WORST_CASE(Omega(n^1),O(n^1)) proof of input_Vfa5qfCile.trs # AProVE Commit ID: 5b976082cb74a395683ed8cc7acf94bd611ab29f fuhs 20230524 unpublished The Runtime Complexity (parallel-innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 209 ms] (2) CpxRelTRS (3) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) CompleteCoflocoProof [FINISHED, 694 ms] (12) BOUNDS(1, n^1) (13) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRelTRS (19) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (20) typed CpxTrs (21) OrderProof [LOWER BOUND(ID), 0 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 289 ms] (24) BEST (25) proven lower bound (26) LowerBoundPropagationProof [FINISHED, 0 ms] (27) BOUNDS(n^1, INF) (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 126 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 446 ms] (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 29 ms] (34) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a(C(x1, x2), y) -> C(a(x1, y), a(x2, C(x1, x2))) a(Z, y) -> Z eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) eqZList(C(x1, x2), Z) -> False eqZList(Z, C(y1, y2)) -> False eqZList(Z, Z) -> True second(C(x1, x2)) -> x2 first(C(x1, x2)) -> x1 The (relative) TRS S consists of the following rules: and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a(C(x1, x2), y) -> C(a(x1, y), a(x2, C(x1, x2))) a(Z, y) -> Z eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) eqZList(C(x1, x2), Z) -> False eqZList(Z, C(y1, y2)) -> False eqZList(Z, Z) -> True second(C(x1, x2)) -> x2 first(C(x1, x2)) -> x1 The (relative) TRS S consists of the following rules: and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(C(x1, x2), y) -> C(a(x1, y), a(x2, C(x1, x2))) [1] a(Z, y) -> Z [1] eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) [1] eqZList(C(x1, x2), Z) -> False [1] eqZList(Z, C(y1, y2)) -> False [1] eqZList(Z, Z) -> True [1] second(C(x1, x2)) -> x2 [1] first(C(x1, x2)) -> x1 [1] and(False, False) -> False [0] and(True, False) -> False [0] and(False, True) -> False [0] and(True, True) -> True [0] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a(C(x1, x2), y) -> C(a(x1, y), a(x2, C(x1, x2))) [1] a(Z, y) -> Z [1] eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) [1] eqZList(C(x1, x2), Z) -> False [1] eqZList(Z, C(y1, y2)) -> False [1] eqZList(Z, Z) -> True [1] second(C(x1, x2)) -> x2 [1] first(C(x1, x2)) -> x1 [1] and(False, False) -> False [0] and(True, False) -> False [0] and(False, True) -> False [0] and(True, True) -> True [0] The TRS has the following type information: a :: C:Z -> C:Z -> C:Z C :: C:Z -> C:Z -> C:Z Z :: C:Z eqZList :: C:Z -> C:Z -> False:True and :: False:True -> False:True -> False:True False :: False:True True :: False:True second :: C:Z -> C:Z first :: C:Z -> C:Z Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: and(v0, v1) -> null_and [0] second(v0) -> null_second [0] first(v0) -> null_first [0] a(v0, v1) -> null_a [0] eqZList(v0, v1) -> null_eqZList [0] And the following fresh constants: null_and, null_second, null_first, null_a, null_eqZList ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a(C(x1, x2), y) -> C(a(x1, y), a(x2, C(x1, x2))) [1] a(Z, y) -> Z [1] eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) [1] eqZList(C(x1, x2), Z) -> False [1] eqZList(Z, C(y1, y2)) -> False [1] eqZList(Z, Z) -> True [1] second(C(x1, x2)) -> x2 [1] first(C(x1, x2)) -> x1 [1] and(False, False) -> False [0] and(True, False) -> False [0] and(False, True) -> False [0] and(True, True) -> True [0] and(v0, v1) -> null_and [0] second(v0) -> null_second [0] first(v0) -> null_first [0] a(v0, v1) -> null_a [0] eqZList(v0, v1) -> null_eqZList [0] The TRS has the following type information: a :: C:Z:null_second:null_first:null_a -> C:Z:null_second:null_first:null_a -> C:Z:null_second:null_first:null_a C :: C:Z:null_second:null_first:null_a -> C:Z:null_second:null_first:null_a -> C:Z:null_second:null_first:null_a Z :: C:Z:null_second:null_first:null_a eqZList :: C:Z:null_second:null_first:null_a -> C:Z:null_second:null_first:null_a -> False:True:null_and:null_eqZList and :: False:True:null_and:null_eqZList -> False:True:null_and:null_eqZList -> False:True:null_and:null_eqZList False :: False:True:null_and:null_eqZList True :: False:True:null_and:null_eqZList second :: C:Z:null_second:null_first:null_a -> C:Z:null_second:null_first:null_a first :: C:Z:null_second:null_first:null_a -> C:Z:null_second:null_first:null_a null_and :: False:True:null_and:null_eqZList null_second :: C:Z:null_second:null_first:null_a null_first :: C:Z:null_second:null_first:null_a null_a :: C:Z:null_second:null_first:null_a null_eqZList :: False:True:null_and:null_eqZList Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Z => 0 False => 1 True => 2 null_and => 0 null_second => 0 null_first => 0 null_a => 0 null_eqZList => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: a(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y a(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 a(z, z') -{ 1 }-> 1 + a(x1, y) + a(x2, 1 + x1 + x2) :|: x1 >= 0, y >= 0, z = 1 + x1 + x2, z' = y, x2 >= 0 and(z, z') -{ 0 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 0 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 0 }-> 1 :|: z = 2, z' = 1 and(z, z') -{ 0 }-> 1 :|: z' = 2, z = 1 and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 eqZList(z, z') -{ 1 }-> and(eqZList(x1, y1), eqZList(x2, y2)) :|: y1 >= 0, x1 >= 0, z' = 1 + y1 + y2, z = 1 + x1 + x2, y2 >= 0, x2 >= 0 eqZList(z, z') -{ 1 }-> 2 :|: z = 0, z' = 0 eqZList(z, z') -{ 1 }-> 1 :|: x1 >= 0, z = 1 + x1 + x2, x2 >= 0, z' = 0 eqZList(z, z') -{ 1 }-> 1 :|: y1 >= 0, z' = 1 + y1 + y2, y2 >= 0, z = 0 eqZList(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 first(z) -{ 1 }-> x1 :|: x1 >= 0, z = 1 + x1 + x2, x2 >= 0 first(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 second(z) -{ 1 }-> x2 :|: x1 >= 0, z = 1 + x1 + x2, x2 >= 0 second(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (11) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V),0,[a(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[eqZList(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[second(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[first(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[and(V1, V, Out)],[V1 >= 0,V >= 0]). eq(a(V1, V, Out),1,[a(V4, V2, Ret01),a(V3, 1 + V4 + V3, Ret1)],[Out = 1 + Ret01 + Ret1,V4 >= 0,V2 >= 0,V1 = 1 + V3 + V4,V = V2,V3 >= 0]). eq(a(V1, V, Out),1,[],[Out = 0,V5 >= 0,V1 = 0,V = V5]). eq(eqZList(V1, V, Out),1,[eqZList(V8, V9, Ret0),eqZList(V6, V7, Ret11),and(Ret0, Ret11, Ret)],[Out = Ret,V9 >= 0,V8 >= 0,V = 1 + V7 + V9,V1 = 1 + V6 + V8,V7 >= 0,V6 >= 0]). eq(eqZList(V1, V, Out),1,[],[Out = 1,V10 >= 0,V1 = 1 + V10 + V11,V11 >= 0,V = 0]). eq(eqZList(V1, V, Out),1,[],[Out = 1,V12 >= 0,V = 1 + V12 + V13,V13 >= 0,V1 = 0]). eq(eqZList(V1, V, Out),1,[],[Out = 2,V1 = 0,V = 0]). eq(second(V1, Out),1,[],[Out = V14,V15 >= 0,V1 = 1 + V14 + V15,V14 >= 0]). eq(first(V1, Out),1,[],[Out = V17,V17 >= 0,V1 = 1 + V16 + V17,V16 >= 0]). eq(and(V1, V, Out),0,[],[Out = 1,V1 = 1,V = 1]). eq(and(V1, V, Out),0,[],[Out = 1,V1 = 2,V = 1]). eq(and(V1, V, Out),0,[],[Out = 1,V = 2,V1 = 1]). eq(and(V1, V, Out),0,[],[Out = 2,V1 = 2,V = 2]). eq(and(V1, V, Out),0,[],[Out = 0,V19 >= 0,V18 >= 0,V1 = V19,V = V18]). eq(second(V1, Out),0,[],[Out = 0,V20 >= 0,V1 = V20]). eq(first(V1, Out),0,[],[Out = 0,V21 >= 0,V1 = V21]). eq(a(V1, V, Out),0,[],[Out = 0,V22 >= 0,V23 >= 0,V1 = V22,V = V23]). eq(eqZList(V1, V, Out),0,[],[Out = 0,V24 >= 0,V25 >= 0,V1 = V24,V = V25]). input_output_vars(a(V1,V,Out),[V1,V],[Out]). input_output_vars(eqZList(V1,V,Out),[V1,V],[Out]). input_output_vars(second(V1,Out),[V1],[Out]). input_output_vars(first(V1,Out),[V1],[Out]). input_output_vars(and(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive [multiple] : [a/3] 1. non_recursive : [and/3] 2. recursive [non_tail,multiple] : [eqZList/3] 3. non_recursive : [first/2] 4. non_recursive : [second/2] 5. non_recursive : [start/2] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into a/3 1. SCC is partially evaluated into and/3 2. SCC is partially evaluated into eqZList/3 3. SCC is partially evaluated into first/2 4. SCC is partially evaluated into second/2 5. SCC is partially evaluated into start/2 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations a/3 * CE 7 is refined into CE [23] * CE 8 is refined into CE [24] * CE 6 is refined into CE [25] ### Cost equations --> "Loop" of a/3 * CEs [25] --> Loop 18 * CEs [23,24] --> Loop 19 ### Ranking functions of CR a(V1,V,Out) * RF of phase [18]: [V1] #### Partial ranking functions of CR a(V1,V,Out) * Partial RF of phase [18]: - RF of loop [18:1,18:2]: V1 ### Specialization of cost equations and/3 * CE 22 is refined into CE [26] * CE 21 is refined into CE [27] * CE 19 is refined into CE [28] * CE 20 is refined into CE [29] * CE 18 is refined into CE [30] ### Cost equations --> "Loop" of and/3 * CEs [26] --> Loop 20 * CEs [27] --> Loop 21 * CEs [28] --> Loop 22 * CEs [29] --> Loop 23 * CEs [30] --> Loop 24 ### Ranking functions of CR and(V1,V,Out) #### Partial ranking functions of CR and(V1,V,Out) ### Specialization of cost equations eqZList/3 * CE 13 is refined into CE [31] * CE 10 is refined into CE [32] * CE 11 is refined into CE [33] * CE 12 is refined into CE [34] * CE 9 is refined into CE [35,36,37,38,39] ### Cost equations --> "Loop" of eqZList/3 * CEs [38] --> Loop 25 * CEs [37] --> Loop 26 * CEs [36] --> Loop 27 * CEs [35] --> Loop 28 * CEs [39] --> Loop 29 * CEs [31] --> Loop 30 * CEs [32] --> Loop 31 * CEs [33] --> Loop 32 * CEs [34] --> Loop 33 ### Ranking functions of CR eqZList(V1,V,Out) * RF of phase [25]: [V,V1] * RF of phase [26,27,28]: [V,V1] * RF of phase [29]: [V,V1] #### Partial ranking functions of CR eqZList(V1,V,Out) * Partial RF of phase [25]: - RF of loop [25:1,25:2]: V V1 * Partial RF of phase [26,27,28]: - RF of loop [26:1,26:2,27:1,27:2,28:1,28:2]: V V1 * Partial RF of phase [29]: - RF of loop [29:1,29:2]: V V1 ### Specialization of cost equations first/2 * CE 16 is refined into CE [40] * CE 17 is refined into CE [41] ### Cost equations --> "Loop" of first/2 * CEs [40] --> Loop 34 * CEs [41] --> Loop 35 ### Ranking functions of CR first(V1,Out) #### Partial ranking functions of CR first(V1,Out) ### Specialization of cost equations second/2 * CE 14 is refined into CE [42] * CE 15 is refined into CE [43] ### Cost equations --> "Loop" of second/2 * CEs [42] --> Loop 36 * CEs [43] --> Loop 37 ### Ranking functions of CR second(V1,Out) #### Partial ranking functions of CR second(V1,Out) ### Specialization of cost equations start/2 * CE 1 is refined into CE [44,45] * CE 2 is refined into CE [46,47,48,49,50,51] * CE 3 is refined into CE [52,53] * CE 4 is refined into CE [54,55] * CE 5 is refined into CE [56,57,58,59,60] ### Cost equations --> "Loop" of start/2 * CEs [48] --> Loop 38 * CEs [59] --> Loop 39 * CEs [58] --> Loop 40 * CEs [57] --> Loop 41 * CEs [51,56] --> Loop 42 * CEs [47] --> Loop 43 * CEs [44,45,46,49,50,52,53,54,55,60] --> Loop 44 ### Ranking functions of CR start(V1,V) #### Partial ranking functions of CR start(V1,V) Computing Bounds ===================================== #### Cost of chains of a(V1,V,Out): * Chain [19]: 1 with precondition: [Out=0,V1>=0,V>=0] * Chain [multiple([18],[[19]])]: 1*it(18)+1*it([19])+0 Such that:it(18) =< V1 it([19]) =< V1+1 with precondition: [V>=0,Out>=1,V1>=Out] #### Cost of chains of and(V1,V,Out): * Chain [24]: 0 with precondition: [V1=1,V=1,Out=1] * Chain [23]: 0 with precondition: [V1=1,V=2,Out=1] * Chain [22]: 0 with precondition: [V1=2,V=1,Out=1] * Chain [21]: 0 with precondition: [V1=2,V=2,Out=2] * Chain [20]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of eqZList(V1,V,Out): * Chain [33]: 1 with precondition: [V1=0,V=0,Out=2] * Chain [32]: 1 with precondition: [V1=0,Out=1,V>=1] * Chain [31]: 1 with precondition: [V=0,Out=1,V1>=1] * Chain [30]: 0 with precondition: [Out=0,V1>=0,V>=0] * Chain [multiple([29],[[multiple([26,27,28],[[multiple([25],[[33]])],[33],[32],[31]])],[multiple([25],[[33]])],[33],[32],[31],[30]])]: 1*it(29)+1*it([31])+1*it([32])+1*it([33])+5*s(1)+1*s(3)+1*s(4)+1*s(5)+1*s(6)+1*s(7)+0 Such that:aux(11) =< V1 aux(12) =< V1+1 aux(13) =< V1/2+1/2 aux(14) =< V1/3+V/3+2/3 aux(15) =< V+1 aux(16) =< V/2+1/2 it(29) =< aux(11) it([31]) =< aux(11) it([31]) =< aux(12) it([32]) =< aux(12) it([33]) =< aux(12) it([31]) =< aux(13) it([33]) =< aux(15) s(1) =< aux(15) it([32]) =< aux(16) s(11) =< aux(15)*(1/2) s(9) =< aux(14)*(6/5) s(6) =< aux(13) s(5) =< aux(14) s(3) =< s(9) s(4) =< s(9) s(5) =< s(9) s(4) =< aux(15) s(5) =< aux(15) s(7) =< aux(15) s(7) =< s(11) s(5) =< s(1)*(1/3)+aux(14) s(3) =< s(1)*(1/5)+s(9) s(4) =< s(1)*(1/5)+s(9) s(5) =< s(1)*(1/5)+s(9) with precondition: [Out=0,V1>=1,V>=1] * Chain [multiple([26,27,28],[[multiple([25],[[33]])],[33],[32],[31]])]: 1*it(26)+1*it(27)+1*it(28)+1*it([31])+1*it([32])+3*it([33])+0 Such that:aux(3) =< V1/2+1/2 aux(4) =< V1/3+V/3 aux(5) =< 2/5*V1+2/5*V aux(6) =< V aux(7) =< V+1 aux(8) =< V/2+1/2 it([31]) =< aux(3) it(28) =< aux(4) it(26) =< aux(5) it(27) =< aux(5) it(28) =< aux(5) it(27) =< aux(6) it(28) =< aux(6) it([32]) =< aux(6) it([33]) =< aux(7) it([32]) =< aux(8) it(28) =< it([33])*(1/3)+aux(4) it(26) =< it([33])*(1/5)+aux(5) it(27) =< it([33])*(1/5)+aux(5) it(28) =< it([33])*(1/5)+aux(5) with precondition: [Out=1,V1>=1,V>=1,V+V1>=3] * Chain [multiple([25],[[33]])]: 1*it(25)+1*it([33])+0 Such that:it(25) =< V it([33]) =< V+1 with precondition: [Out=2,V1=V,V1>=1] #### Cost of chains of first(V1,Out): * Chain [35]: 0 with precondition: [Out=0,V1>=0] * Chain [34]: 1 with precondition: [Out>=0,V1>=Out+1] #### Cost of chains of second(V1,Out): * Chain [37]: 0 with precondition: [Out=0,V1>=0] * Chain [36]: 1 with precondition: [Out>=0,V1>=Out+1] #### Cost of chains of start(V1,V): * Chain [44]: 2*s(33)+1*s(34)+1*s(42)+1*s(43)+1*s(44)+8*s(45)+2*s(48)+1*s(49)+1*s(50)+1*s(51)+1*s(52)+1*s(60)+1*s(61)+1*s(62)+1*s(63)+1 Such that:s(54) =< V1/3+V/3 s(38) =< V1/3+V/3+2/3 s(55) =< 2/5*V1+2/5*V s(56) =< V aux(17) =< V1 aux(18) =< V1+1 aux(19) =< V1/2+1/2 aux(20) =< V+1 aux(21) =< V/2+1/2 s(33) =< aux(17) s(34) =< aux(18) s(42) =< aux(17) s(42) =< aux(18) s(43) =< aux(18) s(44) =< aux(18) s(42) =< aux(19) s(44) =< aux(20) s(45) =< aux(20) s(43) =< aux(21) s(46) =< aux(20)*(1/2) s(47) =< s(38)*(6/5) s(48) =< aux(19) s(49) =< s(38) s(50) =< s(47) s(51) =< s(47) s(49) =< s(47) s(51) =< aux(20) s(49) =< aux(20) s(52) =< aux(20) s(52) =< s(46) s(49) =< s(45)*(1/3)+s(38) s(50) =< s(45)*(1/5)+s(47) s(51) =< s(45)*(1/5)+s(47) s(49) =< s(45)*(1/5)+s(47) s(60) =< s(54) s(61) =< s(55) s(62) =< s(55) s(60) =< s(55) s(62) =< s(56) s(60) =< s(56) s(63) =< s(56) s(63) =< aux(21) s(60) =< s(45)*(1/3)+s(54) s(61) =< s(45)*(1/5)+s(55) s(62) =< s(45)*(1/5)+s(55) s(60) =< s(45)*(1/5)+s(55) with precondition: [V1>=0] * Chain [43]: 1 with precondition: [V1=0,V>=1] * Chain [42]: 1*s(65)+1*s(66)+0 Such that:s(65) =< V s(66) =< V+1 with precondition: [V1=V,V1>=1] * Chain [41]: 0 with precondition: [V1=1,V=2] * Chain [40]: 0 with precondition: [V1=2,V=1] * Chain [39]: 0 with precondition: [V1=2,V=2] * Chain [38]: 1 with precondition: [V=0,V1>=1] Closed-form bounds of start(V1,V): ------------------------------------- * Chain [44] with precondition: [V1>=0] - Upper bound: 3*V1+1+nat(V)+(3*V1+3)+nat(V+1)*9+nat(2/5*V1+2/5*V)*2+17/5*nat(V1/3+V/3+2/3)+(V1+1)+nat(V1/3+V/3) - Complexity: n * Chain [43] with precondition: [V1=0,V>=1] - Upper bound: 1 - Complexity: constant * Chain [42] with precondition: [V1=V,V1>=1] - Upper bound: 2*V+1 - Complexity: n * Chain [41] with precondition: [V1=1,V=2] - Upper bound: 0 - Complexity: constant * Chain [40] with precondition: [V1=2,V=1] - Upper bound: 0 - Complexity: constant * Chain [39] with precondition: [V1=2,V=2] - Upper bound: 0 - Complexity: constant * Chain [38] with precondition: [V=0,V1>=1] - Upper bound: 1 - Complexity: constant ### Maximum cost of start(V1,V): max([1,6*V1+4+nat(V+1)*8+nat(2/5*V1+2/5*V)*2+17/5*nat(V1/3+V/3+2/3)+(V1+1)+nat(V1/3+V/3)+(nat(V+1)+nat(V))]) Asymptotic class: n * Total analysis performed in 549 ms. ---------------------------------------- (12) BOUNDS(1, n^1) ---------------------------------------- (13) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Tuples: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 S tuples: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 K tuples:none Defined Rule Symbols: a_2, eqZList_2, second_1, first_1, and_2 Defined Pair Symbols: AND_2, A_2, EQZLIST_2, SECOND_1, FIRST_1 Compound Symbols: c, c1, c2, c3, c4_1, c5_1, c6, c7_2, c8_2, c9, c10, c11, c12, c13 ---------------------------------------- (15) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (17) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (18) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (19) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (20) Obligation: Innermost TRS: Rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Types: A :: C:Z -> C:Z -> c4:c5:c6 C :: C:Z -> C:Z -> C:Z c4 :: c4:c5:c6 -> c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 Z :: C:Z c6 :: c4:c5:c6 EQZLIST :: C:Z -> C:Z -> c7:c8:c9:c10:c11 c7 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 AND :: False:True -> False:True -> c:c1:c2:c3 eqZList :: C:Z -> C:Z -> False:True c8 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 c9 :: c7:c8:c9:c10:c11 c10 :: c7:c8:c9:c10:c11 c11 :: c7:c8:c9:c10:c11 SECOND :: C:Z -> c12 c12 :: c12 FIRST :: C:Z -> c13 c13 :: c13 False :: False:True c :: c:c1:c2:c3 True :: False:True c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 c3 :: c:c1:c2:c3 and :: False:True -> False:True -> False:True a :: C:Z -> C:Z -> C:Z second :: C:Z -> C:Z first :: C:Z -> C:Z hole_c4:c5:c61_14 :: c4:c5:c6 hole_C:Z2_14 :: C:Z hole_c7:c8:c9:c10:c113_14 :: c7:c8:c9:c10:c11 hole_c:c1:c2:c34_14 :: c:c1:c2:c3 hole_False:True5_14 :: False:True hole_c126_14 :: c12 hole_c137_14 :: c13 gen_c4:c5:c68_14 :: Nat -> c4:c5:c6 gen_C:Z9_14 :: Nat -> C:Z gen_c7:c8:c9:c10:c1110_14 :: Nat -> c7:c8:c9:c10:c11 ---------------------------------------- (21) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: A, EQZLIST, eqZList, a They will be analysed ascendingly in the following order: eqZList < EQZLIST ---------------------------------------- (22) Obligation: Innermost TRS: Rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Types: A :: C:Z -> C:Z -> c4:c5:c6 C :: C:Z -> C:Z -> C:Z c4 :: c4:c5:c6 -> c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 Z :: C:Z c6 :: c4:c5:c6 EQZLIST :: C:Z -> C:Z -> c7:c8:c9:c10:c11 c7 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 AND :: False:True -> False:True -> c:c1:c2:c3 eqZList :: C:Z -> C:Z -> False:True c8 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 c9 :: c7:c8:c9:c10:c11 c10 :: c7:c8:c9:c10:c11 c11 :: c7:c8:c9:c10:c11 SECOND :: C:Z -> c12 c12 :: c12 FIRST :: C:Z -> c13 c13 :: c13 False :: False:True c :: c:c1:c2:c3 True :: False:True c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 c3 :: c:c1:c2:c3 and :: False:True -> False:True -> False:True a :: C:Z -> C:Z -> C:Z second :: C:Z -> C:Z first :: C:Z -> C:Z hole_c4:c5:c61_14 :: c4:c5:c6 hole_C:Z2_14 :: C:Z hole_c7:c8:c9:c10:c113_14 :: c7:c8:c9:c10:c11 hole_c:c1:c2:c34_14 :: c:c1:c2:c3 hole_False:True5_14 :: False:True hole_c126_14 :: c12 hole_c137_14 :: c13 gen_c4:c5:c68_14 :: Nat -> c4:c5:c6 gen_C:Z9_14 :: Nat -> C:Z gen_c7:c8:c9:c10:c1110_14 :: Nat -> c7:c8:c9:c10:c11 Generator Equations: gen_c4:c5:c68_14(0) <=> c6 gen_c4:c5:c68_14(+(x, 1)) <=> c4(gen_c4:c5:c68_14(x)) gen_C:Z9_14(0) <=> Z gen_C:Z9_14(+(x, 1)) <=> C(gen_C:Z9_14(x), Z) gen_c7:c8:c9:c10:c1110_14(0) <=> c9 gen_c7:c8:c9:c10:c1110_14(+(x, 1)) <=> c7(c, gen_c7:c8:c9:c10:c1110_14(x)) The following defined symbols remain to be analysed: A, EQZLIST, eqZList, a They will be analysed ascendingly in the following order: eqZList < EQZLIST ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: A(gen_C:Z9_14(n12_14), gen_C:Z9_14(b)) -> gen_c4:c5:c68_14(n12_14), rt in Omega(1 + n12_14) Induction Base: A(gen_C:Z9_14(0), gen_C:Z9_14(b)) ->_R^Omega(1) c6 Induction Step: A(gen_C:Z9_14(+(n12_14, 1)), gen_C:Z9_14(b)) ->_R^Omega(1) c4(A(gen_C:Z9_14(n12_14), gen_C:Z9_14(b))) ->_IH c4(gen_c4:c5:c68_14(c13_14)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Complex Obligation (BEST) ---------------------------------------- (25) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Types: A :: C:Z -> C:Z -> c4:c5:c6 C :: C:Z -> C:Z -> C:Z c4 :: c4:c5:c6 -> c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 Z :: C:Z c6 :: c4:c5:c6 EQZLIST :: C:Z -> C:Z -> c7:c8:c9:c10:c11 c7 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 AND :: False:True -> False:True -> c:c1:c2:c3 eqZList :: C:Z -> C:Z -> False:True c8 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 c9 :: c7:c8:c9:c10:c11 c10 :: c7:c8:c9:c10:c11 c11 :: c7:c8:c9:c10:c11 SECOND :: C:Z -> c12 c12 :: c12 FIRST :: C:Z -> c13 c13 :: c13 False :: False:True c :: c:c1:c2:c3 True :: False:True c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 c3 :: c:c1:c2:c3 and :: False:True -> False:True -> False:True a :: C:Z -> C:Z -> C:Z second :: C:Z -> C:Z first :: C:Z -> C:Z hole_c4:c5:c61_14 :: c4:c5:c6 hole_C:Z2_14 :: C:Z hole_c7:c8:c9:c10:c113_14 :: c7:c8:c9:c10:c11 hole_c:c1:c2:c34_14 :: c:c1:c2:c3 hole_False:True5_14 :: False:True hole_c126_14 :: c12 hole_c137_14 :: c13 gen_c4:c5:c68_14 :: Nat -> c4:c5:c6 gen_C:Z9_14 :: Nat -> C:Z gen_c7:c8:c9:c10:c1110_14 :: Nat -> c7:c8:c9:c10:c11 Generator Equations: gen_c4:c5:c68_14(0) <=> c6 gen_c4:c5:c68_14(+(x, 1)) <=> c4(gen_c4:c5:c68_14(x)) gen_C:Z9_14(0) <=> Z gen_C:Z9_14(+(x, 1)) <=> C(gen_C:Z9_14(x), Z) gen_c7:c8:c9:c10:c1110_14(0) <=> c9 gen_c7:c8:c9:c10:c1110_14(+(x, 1)) <=> c7(c, gen_c7:c8:c9:c10:c1110_14(x)) The following defined symbols remain to be analysed: A, EQZLIST, eqZList, a They will be analysed ascendingly in the following order: eqZList < EQZLIST ---------------------------------------- (26) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (27) BOUNDS(n^1, INF) ---------------------------------------- (28) Obligation: Innermost TRS: Rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Types: A :: C:Z -> C:Z -> c4:c5:c6 C :: C:Z -> C:Z -> C:Z c4 :: c4:c5:c6 -> c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 Z :: C:Z c6 :: c4:c5:c6 EQZLIST :: C:Z -> C:Z -> c7:c8:c9:c10:c11 c7 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 AND :: False:True -> False:True -> c:c1:c2:c3 eqZList :: C:Z -> C:Z -> False:True c8 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 c9 :: c7:c8:c9:c10:c11 c10 :: c7:c8:c9:c10:c11 c11 :: c7:c8:c9:c10:c11 SECOND :: C:Z -> c12 c12 :: c12 FIRST :: C:Z -> c13 c13 :: c13 False :: False:True c :: c:c1:c2:c3 True :: False:True c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 c3 :: c:c1:c2:c3 and :: False:True -> False:True -> False:True a :: C:Z -> C:Z -> C:Z second :: C:Z -> C:Z first :: C:Z -> C:Z hole_c4:c5:c61_14 :: c4:c5:c6 hole_C:Z2_14 :: C:Z hole_c7:c8:c9:c10:c113_14 :: c7:c8:c9:c10:c11 hole_c:c1:c2:c34_14 :: c:c1:c2:c3 hole_False:True5_14 :: False:True hole_c126_14 :: c12 hole_c137_14 :: c13 gen_c4:c5:c68_14 :: Nat -> c4:c5:c6 gen_C:Z9_14 :: Nat -> C:Z gen_c7:c8:c9:c10:c1110_14 :: Nat -> c7:c8:c9:c10:c11 Lemmas: A(gen_C:Z9_14(n12_14), gen_C:Z9_14(b)) -> gen_c4:c5:c68_14(n12_14), rt in Omega(1 + n12_14) Generator Equations: gen_c4:c5:c68_14(0) <=> c6 gen_c4:c5:c68_14(+(x, 1)) <=> c4(gen_c4:c5:c68_14(x)) gen_C:Z9_14(0) <=> Z gen_C:Z9_14(+(x, 1)) <=> C(gen_C:Z9_14(x), Z) gen_c7:c8:c9:c10:c1110_14(0) <=> c9 gen_c7:c8:c9:c10:c1110_14(+(x, 1)) <=> c7(c, gen_c7:c8:c9:c10:c1110_14(x)) The following defined symbols remain to be analysed: eqZList, EQZLIST, a They will be analysed ascendingly in the following order: eqZList < EQZLIST ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eqZList(gen_C:Z9_14(+(1, n675_14)), gen_C:Z9_14(n675_14)) -> False, rt in Omega(0) Induction Base: eqZList(gen_C:Z9_14(+(1, 0)), gen_C:Z9_14(0)) ->_R^Omega(0) False Induction Step: eqZList(gen_C:Z9_14(+(1, +(n675_14, 1))), gen_C:Z9_14(+(n675_14, 1))) ->_R^Omega(0) and(eqZList(gen_C:Z9_14(+(1, n675_14)), gen_C:Z9_14(n675_14)), eqZList(Z, Z)) ->_IH and(False, eqZList(Z, Z)) ->_R^Omega(0) and(False, True) ->_R^Omega(0) False We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (30) Obligation: Innermost TRS: Rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Types: A :: C:Z -> C:Z -> c4:c5:c6 C :: C:Z -> C:Z -> C:Z c4 :: c4:c5:c6 -> c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 Z :: C:Z c6 :: c4:c5:c6 EQZLIST :: C:Z -> C:Z -> c7:c8:c9:c10:c11 c7 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 AND :: False:True -> False:True -> c:c1:c2:c3 eqZList :: C:Z -> C:Z -> False:True c8 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 c9 :: c7:c8:c9:c10:c11 c10 :: c7:c8:c9:c10:c11 c11 :: c7:c8:c9:c10:c11 SECOND :: C:Z -> c12 c12 :: c12 FIRST :: C:Z -> c13 c13 :: c13 False :: False:True c :: c:c1:c2:c3 True :: False:True c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 c3 :: c:c1:c2:c3 and :: False:True -> False:True -> False:True a :: C:Z -> C:Z -> C:Z second :: C:Z -> C:Z first :: C:Z -> C:Z hole_c4:c5:c61_14 :: c4:c5:c6 hole_C:Z2_14 :: C:Z hole_c7:c8:c9:c10:c113_14 :: c7:c8:c9:c10:c11 hole_c:c1:c2:c34_14 :: c:c1:c2:c3 hole_False:True5_14 :: False:True hole_c126_14 :: c12 hole_c137_14 :: c13 gen_c4:c5:c68_14 :: Nat -> c4:c5:c6 gen_C:Z9_14 :: Nat -> C:Z gen_c7:c8:c9:c10:c1110_14 :: Nat -> c7:c8:c9:c10:c11 Lemmas: A(gen_C:Z9_14(n12_14), gen_C:Z9_14(b)) -> gen_c4:c5:c68_14(n12_14), rt in Omega(1 + n12_14) eqZList(gen_C:Z9_14(+(1, n675_14)), gen_C:Z9_14(n675_14)) -> False, rt in Omega(0) Generator Equations: gen_c4:c5:c68_14(0) <=> c6 gen_c4:c5:c68_14(+(x, 1)) <=> c4(gen_c4:c5:c68_14(x)) gen_C:Z9_14(0) <=> Z gen_C:Z9_14(+(x, 1)) <=> C(gen_C:Z9_14(x), Z) gen_c7:c8:c9:c10:c1110_14(0) <=> c9 gen_c7:c8:c9:c10:c1110_14(+(x, 1)) <=> c7(c, gen_c7:c8:c9:c10:c1110_14(x)) The following defined symbols remain to be analysed: EQZLIST, a ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: EQZLIST(gen_C:Z9_14(+(2, n2887_14)), gen_C:Z9_14(+(1, n2887_14))) -> *11_14, rt in Omega(n2887_14) Induction Base: EQZLIST(gen_C:Z9_14(+(2, 0)), gen_C:Z9_14(+(1, 0))) Induction Step: EQZLIST(gen_C:Z9_14(+(2, +(n2887_14, 1))), gen_C:Z9_14(+(1, +(n2887_14, 1)))) ->_R^Omega(1) c7(AND(eqZList(gen_C:Z9_14(+(2, n2887_14)), gen_C:Z9_14(+(1, n2887_14))), eqZList(Z, Z)), EQZLIST(gen_C:Z9_14(+(2, n2887_14)), gen_C:Z9_14(+(1, n2887_14)))) ->_L^Omega(0) c7(AND(False, eqZList(Z, Z)), EQZLIST(gen_C:Z9_14(+(2, n2887_14)), gen_C:Z9_14(+(1, n2887_14)))) ->_R^Omega(0) c7(AND(False, True), EQZLIST(gen_C:Z9_14(+(2, n2887_14)), gen_C:Z9_14(+(1, n2887_14)))) ->_R^Omega(0) c7(c2, EQZLIST(gen_C:Z9_14(+(2, n2887_14)), gen_C:Z9_14(+(1, n2887_14)))) ->_IH c7(c2, *11_14) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) Obligation: Innermost TRS: Rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Types: A :: C:Z -> C:Z -> c4:c5:c6 C :: C:Z -> C:Z -> C:Z c4 :: c4:c5:c6 -> c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 Z :: C:Z c6 :: c4:c5:c6 EQZLIST :: C:Z -> C:Z -> c7:c8:c9:c10:c11 c7 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 AND :: False:True -> False:True -> c:c1:c2:c3 eqZList :: C:Z -> C:Z -> False:True c8 :: c:c1:c2:c3 -> c7:c8:c9:c10:c11 -> c7:c8:c9:c10:c11 c9 :: c7:c8:c9:c10:c11 c10 :: c7:c8:c9:c10:c11 c11 :: c7:c8:c9:c10:c11 SECOND :: C:Z -> c12 c12 :: c12 FIRST :: C:Z -> c13 c13 :: c13 False :: False:True c :: c:c1:c2:c3 True :: False:True c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 c3 :: c:c1:c2:c3 and :: False:True -> False:True -> False:True a :: C:Z -> C:Z -> C:Z second :: C:Z -> C:Z first :: C:Z -> C:Z hole_c4:c5:c61_14 :: c4:c5:c6 hole_C:Z2_14 :: C:Z hole_c7:c8:c9:c10:c113_14 :: c7:c8:c9:c10:c11 hole_c:c1:c2:c34_14 :: c:c1:c2:c3 hole_False:True5_14 :: False:True hole_c126_14 :: c12 hole_c137_14 :: c13 gen_c4:c5:c68_14 :: Nat -> c4:c5:c6 gen_C:Z9_14 :: Nat -> C:Z gen_c7:c8:c9:c10:c1110_14 :: Nat -> c7:c8:c9:c10:c11 Lemmas: A(gen_C:Z9_14(n12_14), gen_C:Z9_14(b)) -> gen_c4:c5:c68_14(n12_14), rt in Omega(1 + n12_14) eqZList(gen_C:Z9_14(+(1, n675_14)), gen_C:Z9_14(n675_14)) -> False, rt in Omega(0) EQZLIST(gen_C:Z9_14(+(2, n2887_14)), gen_C:Z9_14(+(1, n2887_14))) -> *11_14, rt in Omega(n2887_14) Generator Equations: gen_c4:c5:c68_14(0) <=> c6 gen_c4:c5:c68_14(+(x, 1)) <=> c4(gen_c4:c5:c68_14(x)) gen_C:Z9_14(0) <=> Z gen_C:Z9_14(+(x, 1)) <=> C(gen_C:Z9_14(x), Z) gen_c7:c8:c9:c10:c1110_14(0) <=> c9 gen_c7:c8:c9:c10:c1110_14(+(x, 1)) <=> c7(c, gen_c7:c8:c9:c10:c1110_14(x)) The following defined symbols remain to be analysed: a ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: a(gen_C:Z9_14(n5491_14), gen_C:Z9_14(b)) -> gen_C:Z9_14(n5491_14), rt in Omega(0) Induction Base: a(gen_C:Z9_14(0), gen_C:Z9_14(b)) ->_R^Omega(0) Z Induction Step: a(gen_C:Z9_14(+(n5491_14, 1)), gen_C:Z9_14(b)) ->_R^Omega(0) C(a(gen_C:Z9_14(n5491_14), gen_C:Z9_14(b)), a(Z, C(gen_C:Z9_14(n5491_14), Z))) ->_IH C(gen_C:Z9_14(c5492_14), a(Z, C(gen_C:Z9_14(n5491_14), Z))) ->_R^Omega(0) C(gen_C:Z9_14(n5491_14), Z) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (34) BOUNDS(1, INF)