WORST_CASE(Omega(n^1),O(n^1)) proof of input_PumuKDnCIH.trs # AProVE Commit ID: 5b976082cb74a395683ed8cc7acf94bd611ab29f fuhs 20230524 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (10) CpxTRS (11) CpxTrsMatchBoundsTAProof [FINISHED, 14 ms] (12) BOUNDS(1, n^1) (13) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRelTRS (19) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (20) typed CpxTrs (21) OrderProof [LOWER BOUND(ID), 12 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 317 ms] (24) BEST (25) proven lower bound (26) LowerBoundPropagationProof [FINISHED, 0 ms] (27) BOUNDS(n^1, INF) (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 105 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 71 ms] (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 34 ms] (34) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: plus_x#1(0, x8) -> x8 plus_x#1(S(x12), x14) -> S(plus_x#1(x12, x14)) map#2(plus_x(x2), Nil) -> Nil map#2(plus_x(x6), Cons(x4, x2)) -> Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2)) main(x5, x12) -> map#2(plus_x(x12), x5) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: plus_x#1(0, z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Tuples: PLUS_X#1(0, z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) S tuples: PLUS_X#1(0, z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) K tuples:none Defined Rule Symbols: plus_x#1_2, map#2_2, main_2 Defined Pair Symbols: PLUS_X#1_2, MAP#2_2, MAIN_2 Compound Symbols: c, c1_1, c2, c3_1, c4_1, c5_1 ---------------------------------------- (3) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) Removed 2 trailing nodes: MAP#2(plus_x(z0), Nil) -> c2 PLUS_X#1(0, z0) -> c ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: plus_x#1(0, z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Tuples: PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) S tuples: PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) K tuples:none Defined Rule Symbols: plus_x#1_2, map#2_2, main_2 Defined Pair Symbols: PLUS_X#1_2, MAP#2_2 Compound Symbols: c1_1, c3_1, c4_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: plus_x#1(0, z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) S tuples: PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: PLUS_X#1_2, MAP#2_2 Compound Symbols: c1_1, c3_1, c4_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2] transitions: S0(0) -> 0 c10(0) -> 0 plus_x0(0) -> 0 Cons0(0, 0) -> 0 c30(0) -> 0 c40(0) -> 0 PLUS_X#10(0, 0) -> 1 MAP#20(0, 0) -> 2 PLUS_X#11(0, 0) -> 3 c11(3) -> 1 PLUS_X#11(0, 0) -> 4 c31(4) -> 2 plus_x1(0) -> 6 MAP#21(6, 0) -> 5 c41(5) -> 2 c11(3) -> 3 c11(3) -> 4 c31(4) -> 5 c41(5) -> 5 ---------------------------------------- (12) BOUNDS(1, n^1) ---------------------------------------- (13) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: plus_x#1(0, z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Tuples: PLUS_X#1(0, z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) S tuples: PLUS_X#1(0, z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) K tuples:none Defined Rule Symbols: plus_x#1_2, map#2_2, main_2 Defined Pair Symbols: PLUS_X#1_2, MAP#2_2, MAIN_2 Compound Symbols: c, c1_1, c2, c3_1, c4_1, c5_1 ---------------------------------------- (15) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: PLUS_X#1(0, z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) The (relative) TRS S consists of the following rules: plus_x#1(0, z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Rewrite Strategy: INNERMOST ---------------------------------------- (17) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (18) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: PLUS_X#1(0', z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) The (relative) TRS S consists of the following rules: plus_x#1(0', z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Rewrite Strategy: INNERMOST ---------------------------------------- (19) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (20) Obligation: Innermost TRS: Rules: PLUS_X#1(0', z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) plus_x#1(0', z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Types: PLUS_X#1 :: 0':S -> 0':S -> c:c1 0' :: 0':S c :: c:c1 S :: 0':S -> 0':S c1 :: c:c1 -> c:c1 MAP#2 :: plus_x -> Nil:Cons -> c2:c3:c4 plus_x :: 0':S -> plus_x Nil :: Nil:Cons c2 :: c2:c3:c4 Cons :: 0':S -> Nil:Cons -> Nil:Cons c3 :: c:c1 -> c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MAIN :: Nil:Cons -> 0':S -> c5 c5 :: c2:c3:c4 -> c5 plus_x#1 :: 0':S -> 0':S -> 0':S map#2 :: plus_x -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> 0':S -> Nil:Cons hole_c:c11_6 :: c:c1 hole_0':S2_6 :: 0':S hole_c2:c3:c43_6 :: c2:c3:c4 hole_plus_x4_6 :: plus_x hole_Nil:Cons5_6 :: Nil:Cons hole_c56_6 :: c5 gen_c:c17_6 :: Nat -> c:c1 gen_0':S8_6 :: Nat -> 0':S gen_c2:c3:c49_6 :: Nat -> c2:c3:c4 gen_Nil:Cons10_6 :: Nat -> Nil:Cons ---------------------------------------- (21) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: PLUS_X#1, MAP#2, plus_x#1, map#2 They will be analysed ascendingly in the following order: PLUS_X#1 < MAP#2 plus_x#1 < map#2 ---------------------------------------- (22) Obligation: Innermost TRS: Rules: PLUS_X#1(0', z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) plus_x#1(0', z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Types: PLUS_X#1 :: 0':S -> 0':S -> c:c1 0' :: 0':S c :: c:c1 S :: 0':S -> 0':S c1 :: c:c1 -> c:c1 MAP#2 :: plus_x -> Nil:Cons -> c2:c3:c4 plus_x :: 0':S -> plus_x Nil :: Nil:Cons c2 :: c2:c3:c4 Cons :: 0':S -> Nil:Cons -> Nil:Cons c3 :: c:c1 -> c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MAIN :: Nil:Cons -> 0':S -> c5 c5 :: c2:c3:c4 -> c5 plus_x#1 :: 0':S -> 0':S -> 0':S map#2 :: plus_x -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> 0':S -> Nil:Cons hole_c:c11_6 :: c:c1 hole_0':S2_6 :: 0':S hole_c2:c3:c43_6 :: c2:c3:c4 hole_plus_x4_6 :: plus_x hole_Nil:Cons5_6 :: Nil:Cons hole_c56_6 :: c5 gen_c:c17_6 :: Nat -> c:c1 gen_0':S8_6 :: Nat -> 0':S gen_c2:c3:c49_6 :: Nat -> c2:c3:c4 gen_Nil:Cons10_6 :: Nat -> Nil:Cons Generator Equations: gen_c:c17_6(0) <=> c gen_c:c17_6(+(x, 1)) <=> c1(gen_c:c17_6(x)) gen_0':S8_6(0) <=> 0' gen_0':S8_6(+(x, 1)) <=> S(gen_0':S8_6(x)) gen_c2:c3:c49_6(0) <=> c2 gen_c2:c3:c49_6(+(x, 1)) <=> c4(gen_c2:c3:c49_6(x)) gen_Nil:Cons10_6(0) <=> Nil gen_Nil:Cons10_6(+(x, 1)) <=> Cons(0', gen_Nil:Cons10_6(x)) The following defined symbols remain to be analysed: PLUS_X#1, MAP#2, plus_x#1, map#2 They will be analysed ascendingly in the following order: PLUS_X#1 < MAP#2 plus_x#1 < map#2 ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: PLUS_X#1(gen_0':S8_6(n12_6), gen_0':S8_6(b)) -> gen_c:c17_6(n12_6), rt in Omega(1 + n12_6) Induction Base: PLUS_X#1(gen_0':S8_6(0), gen_0':S8_6(b)) ->_R^Omega(1) c Induction Step: PLUS_X#1(gen_0':S8_6(+(n12_6, 1)), gen_0':S8_6(b)) ->_R^Omega(1) c1(PLUS_X#1(gen_0':S8_6(n12_6), gen_0':S8_6(b))) ->_IH c1(gen_c:c17_6(c13_6)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Complex Obligation (BEST) ---------------------------------------- (25) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: PLUS_X#1(0', z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) plus_x#1(0', z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Types: PLUS_X#1 :: 0':S -> 0':S -> c:c1 0' :: 0':S c :: c:c1 S :: 0':S -> 0':S c1 :: c:c1 -> c:c1 MAP#2 :: plus_x -> Nil:Cons -> c2:c3:c4 plus_x :: 0':S -> plus_x Nil :: Nil:Cons c2 :: c2:c3:c4 Cons :: 0':S -> Nil:Cons -> Nil:Cons c3 :: c:c1 -> c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MAIN :: Nil:Cons -> 0':S -> c5 c5 :: c2:c3:c4 -> c5 plus_x#1 :: 0':S -> 0':S -> 0':S map#2 :: plus_x -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> 0':S -> Nil:Cons hole_c:c11_6 :: c:c1 hole_0':S2_6 :: 0':S hole_c2:c3:c43_6 :: c2:c3:c4 hole_plus_x4_6 :: plus_x hole_Nil:Cons5_6 :: Nil:Cons hole_c56_6 :: c5 gen_c:c17_6 :: Nat -> c:c1 gen_0':S8_6 :: Nat -> 0':S gen_c2:c3:c49_6 :: Nat -> c2:c3:c4 gen_Nil:Cons10_6 :: Nat -> Nil:Cons Generator Equations: gen_c:c17_6(0) <=> c gen_c:c17_6(+(x, 1)) <=> c1(gen_c:c17_6(x)) gen_0':S8_6(0) <=> 0' gen_0':S8_6(+(x, 1)) <=> S(gen_0':S8_6(x)) gen_c2:c3:c49_6(0) <=> c2 gen_c2:c3:c49_6(+(x, 1)) <=> c4(gen_c2:c3:c49_6(x)) gen_Nil:Cons10_6(0) <=> Nil gen_Nil:Cons10_6(+(x, 1)) <=> Cons(0', gen_Nil:Cons10_6(x)) The following defined symbols remain to be analysed: PLUS_X#1, MAP#2, plus_x#1, map#2 They will be analysed ascendingly in the following order: PLUS_X#1 < MAP#2 plus_x#1 < map#2 ---------------------------------------- (26) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (27) BOUNDS(n^1, INF) ---------------------------------------- (28) Obligation: Innermost TRS: Rules: PLUS_X#1(0', z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) plus_x#1(0', z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Types: PLUS_X#1 :: 0':S -> 0':S -> c:c1 0' :: 0':S c :: c:c1 S :: 0':S -> 0':S c1 :: c:c1 -> c:c1 MAP#2 :: plus_x -> Nil:Cons -> c2:c3:c4 plus_x :: 0':S -> plus_x Nil :: Nil:Cons c2 :: c2:c3:c4 Cons :: 0':S -> Nil:Cons -> Nil:Cons c3 :: c:c1 -> c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MAIN :: Nil:Cons -> 0':S -> c5 c5 :: c2:c3:c4 -> c5 plus_x#1 :: 0':S -> 0':S -> 0':S map#2 :: plus_x -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> 0':S -> Nil:Cons hole_c:c11_6 :: c:c1 hole_0':S2_6 :: 0':S hole_c2:c3:c43_6 :: c2:c3:c4 hole_plus_x4_6 :: plus_x hole_Nil:Cons5_6 :: Nil:Cons hole_c56_6 :: c5 gen_c:c17_6 :: Nat -> c:c1 gen_0':S8_6 :: Nat -> 0':S gen_c2:c3:c49_6 :: Nat -> c2:c3:c4 gen_Nil:Cons10_6 :: Nat -> Nil:Cons Lemmas: PLUS_X#1(gen_0':S8_6(n12_6), gen_0':S8_6(b)) -> gen_c:c17_6(n12_6), rt in Omega(1 + n12_6) Generator Equations: gen_c:c17_6(0) <=> c gen_c:c17_6(+(x, 1)) <=> c1(gen_c:c17_6(x)) gen_0':S8_6(0) <=> 0' gen_0':S8_6(+(x, 1)) <=> S(gen_0':S8_6(x)) gen_c2:c3:c49_6(0) <=> c2 gen_c2:c3:c49_6(+(x, 1)) <=> c4(gen_c2:c3:c49_6(x)) gen_Nil:Cons10_6(0) <=> Nil gen_Nil:Cons10_6(+(x, 1)) <=> Cons(0', gen_Nil:Cons10_6(x)) The following defined symbols remain to be analysed: MAP#2, plus_x#1, map#2 They will be analysed ascendingly in the following order: plus_x#1 < map#2 ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: MAP#2(plus_x(0'), gen_Nil:Cons10_6(n404_6)) -> gen_c2:c3:c49_6(n404_6), rt in Omega(1 + n404_6) Induction Base: MAP#2(plus_x(0'), gen_Nil:Cons10_6(0)) ->_R^Omega(1) c2 Induction Step: MAP#2(plus_x(0'), gen_Nil:Cons10_6(+(n404_6, 1))) ->_R^Omega(1) c4(MAP#2(plus_x(0'), gen_Nil:Cons10_6(n404_6))) ->_IH c4(gen_c2:c3:c49_6(c405_6)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (30) Obligation: Innermost TRS: Rules: PLUS_X#1(0', z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) plus_x#1(0', z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Types: PLUS_X#1 :: 0':S -> 0':S -> c:c1 0' :: 0':S c :: c:c1 S :: 0':S -> 0':S c1 :: c:c1 -> c:c1 MAP#2 :: plus_x -> Nil:Cons -> c2:c3:c4 plus_x :: 0':S -> plus_x Nil :: Nil:Cons c2 :: c2:c3:c4 Cons :: 0':S -> Nil:Cons -> Nil:Cons c3 :: c:c1 -> c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MAIN :: Nil:Cons -> 0':S -> c5 c5 :: c2:c3:c4 -> c5 plus_x#1 :: 0':S -> 0':S -> 0':S map#2 :: plus_x -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> 0':S -> Nil:Cons hole_c:c11_6 :: c:c1 hole_0':S2_6 :: 0':S hole_c2:c3:c43_6 :: c2:c3:c4 hole_plus_x4_6 :: plus_x hole_Nil:Cons5_6 :: Nil:Cons hole_c56_6 :: c5 gen_c:c17_6 :: Nat -> c:c1 gen_0':S8_6 :: Nat -> 0':S gen_c2:c3:c49_6 :: Nat -> c2:c3:c4 gen_Nil:Cons10_6 :: Nat -> Nil:Cons Lemmas: PLUS_X#1(gen_0':S8_6(n12_6), gen_0':S8_6(b)) -> gen_c:c17_6(n12_6), rt in Omega(1 + n12_6) MAP#2(plus_x(0'), gen_Nil:Cons10_6(n404_6)) -> gen_c2:c3:c49_6(n404_6), rt in Omega(1 + n404_6) Generator Equations: gen_c:c17_6(0) <=> c gen_c:c17_6(+(x, 1)) <=> c1(gen_c:c17_6(x)) gen_0':S8_6(0) <=> 0' gen_0':S8_6(+(x, 1)) <=> S(gen_0':S8_6(x)) gen_c2:c3:c49_6(0) <=> c2 gen_c2:c3:c49_6(+(x, 1)) <=> c4(gen_c2:c3:c49_6(x)) gen_Nil:Cons10_6(0) <=> Nil gen_Nil:Cons10_6(+(x, 1)) <=> Cons(0', gen_Nil:Cons10_6(x)) The following defined symbols remain to be analysed: plus_x#1, map#2 They will be analysed ascendingly in the following order: plus_x#1 < map#2 ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus_x#1(gen_0':S8_6(n919_6), gen_0':S8_6(b)) -> gen_0':S8_6(+(n919_6, b)), rt in Omega(0) Induction Base: plus_x#1(gen_0':S8_6(0), gen_0':S8_6(b)) ->_R^Omega(0) gen_0':S8_6(b) Induction Step: plus_x#1(gen_0':S8_6(+(n919_6, 1)), gen_0':S8_6(b)) ->_R^Omega(0) S(plus_x#1(gen_0':S8_6(n919_6), gen_0':S8_6(b))) ->_IH S(gen_0':S8_6(+(b, c920_6))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (32) Obligation: Innermost TRS: Rules: PLUS_X#1(0', z0) -> c PLUS_X#1(S(z0), z1) -> c1(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Nil) -> c2 MAP#2(plus_x(z0), Cons(z1, z2)) -> c3(PLUS_X#1(z0, z1)) MAP#2(plus_x(z0), Cons(z1, z2)) -> c4(MAP#2(plus_x(z0), z2)) MAIN(z0, z1) -> c5(MAP#2(plus_x(z1), z0)) plus_x#1(0', z0) -> z0 plus_x#1(S(z0), z1) -> S(plus_x#1(z0, z1)) map#2(plus_x(z0), Nil) -> Nil map#2(plus_x(z0), Cons(z1, z2)) -> Cons(plus_x#1(z0, z1), map#2(plus_x(z0), z2)) main(z0, z1) -> map#2(plus_x(z1), z0) Types: PLUS_X#1 :: 0':S -> 0':S -> c:c1 0' :: 0':S c :: c:c1 S :: 0':S -> 0':S c1 :: c:c1 -> c:c1 MAP#2 :: plus_x -> Nil:Cons -> c2:c3:c4 plus_x :: 0':S -> plus_x Nil :: Nil:Cons c2 :: c2:c3:c4 Cons :: 0':S -> Nil:Cons -> Nil:Cons c3 :: c:c1 -> c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MAIN :: Nil:Cons -> 0':S -> c5 c5 :: c2:c3:c4 -> c5 plus_x#1 :: 0':S -> 0':S -> 0':S map#2 :: plus_x -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> 0':S -> Nil:Cons hole_c:c11_6 :: c:c1 hole_0':S2_6 :: 0':S hole_c2:c3:c43_6 :: c2:c3:c4 hole_plus_x4_6 :: plus_x hole_Nil:Cons5_6 :: Nil:Cons hole_c56_6 :: c5 gen_c:c17_6 :: Nat -> c:c1 gen_0':S8_6 :: Nat -> 0':S gen_c2:c3:c49_6 :: Nat -> c2:c3:c4 gen_Nil:Cons10_6 :: Nat -> Nil:Cons Lemmas: PLUS_X#1(gen_0':S8_6(n12_6), gen_0':S8_6(b)) -> gen_c:c17_6(n12_6), rt in Omega(1 + n12_6) MAP#2(plus_x(0'), gen_Nil:Cons10_6(n404_6)) -> gen_c2:c3:c49_6(n404_6), rt in Omega(1 + n404_6) plus_x#1(gen_0':S8_6(n919_6), gen_0':S8_6(b)) -> gen_0':S8_6(+(n919_6, b)), rt in Omega(0) Generator Equations: gen_c:c17_6(0) <=> c gen_c:c17_6(+(x, 1)) <=> c1(gen_c:c17_6(x)) gen_0':S8_6(0) <=> 0' gen_0':S8_6(+(x, 1)) <=> S(gen_0':S8_6(x)) gen_c2:c3:c49_6(0) <=> c2 gen_c2:c3:c49_6(+(x, 1)) <=> c4(gen_c2:c3:c49_6(x)) gen_Nil:Cons10_6(0) <=> Nil gen_Nil:Cons10_6(+(x, 1)) <=> Cons(0', gen_Nil:Cons10_6(x)) The following defined symbols remain to be analysed: map#2 ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: map#2(plus_x(0'), gen_Nil:Cons10_6(n1902_6)) -> gen_Nil:Cons10_6(n1902_6), rt in Omega(0) Induction Base: map#2(plus_x(0'), gen_Nil:Cons10_6(0)) ->_R^Omega(0) Nil Induction Step: map#2(plus_x(0'), gen_Nil:Cons10_6(+(n1902_6, 1))) ->_R^Omega(0) Cons(plus_x#1(0', 0'), map#2(plus_x(0'), gen_Nil:Cons10_6(n1902_6))) ->_L^Omega(0) Cons(gen_0':S8_6(+(0, 0)), map#2(plus_x(0'), gen_Nil:Cons10_6(n1902_6))) ->_IH Cons(gen_0':S8_6(0), gen_Nil:Cons10_6(c1903_6)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (34) BOUNDS(1, INF)