)) SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) ACTIVATE(n__natsFrom(z0)) -> c13(NATSFROM(z0)) ACTIVATE(z0) -> c14 K tuples:none Defined Rule Symbols: natsFrom_1, fst_1, snd_1, splitAt_2, u_4, head_1, tail_1, sel_2, take_2, afterNth_2, activate_1 Defined Pair Symbols: NATSFROM_1, FST_1, SND_1, SPLITAT_2, U_4, HEAD_1, TAIL_1, SEL_2, TAKE_2, AFTERNTH_2, ACTIVATE_1 Compound Symbols: c, c1, c2, c3, c4, c5_3, c6_2, c7_1, c8, c9_1, c10_2, c11_2, c12_2, c13_1, c14 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 11 trailing nodes: U(pair(z0, z1), z2, z3, z4) -> c7(ACTIVATE(z3)) ACTIVATE(z0) -> c14 NATSFROM(z0) -> c SPLITAT(s(z0), cons(z1, z2)) -> c6(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), ACTIVATE(z2)) SPLITAT(0, z0) -> c4 SND(pair(z0, z1)) -> c3 ACTIVATE(n__natsFrom(z0)) -> c13(NATSFROM(z0)) TAIL(cons(z0, z1)) -> c9(ACTIVATE(z1)) FST(pair(z0, z1)) -> c2 HEAD(cons(z0, z1)) -> c8 NATSFROM(z0) -> c1 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) fst(pair(z0, z1)) -> z0 snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> u(splitAt(z0, activate(z2)), z0, z1, activate(z2)) u(pair(z0, z1), z2, z3, z4) -> pair(cons(activate(z3), z0), z1) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) sel(z0, z1) -> head(afterNth(z0, z1)) take(z0, z1) -> fst(splitAt(z0, z1)) afterNth(z0, z1) -> snd(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), SPLITAT(z0, activate(z2)), ACTIVATE(z2)) SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) S tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), SPLITAT(z0, activate(z2)), ACTIVATE(z2)) SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) K tuples:none Defined Rule Symbols: natsFrom_1, fst_1, snd_1, splitAt_2, u_4, head_1, tail_1, sel_2, take_2, afterNth_2, activate_1 Defined Pair Symbols: SPLITAT_2, SEL_2, TAKE_2, AFTERNTH_2 Compound Symbols: c5_3, c10_2, c11_2, c12_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) fst(pair(z0, z1)) -> z0 snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> u(splitAt(z0, activate(z2)), z0, z1, activate(z2)) u(pair(z0, z1), z2, z3, z4) -> pair(cons(activate(z3), z0), z1) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) sel(z0, z1) -> head(afterNth(z0, z1)) take(z0, z1) -> fst(splitAt(z0, z1)) afterNth(z0, z1) -> snd(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) SEL(z0, z1) -> c10(AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SPLITAT(z0, z1)) S tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) SEL(z0, z1) -> c10(AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SPLITAT(z0, z1)) K tuples:none Defined Rule Symbols: natsFrom_1, fst_1, snd_1, splitAt_2, u_4, head_1, tail_1, sel_2, take_2, afterNth_2, activate_1 Defined Pair Symbols: SPLITAT_2, SEL_2, TAKE_2, AFTERNTH_2 Compound Symbols: c5_1, c10_1, c11_1, c12_1 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: TAKE(z0, z1) -> c11(SPLITAT(z0, z1)) SEL(z0, z1) -> c10(AFTERNTH(z0, z1)) AFTERNTH(z0, z1) -> c12(SPLITAT(z0, z1)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) fst(pair(z0, z1)) -> z0 snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> u(splitAt(z0, activate(z2)), z0, z1, activate(z2)) u(pair(z0, z1), z2, z3, z4) -> pair(cons(activate(z3), z0), z1) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) sel(z0, z1) -> head(afterNth(z0, z1)) take(z0, z1) -> fst(splitAt(z0, z1)) afterNth(z0, z1) -> snd(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) S tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) K tuples:none Defined Rule Symbols: natsFrom_1, fst_1, snd_1, splitAt_2, u_4, head_1, tail_1, sel_2, take_2, afterNth_2, activate_1 Defined Pair Symbols: SPLITAT_2 Compound Symbols: c5_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: fst(pair(z0, z1)) -> z0 snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> u(splitAt(z0, activate(z2)), z0, z1, activate(z2)) u(pair(z0, z1), z2, z3, z4) -> pair(cons(activate(z3), z0), z1) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) sel(z0, z1) -> head(afterNth(z0, z1)) take(z0, z1) -> fst(splitAt(z0, z1)) afterNth(z0, z1) -> snd(splitAt(z0, z1)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) Tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) S tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) K tuples:none Defined Rule Symbols: activate_1, natsFrom_1 Defined Pair Symbols: SPLITAT_2 Compound Symbols: c5_1 ---------------------------------------- (11) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) The (relative) TRS S consists of the following rules: activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (13) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) [1] activate(n__natsFrom(z0)) -> natsFrom(z0) [0] activate(z0) -> z0 [0] natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) [0] natsFrom(z0) -> n__natsFrom(z0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) [1] activate(n__natsFrom(z0)) -> natsFrom(z0) [0] activate(z0) -> z0 [0] natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) [0] natsFrom(z0) -> n__natsFrom(z0) [0] The TRS has the following type information: SPLITAT :: s -> cons:n__natsFrom -> c5 s :: s -> s cons :: s -> cons:n__natsFrom -> cons:n__natsFrom c5 :: c5 -> c5 activate :: cons:n__natsFrom -> cons:n__natsFrom n__natsFrom :: s -> cons:n__natsFrom natsFrom :: s -> cons:n__natsFrom Rewrite Strategy: INNERMOST ---------------------------------------- (17) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: activate(v0) -> null_activate [0] natsFrom(v0) -> null_natsFrom [0] SPLITAT(v0, v1) -> null_SPLITAT [0] And the following fresh constants: null_activate, null_natsFrom, null_SPLITAT, const ---------------------------------------- (18) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) [1] activate(n__natsFrom(z0)) -> natsFrom(z0) [0] activate(z0) -> z0 [0] natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) [0] natsFrom(z0) -> n__natsFrom(z0) [0] activate(v0) -> null_activate [0] natsFrom(v0) -> null_natsFrom [0] SPLITAT(v0, v1) -> null_SPLITAT [0] The TRS has the following type information: SPLITAT :: s -> cons:n__natsFrom:null_activate:null_natsFrom -> c5:null_SPLITAT s :: s -> s cons :: s -> cons:n__natsFrom:null_activate:null_natsFrom -> cons:n__natsFrom:null_activate:null_natsFrom c5 :: c5:null_SPLITAT -> c5:null_SPLITAT activate :: cons:n__natsFrom:null_activate:null_natsFrom -> cons:n__natsFrom:null_activate:null_natsFrom n__natsFrom :: s -> cons:n__natsFrom:null_activate:null_natsFrom natsFrom :: s -> cons:n__natsFrom:null_activate:null_natsFrom null_activate :: cons:n__natsFrom:null_activate:null_natsFrom null_natsFrom :: cons:n__natsFrom:null_activate:null_natsFrom null_SPLITAT :: c5:null_SPLITAT const :: s Rewrite Strategy: INNERMOST ---------------------------------------- (19) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: null_activate => 0 null_natsFrom => 0 null_SPLITAT => 0 const => 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z0, activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> natsFrom(z0) :|: z = 1 + z0, z0 >= 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 natsFrom(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 natsFrom(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 natsFrom(z) -{ 0 }-> 1 + z0 + (1 + (1 + z0)) :|: z = z0, z0 >= 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (21) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V),0,[fun(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[activate(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[natsFrom(V1, Out)],[V1 >= 0]). eq(fun(V1, V, Out),1,[activate(V4, Ret11),fun(V3, Ret11, Ret1)],[Out = 1 + Ret1,V2 >= 0,V = 1 + V2 + V4,V1 = 1 + V3,V3 >= 0,V4 >= 0]). eq(activate(V1, Out),0,[natsFrom(V5, Ret)],[Out = Ret,V1 = 1 + V5,V5 >= 0]). eq(activate(V1, Out),0,[],[Out = V6,V1 = V6,V6 >= 0]). eq(natsFrom(V1, Out),0,[],[Out = 3 + 2*V7,V1 = V7,V7 >= 0]). eq(natsFrom(V1, Out),0,[],[Out = 1 + V8,V1 = V8,V8 >= 0]). eq(activate(V1, Out),0,[],[Out = 0,V9 >= 0,V1 = V9]). eq(natsFrom(V1, Out),0,[],[Out = 0,V10 >= 0,V1 = V10]). eq(fun(V1, V, Out),0,[],[Out = 0,V12 >= 0,V11 >= 0,V1 = V12,V = V11]). input_output_vars(fun(V1,V,Out),[V1,V],[Out]). input_output_vars(activate(V1,Out),[V1],[Out]). input_output_vars(natsFrom(V1,Out),[V1],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. non_recursive : [natsFrom/2] 1. non_recursive : [activate/2] 2. recursive : [fun/3] 3. non_recursive : [start/2] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into natsFrom/2 1. SCC is partially evaluated into activate/2 2. SCC is partially evaluated into fun/3 3. SCC is partially evaluated into start/2 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations natsFrom/2 * CE 9 is refined into CE [12] * CE 10 is refined into CE [13] * CE 11 is refined into CE [14] ### Cost equations --> "Loop" of natsFrom/2 * CEs [12] --> Loop 10 * CEs [13] --> Loop 11 * CEs [14] --> Loop 12 ### Ranking functions of CR natsFrom(V1,Out) #### Partial ranking functions of CR natsFrom(V1,Out) ### Specialization of cost equations activate/2 * CE 6 is refined into CE [15,16,17] * CE 7 is refined into CE [18] * CE 8 is refined into CE [19] ### Cost equations --> "Loop" of activate/2 * CEs [17] --> Loop 13 * CEs [16,18] --> Loop 14 * CEs [15,19] --> Loop 15 ### Ranking functions of CR activate(V1,Out) #### Partial ranking functions of CR activate(V1,Out) ### Specialization of cost equations fun/3 * CE 5 is refined into CE [20] * CE 4 is refined into CE [21,22,23] ### Cost equations --> "Loop" of fun/3 * CEs [23] --> Loop 16 * CEs [21,22] --> Loop 17 * CEs [20] --> Loop 18 ### Ranking functions of CR fun(V1,V,Out) * RF of phase [16,17]: [V1] #### Partial ranking functions of CR fun(V1,V,Out) * Partial RF of phase [16,17]: - RF of loop [16:1,17:1]: V1 - RF of loop [17:1]: V depends on loops [16:1] ### Specialization of cost equations start/2 * CE 1 is refined into CE [24,25] * CE 2 is refined into CE [26,27,28] * CE 3 is refined into CE [29,30,31] ### Cost equations --> "Loop" of start/2 * CEs [24,25,26,27,28,29,30,31] --> Loop 19 ### Ranking functions of CR start(V1,V) #### Partial ranking functions of CR start(V1,V) Computing Bounds ===================================== #### Cost of chains of natsFrom(V1,Out): * Chain [12]: 0 with precondition: [Out=0,V1>=0] * Chain [11]: 0 with precondition: [V1+1=Out,V1>=0] * Chain [10]: 0 with precondition: [2*V1+3=Out,V1>=0] #### Cost of chains of activate(V1,Out): * Chain [15]: 0 with precondition: [Out=0,V1>=0] * Chain [14]: 0 with precondition: [V1=Out,V1>=0] * Chain [13]: 0 with precondition: [2*V1+1=Out,V1>=1] #### Cost of chains of fun(V1,V,Out): * Chain [[16,17],18]: 2*it(16)+0 Such that:aux(7) =< V1 aux(8) =< Out it(16) =< aux(7) it(16) =< aux(8) with precondition: [V>=1,Out>=1,V1>=Out] * Chain [18]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of start(V1,V): * Chain [19]: 2*s(3)+0 Such that:aux(9) =< V1 s(3) =< aux(9) with precondition: [V1>=0] Closed-form bounds of start(V1,V): ------------------------------------- * Chain [19] with precondition: [V1>=0] - Upper bound: 2*V1 - Complexity: n ### Maximum cost of start(V1,V): 2*V1 Asymptotic class: n * Total analysis performed in 107 ms. ---------------------------------------- (22) BOUNDS(1, n^1)