WORST_CASE(Omega(n^1),O(n^1)) proof of input_mzt0szb2Kx.trs # AProVE Commit ID: 5b976082cb74a395683ed8cc7acf94bd611ab29f fuhs 20230524 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 1058 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 3843 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 1642 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 32 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 342 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 145 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 74 ms] (40) CpxRNTS (41) FinalProof [FINISHED, 0 ms] (42) BOUNDS(1, n^1) (43) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CdtProblem (45) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CpxRelTRS (47) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CpxRelTRS (49) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (50) typed CpxTrs (51) OrderProof [LOWER BOUND(ID), 0 ms] (52) typed CpxTrs (53) RewriteLemmaProof [LOWER BOUND(ID), 348 ms] (54) typed CpxTrs (55) RewriteLemmaProof [LOWER BOUND(ID), 146 ms] (56) BEST (57) proven lower bound (58) LowerBoundPropagationProof [FINISHED, 0 ms] (59) BOUNDS(n^1, INF) (60) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) cond2(false, x, y) -> cond3(gr(y, 0), x, y) cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) or(false, false) -> false or(true, x) -> true or(x, true) -> true p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) [1] cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) [1] cond2(false, x, y) -> cond3(gr(y, 0), x, y) [1] cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) [1] cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] or(false, false) -> false [1] or(true, x) -> true [1] or(x, true) -> true [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) [1] cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) [1] cond2(false, x, y) -> cond3(gr(y, 0), x, y) [1] cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) [1] cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] or(false, false) -> false [1] or(true, x) -> true [1] or(x, true) -> true [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 gr :: 0:s -> 0:s -> true:false 0 :: 0:s or :: true:false -> true:false -> true:false p :: 0:s -> 0:s false :: true:false cond3 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond1_3 cond2_3 cond3_3 (c) The following functions are completely defined: or_2 gr_2 p_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) [1] cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) [1] cond2(false, x, y) -> cond3(gr(y, 0), x, y) [1] cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) [1] cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] or(false, false) -> false [1] or(true, x) -> true [1] or(x, true) -> true [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 gr :: 0:s -> 0:s -> true:false 0 :: 0:s or :: true:false -> true:false -> true:false p :: 0:s -> 0:s false :: true:false cond3 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 s :: 0:s -> 0:s const :: cond1:cond2:cond3 Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, 0, y) -> cond2(false, 0, y) [2] cond1(true, s(x'), y) -> cond2(true, s(x'), y) [2] cond2(true, 0, 0) -> cond1(or(false, false), 0, 0) [4] cond2(true, 0, s(x1)) -> cond1(or(false, true), 0, s(x1)) [4] cond2(true, s(x''), 0) -> cond1(or(true, false), x'', 0) [4] cond2(true, s(x''), s(x2)) -> cond1(or(true, true), x'', s(x2)) [4] cond2(false, x, 0) -> cond3(false, x, 0) [2] cond2(false, x, s(x3)) -> cond3(true, x, s(x3)) [2] cond3(true, 0, 0) -> cond1(or(false, false), 0, 0) [4] cond3(true, 0, s(x5)) -> cond1(or(false, true), 0, x5) [4] cond3(true, s(x4), 0) -> cond1(or(true, false), s(x4), 0) [4] cond3(true, s(x4), s(x6)) -> cond1(or(true, true), s(x4), x6) [4] cond3(false, 0, 0) -> cond1(or(false, false), 0, 0) [3] cond3(false, 0, s(x8)) -> cond1(or(false, true), 0, s(x8)) [3] cond3(false, s(x7), 0) -> cond1(or(true, false), s(x7), 0) [3] cond3(false, s(x7), s(x9)) -> cond1(or(true, true), s(x7), s(x9)) [3] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] or(false, false) -> false [1] or(true, x) -> true [1] or(x, true) -> true [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 gr :: 0:s -> 0:s -> true:false 0 :: 0:s or :: true:false -> true:false -> true:false p :: 0:s -> 0:s false :: true:false cond3 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 s :: 0:s -> 0:s const :: cond1:cond2:cond3 Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + x', y) :|: z' = 1 + x', z'' = y, z = 1, x' >= 0, y >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, x, 1 + x3) :|: z' = x, z'' = 1 + x3, x >= 0, z = 0, x3 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, x, 0) :|: z'' = 0, z' = x, x >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(or(1, 1), x'', 1 + x2) :|: z' = 1 + x'', z = 1, z'' = 1 + x2, x'' >= 0, x2 >= 0 cond2(z, z', z'') -{ 4 }-> cond1(or(1, 0), x'', 0) :|: z'' = 0, z' = 1 + x'', z = 1, x'' >= 0 cond2(z, z', z'') -{ 4 }-> cond1(or(0, 1), 0, 1 + x1) :|: x1 >= 0, z = 1, z'' = 1 + x1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond1(or(0, 0), 0, 0) :|: z'' = 0, z = 1, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(or(1, 1), 1 + x4, x6) :|: x4 >= 0, z = 1, z' = 1 + x4, x6 >= 0, z'' = 1 + x6 cond3(z, z', z'') -{ 3 }-> cond1(or(1, 1), 1 + x7, 1 + x9) :|: z' = 1 + x7, x7 >= 0, z = 0, x9 >= 0, z'' = 1 + x9 cond3(z, z', z'') -{ 4 }-> cond1(or(1, 0), 1 + x4, 0) :|: z'' = 0, x4 >= 0, z = 1, z' = 1 + x4 cond3(z, z', z'') -{ 3 }-> cond1(or(1, 0), 1 + x7, 0) :|: z' = 1 + x7, z'' = 0, x7 >= 0, z = 0 cond3(z, z', z'') -{ 4 }-> cond1(or(0, 1), 0, x5) :|: x5 >= 0, z = 1, z'' = 1 + x5, z' = 0 cond3(z, z', z'') -{ 3 }-> cond1(or(0, 1), 0, 1 + x8) :|: x8 >= 0, z'' = 1 + x8, z = 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(or(0, 0), 0, 0) :|: z'' = 0, z = 1, z' = 0 cond3(z, z', z'') -{ 3 }-> cond1(or(0, 0), 0, 0) :|: z'' = 0, z = 0, z' = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z' = x, z = 1, x >= 0 or(z, z') -{ 1 }-> 1 :|: x >= 0, z' = 1, z = x or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 or(z, z') -{ 1 }-> 1 :|: z' = x, z = 1, x >= 0 or(z, z') -{ 1 }-> 1 :|: x >= 0, z' = 1, z = x ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + x', y) :|: z' = 1 + x', z'' = y, z = 1, x' >= 0, y >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, x, 1 + x3) :|: z' = x, z'' = 1 + x3, x >= 0, z = 0, x3 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, x, 0) :|: z'' = 0, z' = x, x >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, x'', 0) :|: z'' = 0, z' = 1 + x'', z = 1, x'' >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, x'', 1 + x2) :|: z' = 1 + x'', z = 1, z'' = 1 + x2, x'' >= 0, x2 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + x1) :|: x1 >= 0, z = 1, z'' = 1 + x1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, x5) :|: x5 >= 0, z = 1, z'' = 1 + x5, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + x8) :|: x8 >= 0, z'' = 1 + x8, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + x4, x6) :|: x4 >= 0, z = 1, z' = 1 + x4, x6 >= 0, z'' = 1 + x6, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + x4, 0) :|: z'' = 0, x4 >= 0, z = 1, z' = 1 + x4, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + x7, 0) :|: z' = 1 + x7, z'' = 0, x7 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + x7, 1 + x9) :|: z' = 1 + x7, x7 >= 0, z = 0, x9 >= 0, z'' = 1 + x9, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z' = x, z = 1, x >= 0 or(z, z') -{ 1 }-> 1 :|: x >= 0, z' = 1, z = x or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), z'') :|: z = 1, z' - 1 >= 0, z'' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 1 + (z'' - 1)) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, z'' - 1) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), z'' - 1) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { cond2, cond1, cond3 } { p } { gr } { or } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), z'') :|: z = 1, z' - 1 >= 0, z'' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 1 + (z'' - 1)) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, z'' - 1) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), z'' - 1) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1,cond3}, {p}, {gr}, {or} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), z'') :|: z = 1, z' - 1 >= 0, z'' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 1 + (z'' - 1)) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, z'' - 1) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), z'' - 1) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1,cond3}, {p}, {gr}, {or} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: cond3 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), z'') :|: z = 1, z' - 1 >= 0, z'' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 1 + (z'' - 1)) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, z'' - 1) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), z'' - 1) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1,cond3}, {p}, {gr}, {or} Previous analysis results are: cond2: runtime: ?, size: O(1) [0] cond1: runtime: ?, size: O(1) [0] cond3: runtime: ?, size: O(1) [0] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 48 + 7*z' + 9*z'' Computed RUNTIME bound using CoFloCo for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 50 + 7*z' + 9*z'' Computed RUNTIME bound using CoFloCo for: cond3 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 55 + 7*z' + 9*z'' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), z'') :|: z = 1, z' - 1 >= 0, z'' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 1 + (z'' - 1)) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, z'' - 1) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), z'' - 1) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: ?, size: O(1) [1] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: gr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 2 + z' }-> s14 :|: s14 >= 0, s14 <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: or after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 2 + z' }-> s14 :|: s14 >= 0, s14 <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] or: runtime: ?, size: O(1) [1] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: or after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 2 + z' }-> s14 :|: s14 >= 0, s14 <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] or: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (41) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (42) BOUNDS(1, n^1) ---------------------------------------- (43) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (44) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0, z1) -> cond2(gr(z0, 0), z0, z1) cond2(true, z0, z1) -> cond1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1) cond2(false, z0, z1) -> cond3(gr(z1, 0), z0, z1) cond3(true, z0, z1) -> cond1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)) cond3(false, z0, z1) -> cond1(or(gr(z0, 0), gr(z1, 0)), z0, z1) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) or(false, false) -> false or(true, z0) -> true or(z0, true) -> true p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, 0), z0, z1), GR(z0, 0)) COND2(true, z0, z1) -> c1(COND1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1), OR(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND2(true, z0, z1) -> c2(COND1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1), OR(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) COND2(true, z0, z1) -> c3(COND1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1), P(z0)) COND2(false, z0, z1) -> c4(COND3(gr(z1, 0), z0, z1), GR(z1, 0)) COND3(true, z0, z1) -> c5(COND1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)), OR(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND3(true, z0, z1) -> c6(COND1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)), OR(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) COND3(true, z0, z1) -> c7(COND1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)), P(z1)) COND3(false, z0, z1) -> c8(COND1(or(gr(z0, 0), gr(z1, 0)), z0, z1), OR(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND3(false, z0, z1) -> c9(COND1(or(gr(z0, 0), gr(z1, 0)), z0, z1), OR(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) GR(0, z0) -> c10 GR(s(z0), 0) -> c11 GR(s(z0), s(z1)) -> c12(GR(z0, z1)) OR(false, false) -> c13 OR(true, z0) -> c14 OR(z0, true) -> c15 P(0) -> c16 P(s(z0)) -> c17 S tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, 0), z0, z1), GR(z0, 0)) COND2(true, z0, z1) -> c1(COND1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1), OR(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND2(true, z0, z1) -> c2(COND1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1), OR(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) COND2(true, z0, z1) -> c3(COND1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1), P(z0)) COND2(false, z0, z1) -> c4(COND3(gr(z1, 0), z0, z1), GR(z1, 0)) COND3(true, z0, z1) -> c5(COND1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)), OR(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND3(true, z0, z1) -> c6(COND1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)), OR(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) COND3(true, z0, z1) -> c7(COND1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)), P(z1)) COND3(false, z0, z1) -> c8(COND1(or(gr(z0, 0), gr(z1, 0)), z0, z1), OR(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND3(false, z0, z1) -> c9(COND1(or(gr(z0, 0), gr(z1, 0)), z0, z1), OR(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) GR(0, z0) -> c10 GR(s(z0), 0) -> c11 GR(s(z0), s(z1)) -> c12(GR(z0, z1)) OR(false, false) -> c13 OR(true, z0) -> c14 OR(z0, true) -> c15 P(0) -> c16 P(s(z0)) -> c17 K tuples:none Defined Rule Symbols: cond1_3, cond2_3, cond3_3, gr_2, or_2, p_1 Defined Pair Symbols: COND1_3, COND2_3, COND3_3, GR_2, OR_2, P_1 Compound Symbols: c_2, c1_3, c2_3, c3_2, c4_2, c5_3, c6_3, c7_2, c8_3, c9_3, c10, c11, c12_1, c13, c14, c15, c16, c17 ---------------------------------------- (45) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (46) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND1(true, z0, z1) -> c(COND2(gr(z0, 0), z0, z1), GR(z0, 0)) COND2(true, z0, z1) -> c1(COND1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1), OR(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND2(true, z0, z1) -> c2(COND1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1), OR(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) COND2(true, z0, z1) -> c3(COND1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1), P(z0)) COND2(false, z0, z1) -> c4(COND3(gr(z1, 0), z0, z1), GR(z1, 0)) COND3(true, z0, z1) -> c5(COND1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)), OR(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND3(true, z0, z1) -> c6(COND1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)), OR(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) COND3(true, z0, z1) -> c7(COND1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)), P(z1)) COND3(false, z0, z1) -> c8(COND1(or(gr(z0, 0), gr(z1, 0)), z0, z1), OR(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND3(false, z0, z1) -> c9(COND1(or(gr(z0, 0), gr(z1, 0)), z0, z1), OR(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) GR(0, z0) -> c10 GR(s(z0), 0) -> c11 GR(s(z0), s(z1)) -> c12(GR(z0, z1)) OR(false, false) -> c13 OR(true, z0) -> c14 OR(z0, true) -> c15 P(0) -> c16 P(s(z0)) -> c17 The (relative) TRS S consists of the following rules: cond1(true, z0, z1) -> cond2(gr(z0, 0), z0, z1) cond2(true, z0, z1) -> cond1(or(gr(z0, 0), gr(z1, 0)), p(z0), z1) cond2(false, z0, z1) -> cond3(gr(z1, 0), z0, z1) cond3(true, z0, z1) -> cond1(or(gr(z0, 0), gr(z1, 0)), z0, p(z1)) cond3(false, z0, z1) -> cond1(or(gr(z0, 0), gr(z1, 0)), z0, z1) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) or(false, false) -> false or(true, z0) -> true or(z0, true) -> true p(0) -> 0 p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (47) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (48) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND1(true, z0, z1) -> c(COND2(gr(z0, 0'), z0, z1), GR(z0, 0')) COND2(true, z0, z1) -> c1(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND2(true, z0, z1) -> c2(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND2(true, z0, z1) -> c3(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), P(z0)) COND2(false, z0, z1) -> c4(COND3(gr(z1, 0'), z0, z1), GR(z1, 0')) COND3(true, z0, z1) -> c5(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(true, z0, z1) -> c6(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND3(true, z0, z1) -> c7(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), P(z1)) COND3(false, z0, z1) -> c8(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(false, z0, z1) -> c9(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) GR(0', z0) -> c10 GR(s(z0), 0') -> c11 GR(s(z0), s(z1)) -> c12(GR(z0, z1)) OR(false, false) -> c13 OR(true, z0) -> c14 OR(z0, true) -> c15 P(0') -> c16 P(s(z0)) -> c17 The (relative) TRS S consists of the following rules: cond1(true, z0, z1) -> cond2(gr(z0, 0'), z0, z1) cond2(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1) cond2(false, z0, z1) -> cond3(gr(z1, 0'), z0, z1) cond3(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)) cond3(false, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) or(false, false) -> false or(true, z0) -> true or(z0, true) -> true p(0') -> 0' p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (49) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (50) Obligation: Innermost TRS: Rules: COND1(true, z0, z1) -> c(COND2(gr(z0, 0'), z0, z1), GR(z0, 0')) COND2(true, z0, z1) -> c1(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND2(true, z0, z1) -> c2(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND2(true, z0, z1) -> c3(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), P(z0)) COND2(false, z0, z1) -> c4(COND3(gr(z1, 0'), z0, z1), GR(z1, 0')) COND3(true, z0, z1) -> c5(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(true, z0, z1) -> c6(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND3(true, z0, z1) -> c7(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), P(z1)) COND3(false, z0, z1) -> c8(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(false, z0, z1) -> c9(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) GR(0', z0) -> c10 GR(s(z0), 0') -> c11 GR(s(z0), s(z1)) -> c12(GR(z0, z1)) OR(false, false) -> c13 OR(true, z0) -> c14 OR(z0, true) -> c15 P(0') -> c16 P(s(z0)) -> c17 cond1(true, z0, z1) -> cond2(gr(z0, 0'), z0, z1) cond2(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1) cond2(false, z0, z1) -> cond3(gr(z1, 0'), z0, z1) cond3(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)) cond3(false, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) or(false, false) -> false or(true, z0) -> true or(z0, true) -> true p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c1:c2:c3:c4 -> c10:c11:c12 -> c COND2 :: true:false -> 0':s -> 0':s -> c1:c2:c3:c4 gr :: 0':s -> 0':s -> true:false 0' :: 0':s GR :: 0':s -> 0':s -> c10:c11:c12 c1 :: c -> c13:c14:c15 -> c10:c11:c12 -> c1:c2:c3:c4 or :: true:false -> true:false -> true:false p :: 0':s -> 0':s OR :: true:false -> true:false -> c13:c14:c15 c2 :: c -> c13:c14:c15 -> c10:c11:c12 -> c1:c2:c3:c4 c3 :: c -> c16:c17 -> c1:c2:c3:c4 P :: 0':s -> c16:c17 false :: true:false c4 :: c5:c6:c7:c8:c9 -> c10:c11:c12 -> c1:c2:c3:c4 COND3 :: true:false -> 0':s -> 0':s -> c5:c6:c7:c8:c9 c5 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c6 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c7 :: c -> c16:c17 -> c5:c6:c7:c8:c9 c8 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c9 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c10 :: c10:c11:c12 s :: 0':s -> 0':s c11 :: c10:c11:c12 c12 :: c10:c11:c12 -> c10:c11:c12 c13 :: c13:c14:c15 c14 :: c13:c14:c15 c15 :: c13:c14:c15 c16 :: c16:c17 c17 :: c16:c17 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 cond3 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 hole_c1_18 :: c hole_true:false2_18 :: true:false hole_0':s3_18 :: 0':s hole_c1:c2:c3:c44_18 :: c1:c2:c3:c4 hole_c10:c11:c125_18 :: c10:c11:c12 hole_c13:c14:c156_18 :: c13:c14:c15 hole_c16:c177_18 :: c16:c17 hole_c5:c6:c7:c8:c98_18 :: c5:c6:c7:c8:c9 hole_cond1:cond2:cond39_18 :: cond1:cond2:cond3 gen_0':s10_18 :: Nat -> 0':s gen_c10:c11:c1211_18 :: Nat -> c10:c11:c12 ---------------------------------------- (51) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: COND1, COND2, gr, GR, COND3, cond1, cond2, cond3 They will be analysed ascendingly in the following order: COND1 = COND2 gr < COND1 GR < COND1 COND1 = COND3 gr < COND2 GR < COND2 COND2 = COND3 gr < COND3 gr < cond1 gr < cond2 gr < cond3 GR < COND3 cond1 = cond2 cond1 = cond3 cond2 = cond3 ---------------------------------------- (52) Obligation: Innermost TRS: Rules: COND1(true, z0, z1) -> c(COND2(gr(z0, 0'), z0, z1), GR(z0, 0')) COND2(true, z0, z1) -> c1(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND2(true, z0, z1) -> c2(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND2(true, z0, z1) -> c3(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), P(z0)) COND2(false, z0, z1) -> c4(COND3(gr(z1, 0'), z0, z1), GR(z1, 0')) COND3(true, z0, z1) -> c5(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(true, z0, z1) -> c6(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND3(true, z0, z1) -> c7(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), P(z1)) COND3(false, z0, z1) -> c8(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(false, z0, z1) -> c9(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) GR(0', z0) -> c10 GR(s(z0), 0') -> c11 GR(s(z0), s(z1)) -> c12(GR(z0, z1)) OR(false, false) -> c13 OR(true, z0) -> c14 OR(z0, true) -> c15 P(0') -> c16 P(s(z0)) -> c17 cond1(true, z0, z1) -> cond2(gr(z0, 0'), z0, z1) cond2(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1) cond2(false, z0, z1) -> cond3(gr(z1, 0'), z0, z1) cond3(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)) cond3(false, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) or(false, false) -> false or(true, z0) -> true or(z0, true) -> true p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c1:c2:c3:c4 -> c10:c11:c12 -> c COND2 :: true:false -> 0':s -> 0':s -> c1:c2:c3:c4 gr :: 0':s -> 0':s -> true:false 0' :: 0':s GR :: 0':s -> 0':s -> c10:c11:c12 c1 :: c -> c13:c14:c15 -> c10:c11:c12 -> c1:c2:c3:c4 or :: true:false -> true:false -> true:false p :: 0':s -> 0':s OR :: true:false -> true:false -> c13:c14:c15 c2 :: c -> c13:c14:c15 -> c10:c11:c12 -> c1:c2:c3:c4 c3 :: c -> c16:c17 -> c1:c2:c3:c4 P :: 0':s -> c16:c17 false :: true:false c4 :: c5:c6:c7:c8:c9 -> c10:c11:c12 -> c1:c2:c3:c4 COND3 :: true:false -> 0':s -> 0':s -> c5:c6:c7:c8:c9 c5 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c6 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c7 :: c -> c16:c17 -> c5:c6:c7:c8:c9 c8 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c9 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c10 :: c10:c11:c12 s :: 0':s -> 0':s c11 :: c10:c11:c12 c12 :: c10:c11:c12 -> c10:c11:c12 c13 :: c13:c14:c15 c14 :: c13:c14:c15 c15 :: c13:c14:c15 c16 :: c16:c17 c17 :: c16:c17 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 cond3 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 hole_c1_18 :: c hole_true:false2_18 :: true:false hole_0':s3_18 :: 0':s hole_c1:c2:c3:c44_18 :: c1:c2:c3:c4 hole_c10:c11:c125_18 :: c10:c11:c12 hole_c13:c14:c156_18 :: c13:c14:c15 hole_c16:c177_18 :: c16:c17 hole_c5:c6:c7:c8:c98_18 :: c5:c6:c7:c8:c9 hole_cond1:cond2:cond39_18 :: cond1:cond2:cond3 gen_0':s10_18 :: Nat -> 0':s gen_c10:c11:c1211_18 :: Nat -> c10:c11:c12 Generator Equations: gen_0':s10_18(0) <=> 0' gen_0':s10_18(+(x, 1)) <=> s(gen_0':s10_18(x)) gen_c10:c11:c1211_18(0) <=> c10 gen_c10:c11:c1211_18(+(x, 1)) <=> c12(gen_c10:c11:c1211_18(x)) The following defined symbols remain to be analysed: gr, COND1, COND2, GR, COND3, cond1, cond2, cond3 They will be analysed ascendingly in the following order: COND1 = COND2 gr < COND1 GR < COND1 COND1 = COND3 gr < COND2 GR < COND2 COND2 = COND3 gr < COND3 gr < cond1 gr < cond2 gr < cond3 GR < COND3 cond1 = cond2 cond1 = cond3 cond2 = cond3 ---------------------------------------- (53) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gr(gen_0':s10_18(n13_18), gen_0':s10_18(n13_18)) -> false, rt in Omega(0) Induction Base: gr(gen_0':s10_18(0), gen_0':s10_18(0)) ->_R^Omega(0) false Induction Step: gr(gen_0':s10_18(+(n13_18, 1)), gen_0':s10_18(+(n13_18, 1))) ->_R^Omega(0) gr(gen_0':s10_18(n13_18), gen_0':s10_18(n13_18)) ->_IH false We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (54) Obligation: Innermost TRS: Rules: COND1(true, z0, z1) -> c(COND2(gr(z0, 0'), z0, z1), GR(z0, 0')) COND2(true, z0, z1) -> c1(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND2(true, z0, z1) -> c2(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND2(true, z0, z1) -> c3(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), P(z0)) COND2(false, z0, z1) -> c4(COND3(gr(z1, 0'), z0, z1), GR(z1, 0')) COND3(true, z0, z1) -> c5(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(true, z0, z1) -> c6(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND3(true, z0, z1) -> c7(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), P(z1)) COND3(false, z0, z1) -> c8(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(false, z0, z1) -> c9(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) GR(0', z0) -> c10 GR(s(z0), 0') -> c11 GR(s(z0), s(z1)) -> c12(GR(z0, z1)) OR(false, false) -> c13 OR(true, z0) -> c14 OR(z0, true) -> c15 P(0') -> c16 P(s(z0)) -> c17 cond1(true, z0, z1) -> cond2(gr(z0, 0'), z0, z1) cond2(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1) cond2(false, z0, z1) -> cond3(gr(z1, 0'), z0, z1) cond3(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)) cond3(false, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) or(false, false) -> false or(true, z0) -> true or(z0, true) -> true p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c1:c2:c3:c4 -> c10:c11:c12 -> c COND2 :: true:false -> 0':s -> 0':s -> c1:c2:c3:c4 gr :: 0':s -> 0':s -> true:false 0' :: 0':s GR :: 0':s -> 0':s -> c10:c11:c12 c1 :: c -> c13:c14:c15 -> c10:c11:c12 -> c1:c2:c3:c4 or :: true:false -> true:false -> true:false p :: 0':s -> 0':s OR :: true:false -> true:false -> c13:c14:c15 c2 :: c -> c13:c14:c15 -> c10:c11:c12 -> c1:c2:c3:c4 c3 :: c -> c16:c17 -> c1:c2:c3:c4 P :: 0':s -> c16:c17 false :: true:false c4 :: c5:c6:c7:c8:c9 -> c10:c11:c12 -> c1:c2:c3:c4 COND3 :: true:false -> 0':s -> 0':s -> c5:c6:c7:c8:c9 c5 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c6 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c7 :: c -> c16:c17 -> c5:c6:c7:c8:c9 c8 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c9 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c10 :: c10:c11:c12 s :: 0':s -> 0':s c11 :: c10:c11:c12 c12 :: c10:c11:c12 -> c10:c11:c12 c13 :: c13:c14:c15 c14 :: c13:c14:c15 c15 :: c13:c14:c15 c16 :: c16:c17 c17 :: c16:c17 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 cond3 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 hole_c1_18 :: c hole_true:false2_18 :: true:false hole_0':s3_18 :: 0':s hole_c1:c2:c3:c44_18 :: c1:c2:c3:c4 hole_c10:c11:c125_18 :: c10:c11:c12 hole_c13:c14:c156_18 :: c13:c14:c15 hole_c16:c177_18 :: c16:c17 hole_c5:c6:c7:c8:c98_18 :: c5:c6:c7:c8:c9 hole_cond1:cond2:cond39_18 :: cond1:cond2:cond3 gen_0':s10_18 :: Nat -> 0':s gen_c10:c11:c1211_18 :: Nat -> c10:c11:c12 Lemmas: gr(gen_0':s10_18(n13_18), gen_0':s10_18(n13_18)) -> false, rt in Omega(0) Generator Equations: gen_0':s10_18(0) <=> 0' gen_0':s10_18(+(x, 1)) <=> s(gen_0':s10_18(x)) gen_c10:c11:c1211_18(0) <=> c10 gen_c10:c11:c1211_18(+(x, 1)) <=> c12(gen_c10:c11:c1211_18(x)) The following defined symbols remain to be analysed: GR, COND1, COND2, COND3, cond1, cond2, cond3 They will be analysed ascendingly in the following order: COND1 = COND2 GR < COND1 COND1 = COND3 GR < COND2 COND2 = COND3 GR < COND3 cond1 = cond2 cond1 = cond3 cond2 = cond3 ---------------------------------------- (55) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: GR(gen_0':s10_18(n402_18), gen_0':s10_18(n402_18)) -> gen_c10:c11:c1211_18(n402_18), rt in Omega(1 + n402_18) Induction Base: GR(gen_0':s10_18(0), gen_0':s10_18(0)) ->_R^Omega(1) c10 Induction Step: GR(gen_0':s10_18(+(n402_18, 1)), gen_0':s10_18(+(n402_18, 1))) ->_R^Omega(1) c12(GR(gen_0':s10_18(n402_18), gen_0':s10_18(n402_18))) ->_IH c12(gen_c10:c11:c1211_18(c403_18)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (56) Complex Obligation (BEST) ---------------------------------------- (57) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: COND1(true, z0, z1) -> c(COND2(gr(z0, 0'), z0, z1), GR(z0, 0')) COND2(true, z0, z1) -> c1(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND2(true, z0, z1) -> c2(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND2(true, z0, z1) -> c3(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), P(z0)) COND2(false, z0, z1) -> c4(COND3(gr(z1, 0'), z0, z1), GR(z1, 0')) COND3(true, z0, z1) -> c5(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(true, z0, z1) -> c6(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND3(true, z0, z1) -> c7(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), P(z1)) COND3(false, z0, z1) -> c8(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(false, z0, z1) -> c9(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) GR(0', z0) -> c10 GR(s(z0), 0') -> c11 GR(s(z0), s(z1)) -> c12(GR(z0, z1)) OR(false, false) -> c13 OR(true, z0) -> c14 OR(z0, true) -> c15 P(0') -> c16 P(s(z0)) -> c17 cond1(true, z0, z1) -> cond2(gr(z0, 0'), z0, z1) cond2(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1) cond2(false, z0, z1) -> cond3(gr(z1, 0'), z0, z1) cond3(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)) cond3(false, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) or(false, false) -> false or(true, z0) -> true or(z0, true) -> true p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c1:c2:c3:c4 -> c10:c11:c12 -> c COND2 :: true:false -> 0':s -> 0':s -> c1:c2:c3:c4 gr :: 0':s -> 0':s -> true:false 0' :: 0':s GR :: 0':s -> 0':s -> c10:c11:c12 c1 :: c -> c13:c14:c15 -> c10:c11:c12 -> c1:c2:c3:c4 or :: true:false -> true:false -> true:false p :: 0':s -> 0':s OR :: true:false -> true:false -> c13:c14:c15 c2 :: c -> c13:c14:c15 -> c10:c11:c12 -> c1:c2:c3:c4 c3 :: c -> c16:c17 -> c1:c2:c3:c4 P :: 0':s -> c16:c17 false :: true:false c4 :: c5:c6:c7:c8:c9 -> c10:c11:c12 -> c1:c2:c3:c4 COND3 :: true:false -> 0':s -> 0':s -> c5:c6:c7:c8:c9 c5 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c6 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c7 :: c -> c16:c17 -> c5:c6:c7:c8:c9 c8 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c9 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c10 :: c10:c11:c12 s :: 0':s -> 0':s c11 :: c10:c11:c12 c12 :: c10:c11:c12 -> c10:c11:c12 c13 :: c13:c14:c15 c14 :: c13:c14:c15 c15 :: c13:c14:c15 c16 :: c16:c17 c17 :: c16:c17 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 cond3 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 hole_c1_18 :: c hole_true:false2_18 :: true:false hole_0':s3_18 :: 0':s hole_c1:c2:c3:c44_18 :: c1:c2:c3:c4 hole_c10:c11:c125_18 :: c10:c11:c12 hole_c13:c14:c156_18 :: c13:c14:c15 hole_c16:c177_18 :: c16:c17 hole_c5:c6:c7:c8:c98_18 :: c5:c6:c7:c8:c9 hole_cond1:cond2:cond39_18 :: cond1:cond2:cond3 gen_0':s10_18 :: Nat -> 0':s gen_c10:c11:c1211_18 :: Nat -> c10:c11:c12 Lemmas: gr(gen_0':s10_18(n13_18), gen_0':s10_18(n13_18)) -> false, rt in Omega(0) Generator Equations: gen_0':s10_18(0) <=> 0' gen_0':s10_18(+(x, 1)) <=> s(gen_0':s10_18(x)) gen_c10:c11:c1211_18(0) <=> c10 gen_c10:c11:c1211_18(+(x, 1)) <=> c12(gen_c10:c11:c1211_18(x)) The following defined symbols remain to be analysed: GR, COND1, COND2, COND3, cond1, cond2, cond3 They will be analysed ascendingly in the following order: COND1 = COND2 GR < COND1 COND1 = COND3 GR < COND2 COND2 = COND3 GR < COND3 cond1 = cond2 cond1 = cond3 cond2 = cond3 ---------------------------------------- (58) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (59) BOUNDS(n^1, INF) ---------------------------------------- (60) Obligation: Innermost TRS: Rules: COND1(true, z0, z1) -> c(COND2(gr(z0, 0'), z0, z1), GR(z0, 0')) COND2(true, z0, z1) -> c1(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND2(true, z0, z1) -> c2(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND2(true, z0, z1) -> c3(COND1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1), P(z0)) COND2(false, z0, z1) -> c4(COND3(gr(z1, 0'), z0, z1), GR(z1, 0')) COND3(true, z0, z1) -> c5(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(true, z0, z1) -> c6(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND3(true, z0, z1) -> c7(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)), P(z1)) COND3(false, z0, z1) -> c8(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND3(false, z0, z1) -> c9(COND1(or(gr(z0, 0'), gr(z1, 0')), z0, z1), OR(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) GR(0', z0) -> c10 GR(s(z0), 0') -> c11 GR(s(z0), s(z1)) -> c12(GR(z0, z1)) OR(false, false) -> c13 OR(true, z0) -> c14 OR(z0, true) -> c15 P(0') -> c16 P(s(z0)) -> c17 cond1(true, z0, z1) -> cond2(gr(z0, 0'), z0, z1) cond2(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), p(z0), z1) cond2(false, z0, z1) -> cond3(gr(z1, 0'), z0, z1) cond3(true, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, p(z1)) cond3(false, z0, z1) -> cond1(or(gr(z0, 0'), gr(z1, 0')), z0, z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) or(false, false) -> false or(true, z0) -> true or(z0, true) -> true p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c1:c2:c3:c4 -> c10:c11:c12 -> c COND2 :: true:false -> 0':s -> 0':s -> c1:c2:c3:c4 gr :: 0':s -> 0':s -> true:false 0' :: 0':s GR :: 0':s -> 0':s -> c10:c11:c12 c1 :: c -> c13:c14:c15 -> c10:c11:c12 -> c1:c2:c3:c4 or :: true:false -> true:false -> true:false p :: 0':s -> 0':s OR :: true:false -> true:false -> c13:c14:c15 c2 :: c -> c13:c14:c15 -> c10:c11:c12 -> c1:c2:c3:c4 c3 :: c -> c16:c17 -> c1:c2:c3:c4 P :: 0':s -> c16:c17 false :: true:false c4 :: c5:c6:c7:c8:c9 -> c10:c11:c12 -> c1:c2:c3:c4 COND3 :: true:false -> 0':s -> 0':s -> c5:c6:c7:c8:c9 c5 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c6 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c7 :: c -> c16:c17 -> c5:c6:c7:c8:c9 c8 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c9 :: c -> c13:c14:c15 -> c10:c11:c12 -> c5:c6:c7:c8:c9 c10 :: c10:c11:c12 s :: 0':s -> 0':s c11 :: c10:c11:c12 c12 :: c10:c11:c12 -> c10:c11:c12 c13 :: c13:c14:c15 c14 :: c13:c14:c15 c15 :: c13:c14:c15 c16 :: c16:c17 c17 :: c16:c17 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 cond3 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3 hole_c1_18 :: c hole_true:false2_18 :: true:false hole_0':s3_18 :: 0':s hole_c1:c2:c3:c44_18 :: c1:c2:c3:c4 hole_c10:c11:c125_18 :: c10:c11:c12 hole_c13:c14:c156_18 :: c13:c14:c15 hole_c16:c177_18 :: c16:c17 hole_c5:c6:c7:c8:c98_18 :: c5:c6:c7:c8:c9 hole_cond1:cond2:cond39_18 :: cond1:cond2:cond3 gen_0':s10_18 :: Nat -> 0':s gen_c10:c11:c1211_18 :: Nat -> c10:c11:c12 Lemmas: gr(gen_0':s10_18(n13_18), gen_0':s10_18(n13_18)) -> false, rt in Omega(0) GR(gen_0':s10_18(n402_18), gen_0':s10_18(n402_18)) -> gen_c10:c11:c1211_18(n402_18), rt in Omega(1 + n402_18) Generator Equations: gen_0':s10_18(0) <=> 0' gen_0':s10_18(+(x, 1)) <=> s(gen_0':s10_18(x)) gen_c10:c11:c1211_18(0) <=> c10 gen_c10:c11:c1211_18(+(x, 1)) <=> c12(gen_c10:c11:c1211_18(x)) The following defined symbols remain to be analysed: cond2, COND1, COND2, COND3, cond1, cond3 They will be analysed ascendingly in the following order: COND1 = COND2 COND1 = COND3 COND2 = COND3 cond1 = cond2 cond1 = cond3 cond2 = cond3