WORST_CASE(Omega(n^1),O(n^2)) proof of input_KgMylBwUiW.trs # AProVE Commit ID: 5b976082cb74a395683ed8cc7acf94bd611ab29f fuhs 20230524 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (8) CpxRNTS (9) CompleteCoflocoProof [FINISHED, 235 ms] (10) BOUNDS(1, n^2) (11) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRelTRS (15) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 5 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 476 ms] (22) BEST (23) proven lower bound (24) LowerBoundPropagationProof [FINISHED, 0 ms] (25) BOUNDS(n^1, INF) (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 49 ms] (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 83 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 450 ms] (32) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) U12(tt, M, N) -> s(plus(activate(N), activate(M))) U21(tt, M, N) -> U22(tt, activate(M), activate(N)) U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) plus(N, 0) -> N plus(N, s(M)) -> U11(tt, M, N) x(N, 0) -> 0 x(N, s(M)) -> U21(tt, M, N) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) [1] U12(tt, M, N) -> s(plus(activate(N), activate(M))) [1] U21(tt, M, N) -> U22(tt, activate(M), activate(N)) [1] U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) [1] plus(N, 0) -> N [1] plus(N, s(M)) -> U11(tt, M, N) [1] x(N, 0) -> 0 [1] x(N, s(M)) -> U21(tt, M, N) [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) [1] U12(tt, M, N) -> s(plus(activate(N), activate(M))) [1] U21(tt, M, N) -> U22(tt, activate(M), activate(N)) [1] U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) [1] plus(N, 0) -> N [1] plus(N, s(M)) -> U11(tt, M, N) [1] x(N, 0) -> 0 [1] x(N, s(M)) -> U21(tt, M, N) [1] activate(X) -> X [1] The TRS has the following type information: U11 :: tt -> s:0 -> s:0 -> s:0 tt :: tt U12 :: tt -> s:0 -> s:0 -> s:0 activate :: s:0 -> s:0 s :: s:0 -> s:0 plus :: s:0 -> s:0 -> s:0 U21 :: tt -> s:0 -> s:0 -> s:0 U22 :: tt -> s:0 -> s:0 -> s:0 x :: s:0 -> s:0 -> s:0 0 :: s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) [1] U12(tt, M, N) -> s(plus(activate(N), activate(M))) [1] U21(tt, M, N) -> U22(tt, activate(M), activate(N)) [1] U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) [1] plus(N, 0) -> N [1] plus(N, s(M)) -> U11(tt, M, N) [1] x(N, 0) -> 0 [1] x(N, s(M)) -> U21(tt, M, N) [1] activate(X) -> X [1] The TRS has the following type information: U11 :: tt -> s:0 -> s:0 -> s:0 tt :: tt U12 :: tt -> s:0 -> s:0 -> s:0 activate :: s:0 -> s:0 s :: s:0 -> s:0 plus :: s:0 -> s:0 -> s:0 U21 :: tt -> s:0 -> s:0 -> s:0 U22 :: tt -> s:0 -> s:0 -> s:0 x :: s:0 -> s:0 -> s:0 0 :: s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: tt => 0 0 => 0 ---------------------------------------- (8) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 1 }-> U12(0, activate(M), activate(N)) :|: z' = M, z = 0, z'' = N, M >= 0, N >= 0 U12(z, z', z'') -{ 1 }-> 1 + plus(activate(N), activate(M)) :|: z' = M, z = 0, z'' = N, M >= 0, N >= 0 U21(z, z', z'') -{ 1 }-> U22(0, activate(M), activate(N)) :|: z' = M, z = 0, z'' = N, M >= 0, N >= 0 U22(z, z', z'') -{ 1 }-> plus(x(activate(N), activate(M)), activate(N)) :|: z' = M, z = 0, z'' = N, M >= 0, N >= 0 activate(z) -{ 1 }-> X :|: X >= 0, z = X plus(z, z') -{ 1 }-> N :|: z = N, z' = 0, N >= 0 plus(z, z') -{ 1 }-> U11(0, M, N) :|: z' = 1 + M, z = N, M >= 0, N >= 0 x(z, z') -{ 1 }-> U21(0, M, N) :|: z' = 1 + M, z = N, M >= 0, N >= 0 x(z, z') -{ 1 }-> 0 :|: z = N, z' = 0, N >= 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (9) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V2),0,[fun(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[fun1(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[fun2(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[fun3(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[plus(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V2),0,[x(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V2),0,[activate(V1, Out)],[V1 >= 0]). eq(fun(V1, V, V2, Out),1,[activate(M1, Ret1),activate(N1, Ret2),fun1(0, Ret1, Ret2, Ret)],[Out = Ret,V = M1,V1 = 0,V2 = N1,M1 >= 0,N1 >= 0]). eq(fun1(V1, V, V2, Out),1,[activate(N2, Ret10),activate(M2, Ret11),plus(Ret10, Ret11, Ret12)],[Out = 1 + Ret12,V = M2,V1 = 0,V2 = N2,M2 >= 0,N2 >= 0]). eq(fun2(V1, V, V2, Out),1,[activate(M3, Ret13),activate(N3, Ret21),fun3(0, Ret13, Ret21, Ret3)],[Out = Ret3,V = M3,V1 = 0,V2 = N3,M3 >= 0,N3 >= 0]). eq(fun3(V1, V, V2, Out),1,[activate(N4, Ret00),activate(M4, Ret01),x(Ret00, Ret01, Ret0),activate(N4, Ret14),plus(Ret0, Ret14, Ret4)],[Out = Ret4,V = M4,V1 = 0,V2 = N4,M4 >= 0,N4 >= 0]). eq(plus(V1, V, Out),1,[],[Out = N5,V1 = N5,V = 0,N5 >= 0]). eq(plus(V1, V, Out),1,[fun(0, M5, N6, Ret5)],[Out = Ret5,V = 1 + M5,V1 = N6,M5 >= 0,N6 >= 0]). eq(x(V1, V, Out),1,[],[Out = 0,V1 = N7,V = 0,N7 >= 0]). eq(x(V1, V, Out),1,[fun2(0, M6, N8, Ret6)],[Out = Ret6,V = 1 + M6,V1 = N8,M6 >= 0,N8 >= 0]). eq(activate(V1, Out),1,[],[Out = X1,X1 >= 0,V1 = X1]). input_output_vars(fun(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(fun1(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(fun2(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(fun3(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(plus(V1,V,Out),[V1,V],[Out]). input_output_vars(x(V1,V,Out),[V1,V],[Out]). input_output_vars(activate(V1,Out),[V1],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. non_recursive : [activate/2] 1. recursive : [fun/4,fun1/4,plus/3] 2. recursive [non_tail] : [fun2/4,fun3/4,x/3] 3. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is completely evaluated into other SCCs 1. SCC is partially evaluated into plus/3 2. SCC is partially evaluated into x/3 3. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations plus/3 * CE 11 is refined into CE [12] * CE 10 is refined into CE [13] ### Cost equations --> "Loop" of plus/3 * CEs [13] --> Loop 6 * CEs [12] --> Loop 7 ### Ranking functions of CR plus(V1,V,Out) * RF of phase [6]: [V] #### Partial ranking functions of CR plus(V1,V,Out) * Partial RF of phase [6]: - RF of loop [6:1]: V ### Specialization of cost equations x/3 * CE 9 is refined into CE [14] * CE 8 is refined into CE [15,16] ### Cost equations --> "Loop" of x/3 * CEs [16] --> Loop 8 * CEs [15] --> Loop 9 * CEs [14] --> Loop 10 ### Ranking functions of CR x(V1,V,Out) * RF of phase [8]: [V] * RF of phase [9]: [V] #### Partial ranking functions of CR x(V1,V,Out) * Partial RF of phase [8]: - RF of loop [8:1]: V * Partial RF of phase [9]: - RF of loop [9:1]: V ### Specialization of cost equations start/3 * CE 1 is refined into CE [17,18,19,20] * CE 2 is refined into CE [21,22,23,24] * CE 3 is refined into CE [25,26] * CE 4 is refined into CE [27,28] * CE 5 is refined into CE [29,30] * CE 6 is refined into CE [31,32,33] * CE 7 is refined into CE [34] ### Cost equations --> "Loop" of start/3 * CEs [17,20,21,24,26,28,31] --> Loop 11 * CEs [18,19,22,23,25,27,29,30,32,33,34] --> Loop 12 ### Ranking functions of CR start(V1,V,V2) #### Partial ranking functions of CR start(V1,V,V2) Computing Bounds ===================================== #### Cost of chains of plus(V1,V,Out): * Chain [[6],7]: 7*it(6)+1 Such that:it(6) =< V with precondition: [V+V1=Out,V1>=0,V>=1] * Chain [7]: 1 with precondition: [V=0,V1=Out,V1>=0] #### Cost of chains of x(V1,V,Out): * Chain [[9],10]: 9*it(9)+1 Such that:it(9) =< V with precondition: [V1=0,Out=0,V>=1] * Chain [[8],10]: 9*it(8)+7*s(3)+1 Such that:aux(1) =< V1 it(8) =< V s(3) =< it(8)*aux(1) with precondition: [V1>=1,V>=1,Out+1>=V+V1] * Chain [10]: 1 with precondition: [V=0,Out=0,V1>=0] #### Cost of chains of start(V1,V,V2): * Chain [12]: 14*s(4)+16*s(6)+7*s(9)+9 Such that:s(7) =< V1 aux(2) =< V aux(3) =< V2 s(6) =< aux(2) s(4) =< aux(3) s(9) =< s(6)*s(7) with precondition: [V1>=0] * Chain [11]: 59*s(10)+14*s(13)+14*s(14)+9 Such that:aux(6) =< V aux(7) =< V2 s(10) =< aux(6) s(14) =< aux(7) s(13) =< s(10)*aux(7) with precondition: [V1=0,V>=1] Closed-form bounds of start(V1,V,V2): ------------------------------------- * Chain [12] with precondition: [V1>=0] - Upper bound: 7*V1*nat(V)+9+nat(V)*16+nat(V2)*14 - Complexity: n^2 * Chain [11] with precondition: [V1=0,V>=1] - Upper bound: 59*V+9+14*V*nat(V2)+nat(V2)*14 - Complexity: n^2 ### Maximum cost of start(V1,V,V2): nat(V)*16+9+nat(V2)*14+max([7*V1*nat(V),nat(V)*14*nat(V2)+nat(V)*43]) Asymptotic class: n^2 * Total analysis performed in 203 ms. ---------------------------------------- (10) BOUNDS(1, n^2) ---------------------------------------- (11) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0) -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0) -> 0 x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Tuples: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0) -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0) -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 S tuples: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0) -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0) -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 K tuples:none Defined Rule Symbols: U11_3, U12_3, U21_3, U22_3, plus_2, x_2, activate_1 Defined Pair Symbols: U11'_3, U12'_3, U21'_3, U22'_3, PLUS_2, X_2, ACTIVATE_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4_2, c5_2, c6_3, c7_3, c8_2, c9, c10_1, c11, c12_1, c13 ---------------------------------------- (13) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0) -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0) -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 The (relative) TRS S consists of the following rules: U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0) -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0) -> 0 x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (15) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 The (relative) TRS S consists of the following rules: U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (18) Obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: PLUS, x, X, plus They will be analysed ascendingly in the following order: PLUS < X x < X plus < x ---------------------------------------- (20) Obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s Generator Equations: gen_0':s10_14(0) <=> 0' gen_0':s10_14(+(x, 1)) <=> s(gen_0':s10_14(x)) The following defined symbols remain to be analysed: PLUS, x, X, plus They will be analysed ascendingly in the following order: PLUS < X x < X plus < x ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: PLUS(gen_0':s10_14(a), gen_0':s10_14(n12_14)) -> *11_14, rt in Omega(n12_14) Induction Base: PLUS(gen_0':s10_14(a), gen_0':s10_14(0)) Induction Step: PLUS(gen_0':s10_14(a), gen_0':s10_14(+(n12_14, 1))) ->_R^Omega(1) c10(U11'(tt, gen_0':s10_14(n12_14), gen_0':s10_14(a))) ->_R^Omega(1) c10(c(U12'(tt, activate(gen_0':s10_14(n12_14)), activate(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(0) c10(c(U12'(tt, gen_0':s10_14(n12_14), activate(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(0) c10(c(U12'(tt, gen_0':s10_14(n12_14), gen_0':s10_14(a)), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(1) c10(c(c2(PLUS(activate(gen_0':s10_14(a)), activate(gen_0':s10_14(n12_14))), ACTIVATE(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(0) c10(c(c2(PLUS(gen_0':s10_14(a), activate(gen_0':s10_14(n12_14))), ACTIVATE(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(0) c10(c(c2(PLUS(gen_0':s10_14(a), gen_0':s10_14(n12_14)), ACTIVATE(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_IH c10(c(c2(*11_14, ACTIVATE(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(1) c10(c(c2(*11_14, c13), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(1) c10(c(c2(*11_14, c13), c13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Complex Obligation (BEST) ---------------------------------------- (23) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s Generator Equations: gen_0':s10_14(0) <=> 0' gen_0':s10_14(+(x, 1)) <=> s(gen_0':s10_14(x)) The following defined symbols remain to be analysed: PLUS, x, X, plus They will be analysed ascendingly in the following order: PLUS < X x < X plus < x ---------------------------------------- (24) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (25) BOUNDS(n^1, INF) ---------------------------------------- (26) Obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s Lemmas: PLUS(gen_0':s10_14(a), gen_0':s10_14(n12_14)) -> *11_14, rt in Omega(n12_14) Generator Equations: gen_0':s10_14(0) <=> 0' gen_0':s10_14(+(x, 1)) <=> s(gen_0':s10_14(x)) The following defined symbols remain to be analysed: plus, x, X They will be analysed ascendingly in the following order: x < X plus < x ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s10_14(a), gen_0':s10_14(n2625_14)) -> gen_0':s10_14(+(n2625_14, a)), rt in Omega(0) Induction Base: plus(gen_0':s10_14(a), gen_0':s10_14(0)) ->_R^Omega(0) gen_0':s10_14(a) Induction Step: plus(gen_0':s10_14(a), gen_0':s10_14(+(n2625_14, 1))) ->_R^Omega(0) U11(tt, gen_0':s10_14(n2625_14), gen_0':s10_14(a)) ->_R^Omega(0) U12(tt, activate(gen_0':s10_14(n2625_14)), activate(gen_0':s10_14(a))) ->_R^Omega(0) U12(tt, gen_0':s10_14(n2625_14), activate(gen_0':s10_14(a))) ->_R^Omega(0) U12(tt, gen_0':s10_14(n2625_14), gen_0':s10_14(a)) ->_R^Omega(0) s(plus(activate(gen_0':s10_14(a)), activate(gen_0':s10_14(n2625_14)))) ->_R^Omega(0) s(plus(gen_0':s10_14(a), activate(gen_0':s10_14(n2625_14)))) ->_R^Omega(0) s(plus(gen_0':s10_14(a), gen_0':s10_14(n2625_14))) ->_IH s(gen_0':s10_14(+(a, c2626_14))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (28) Obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s Lemmas: PLUS(gen_0':s10_14(a), gen_0':s10_14(n12_14)) -> *11_14, rt in Omega(n12_14) plus(gen_0':s10_14(a), gen_0':s10_14(n2625_14)) -> gen_0':s10_14(+(n2625_14, a)), rt in Omega(0) Generator Equations: gen_0':s10_14(0) <=> 0' gen_0':s10_14(+(x, 1)) <=> s(gen_0':s10_14(x)) The following defined symbols remain to be analysed: x, X They will be analysed ascendingly in the following order: x < X ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: x(gen_0':s10_14(a), gen_0':s10_14(n4085_14)) -> gen_0':s10_14(*(n4085_14, a)), rt in Omega(0) Induction Base: x(gen_0':s10_14(a), gen_0':s10_14(0)) ->_R^Omega(0) 0' Induction Step: x(gen_0':s10_14(a), gen_0':s10_14(+(n4085_14, 1))) ->_R^Omega(0) U21(tt, gen_0':s10_14(n4085_14), gen_0':s10_14(a)) ->_R^Omega(0) U22(tt, activate(gen_0':s10_14(n4085_14)), activate(gen_0':s10_14(a))) ->_R^Omega(0) U22(tt, gen_0':s10_14(n4085_14), activate(gen_0':s10_14(a))) ->_R^Omega(0) U22(tt, gen_0':s10_14(n4085_14), gen_0':s10_14(a)) ->_R^Omega(0) plus(x(activate(gen_0':s10_14(a)), activate(gen_0':s10_14(n4085_14))), activate(gen_0':s10_14(a))) ->_R^Omega(0) plus(x(gen_0':s10_14(a), activate(gen_0':s10_14(n4085_14))), activate(gen_0':s10_14(a))) ->_R^Omega(0) plus(x(gen_0':s10_14(a), gen_0':s10_14(n4085_14)), activate(gen_0':s10_14(a))) ->_IH plus(gen_0':s10_14(*(c4086_14, a)), activate(gen_0':s10_14(a))) ->_R^Omega(0) plus(gen_0':s10_14(*(n4085_14, a)), gen_0':s10_14(a)) ->_L^Omega(0) gen_0':s10_14(+(a, *(n4085_14, a))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (30) Obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s Lemmas: PLUS(gen_0':s10_14(a), gen_0':s10_14(n12_14)) -> *11_14, rt in Omega(n12_14) plus(gen_0':s10_14(a), gen_0':s10_14(n2625_14)) -> gen_0':s10_14(+(n2625_14, a)), rt in Omega(0) x(gen_0':s10_14(a), gen_0':s10_14(n4085_14)) -> gen_0':s10_14(*(n4085_14, a)), rt in Omega(0) Generator Equations: gen_0':s10_14(0) <=> 0' gen_0':s10_14(+(x, 1)) <=> s(gen_0':s10_14(x)) The following defined symbols remain to be analysed: X ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: X(gen_0':s10_14(0), gen_0':s10_14(n6197_14)) -> *11_14, rt in Omega(n6197_14) Induction Base: X(gen_0':s10_14(0), gen_0':s10_14(0)) Induction Step: X(gen_0':s10_14(0), gen_0':s10_14(+(n6197_14, 1))) ->_R^Omega(1) c12(U21'(tt, gen_0':s10_14(n6197_14), gen_0':s10_14(0))) ->_R^Omega(1) c12(c4(U22'(tt, activate(gen_0':s10_14(n6197_14)), activate(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(U22'(tt, gen_0':s10_14(n6197_14), activate(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(U22'(tt, gen_0':s10_14(n6197_14), gen_0':s10_14(0)), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(1) c12(c4(c6(PLUS(x(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), activate(gen_0':s10_14(0))), X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(c6(PLUS(x(gen_0':s10_14(0), activate(gen_0':s10_14(n6197_14))), activate(gen_0':s10_14(0))), X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(c6(PLUS(x(gen_0':s10_14(0), gen_0':s10_14(n6197_14)), activate(gen_0':s10_14(0))), X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_L^Omega(0) c12(c4(c6(PLUS(gen_0':s10_14(*(n6197_14, 0)), activate(gen_0':s10_14(0))), X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(c6(PLUS(gen_0':s10_14(0), gen_0':s10_14(0)), X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(1) c12(c4(c6(c9, X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(c6(c9, X(gen_0':s10_14(0), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(c6(c9, X(gen_0':s10_14(0), gen_0':s10_14(n6197_14)), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_IH c12(c4(c6(c9, *11_14, ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(1) c12(c4(c6(c9, *11_14, c13), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(1) c12(c4(c6(c9, *11_14, c13), c13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) BOUNDS(1, INF)