WORST_CASE(Omega(n^1),O(n^1)) proof of input_siqZKC8ReW.trs # AProVE Commit ID: 5b976082cb74a395683ed8cc7acf94bd611ab29f fuhs 20230524 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 423 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 49 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 542 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 161 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 130 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 314 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 167 ms] (40) CpxRNTS (41) FinalProof [FINISHED, 0 ms] (42) BOUNDS(1, n^1) (43) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CdtProblem (45) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CpxRelTRS (47) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CpxRelTRS (49) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (50) typed CpxTrs (51) OrderProof [LOWER BOUND(ID), 5 ms] (52) typed CpxTrs (53) RewriteLemmaProof [LOWER BOUND(ID), 285 ms] (54) typed CpxTrs (55) RewriteLemmaProof [LOWER BOUND(ID), 172 ms] (56) BEST (57) proven lower bound (58) LowerBoundPropagationProof [FINISHED, 0 ms] (59) BOUNDS(n^1, INF) (60) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) [1] and(true, true) -> true [1] and(x, false) -> false [1] and(false, x) -> false [1] gr(0, 0) -> false [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) [1] and(true, true) -> true [1] and(x, false) -> false [1] and(false, x) -> false [1] gr(0, 0) -> false [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false and :: true:false -> true:false -> true:false gr :: 0:s -> 0:s -> true:false 0 :: 0:s p :: 0:s -> 0:s false :: true:false s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond_3 (c) The following functions are completely defined: and_2 gr_2 p_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) [1] and(true, true) -> true [1] and(x, false) -> false [1] and(false, x) -> false [1] gr(0, 0) -> false [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false and :: true:false -> true:false -> true:false gr :: 0:s -> 0:s -> true:false 0 :: 0:s p :: 0:s -> 0:s false :: true:false s :: 0:s -> 0:s const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] cond(true, 0, s(x'')) -> cond(and(false, true), 0, x'') [5] cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] cond(true, 0, s(x1)) -> cond(and(false, true), 0, x1) [5] cond(true, s(x'), 0) -> cond(and(true, false), x', 0) [5] cond(true, s(x'), 0) -> cond(and(true, false), x', 0) [5] cond(true, s(x'), s(x2)) -> cond(and(true, true), x', x2) [5] and(true, true) -> true [1] and(x, false) -> false [1] and(false, x) -> false [1] gr(0, 0) -> false [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false and :: true:false -> true:false -> true:false gr :: 0:s -> 0:s -> true:false 0 :: 0:s p :: 0:s -> 0:s false :: true:false s :: 0:s -> 0:s const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 cond(z, z', z'') -{ 5 }-> cond(and(1, 1), x', x2) :|: z' = 1 + x', z = 1, x' >= 0, z'' = 1 + x2, x2 >= 0 cond(z, z', z'') -{ 5 }-> cond(and(1, 0), x', 0) :|: z'' = 0, z' = 1 + x', z = 1, x' >= 0 cond(z, z', z'') -{ 5 }-> cond(and(0, 1), 0, x'') :|: z = 1, z'' = 1 + x'', x'' >= 0, z' = 0 cond(z, z', z'') -{ 5 }-> cond(and(0, 1), 0, x1) :|: x1 >= 0, z = 1, z'' = 1 + x1, z' = 0 cond(z, z', z'') -{ 5 }-> cond(and(0, 0), 0, 0) :|: z'' = 0, z = 1, z' = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, x', x2) :|: z' = 1 + x', z = 1, x' >= 0, z'' = 1 + x2, x2 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, x', 0) :|: z'' = 0, z' = 1 + x', z = 1, x' >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, x'') :|: z = 1, z'' = 1 + x'', x'' >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, x1) :|: x1 >= 0, z = 1, z'' = 1 + x1, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { and } { cond } { p } { gr } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {cond}, {p}, {gr} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {cond}, {p}, {gr} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {cond}, {p}, {gr} Previous analysis results are: and: runtime: ?, size: O(1) [1] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond}, {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond}, {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond}, {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: ?, size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: cond after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 24*z + 24*z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: ?, size: O(1) [1] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: gr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [3 + z'], size: O(1) [1] ---------------------------------------- (41) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (42) BOUNDS(1, n^1) ---------------------------------------- (43) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (44) Obligation: Complexity Dependency Tuples Problem Rules: cond(true, z0, z1) -> cond(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)) and(true, true) -> true and(z0, false) -> false and(false, z0) -> false gr(0, 0) -> false gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND(true, z0, z1) -> c(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND(true, z0, z1) -> c1(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), AND(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) COND(true, z0, z1) -> c2(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), P(z0)) COND(true, z0, z1) -> c3(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), P(z1)) AND(true, true) -> c4 AND(z0, false) -> c5 AND(false, z0) -> c6 GR(0, 0) -> c7 GR(0, z0) -> c8 GR(s(z0), 0) -> c9 GR(s(z0), s(z1)) -> c10(GR(z0, z1)) P(0) -> c11 P(s(z0)) -> c12 S tuples: COND(true, z0, z1) -> c(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND(true, z0, z1) -> c1(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), AND(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) COND(true, z0, z1) -> c2(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), P(z0)) COND(true, z0, z1) -> c3(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), P(z1)) AND(true, true) -> c4 AND(z0, false) -> c5 AND(false, z0) -> c6 GR(0, 0) -> c7 GR(0, z0) -> c8 GR(s(z0), 0) -> c9 GR(s(z0), s(z1)) -> c10(GR(z0, z1)) P(0) -> c11 P(s(z0)) -> c12 K tuples:none Defined Rule Symbols: cond_3, and_2, gr_2, p_1 Defined Pair Symbols: COND_3, AND_2, GR_2, P_1 Compound Symbols: c_3, c1_3, c2_2, c3_2, c4, c5, c6, c7, c8, c9, c10_1, c11, c12 ---------------------------------------- (45) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (46) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND(true, z0, z1) -> c(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0)) COND(true, z0, z1) -> c1(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), AND(gr(z0, 0), gr(z1, 0)), GR(z1, 0)) COND(true, z0, z1) -> c2(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), P(z0)) COND(true, z0, z1) -> c3(COND(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)), P(z1)) AND(true, true) -> c4 AND(z0, false) -> c5 AND(false, z0) -> c6 GR(0, 0) -> c7 GR(0, z0) -> c8 GR(s(z0), 0) -> c9 GR(s(z0), s(z1)) -> c10(GR(z0, z1)) P(0) -> c11 P(s(z0)) -> c12 The (relative) TRS S consists of the following rules: cond(true, z0, z1) -> cond(and(gr(z0, 0), gr(z1, 0)), p(z0), p(z1)) and(true, true) -> true and(z0, false) -> false and(false, z0) -> false gr(0, 0) -> false gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (47) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (48) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND(true, z0, z1) -> c(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND(true, z0, z1) -> c1(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND(true, z0, z1) -> c2(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z0)) COND(true, z0, z1) -> c3(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z1)) AND(true, true) -> c4 AND(z0, false) -> c5 AND(false, z0) -> c6 GR(0', 0') -> c7 GR(0', z0) -> c8 GR(s(z0), 0') -> c9 GR(s(z0), s(z1)) -> c10(GR(z0, z1)) P(0') -> c11 P(s(z0)) -> c12 The (relative) TRS S consists of the following rules: cond(true, z0, z1) -> cond(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)) and(true, true) -> true and(z0, false) -> false and(false, z0) -> false gr(0', 0') -> false gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (49) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (50) Obligation: Innermost TRS: Rules: COND(true, z0, z1) -> c(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND(true, z0, z1) -> c1(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND(true, z0, z1) -> c2(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z0)) COND(true, z0, z1) -> c3(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z1)) AND(true, true) -> c4 AND(z0, false) -> c5 AND(false, z0) -> c6 GR(0', 0') -> c7 GR(0', z0) -> c8 GR(s(z0), 0') -> c9 GR(s(z0), s(z1)) -> c10(GR(z0, z1)) P(0') -> c11 P(s(z0)) -> c12 cond(true, z0, z1) -> cond(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)) and(true, true) -> true and(z0, false) -> false and(false, z0) -> false gr(0', 0') -> false gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Types: COND :: true:false -> 0':s -> 0':s -> c:c1:c2:c3 true :: true:false c :: c:c1:c2:c3 -> c4:c5:c6 -> c7:c8:c9:c10 -> c:c1:c2:c3 and :: true:false -> true:false -> true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s AND :: true:false -> true:false -> c4:c5:c6 GR :: 0':s -> 0':s -> c7:c8:c9:c10 c1 :: c:c1:c2:c3 -> c4:c5:c6 -> c7:c8:c9:c10 -> c:c1:c2:c3 c2 :: c:c1:c2:c3 -> c11:c12 -> c:c1:c2:c3 P :: 0':s -> c11:c12 c3 :: c:c1:c2:c3 -> c11:c12 -> c:c1:c2:c3 c4 :: c4:c5:c6 false :: true:false c5 :: c4:c5:c6 c6 :: c4:c5:c6 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 s :: 0':s -> 0':s c9 :: c7:c8:c9:c10 c10 :: c7:c8:c9:c10 -> c7:c8:c9:c10 c11 :: c11:c12 c12 :: c11:c12 cond :: true:false -> 0':s -> 0':s -> cond hole_c:c1:c2:c31_13 :: c:c1:c2:c3 hole_true:false2_13 :: true:false hole_0':s3_13 :: 0':s hole_c4:c5:c64_13 :: c4:c5:c6 hole_c7:c8:c9:c105_13 :: c7:c8:c9:c10 hole_c11:c126_13 :: c11:c12 hole_cond7_13 :: cond gen_c:c1:c2:c38_13 :: Nat -> c:c1:c2:c3 gen_0':s9_13 :: Nat -> 0':s gen_c7:c8:c9:c1010_13 :: Nat -> c7:c8:c9:c10 ---------------------------------------- (51) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: COND, gr, GR, cond They will be analysed ascendingly in the following order: gr < COND GR < COND gr < cond ---------------------------------------- (52) Obligation: Innermost TRS: Rules: COND(true, z0, z1) -> c(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND(true, z0, z1) -> c1(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND(true, z0, z1) -> c2(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z0)) COND(true, z0, z1) -> c3(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z1)) AND(true, true) -> c4 AND(z0, false) -> c5 AND(false, z0) -> c6 GR(0', 0') -> c7 GR(0', z0) -> c8 GR(s(z0), 0') -> c9 GR(s(z0), s(z1)) -> c10(GR(z0, z1)) P(0') -> c11 P(s(z0)) -> c12 cond(true, z0, z1) -> cond(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)) and(true, true) -> true and(z0, false) -> false and(false, z0) -> false gr(0', 0') -> false gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Types: COND :: true:false -> 0':s -> 0':s -> c:c1:c2:c3 true :: true:false c :: c:c1:c2:c3 -> c4:c5:c6 -> c7:c8:c9:c10 -> c:c1:c2:c3 and :: true:false -> true:false -> true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s AND :: true:false -> true:false -> c4:c5:c6 GR :: 0':s -> 0':s -> c7:c8:c9:c10 c1 :: c:c1:c2:c3 -> c4:c5:c6 -> c7:c8:c9:c10 -> c:c1:c2:c3 c2 :: c:c1:c2:c3 -> c11:c12 -> c:c1:c2:c3 P :: 0':s -> c11:c12 c3 :: c:c1:c2:c3 -> c11:c12 -> c:c1:c2:c3 c4 :: c4:c5:c6 false :: true:false c5 :: c4:c5:c6 c6 :: c4:c5:c6 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 s :: 0':s -> 0':s c9 :: c7:c8:c9:c10 c10 :: c7:c8:c9:c10 -> c7:c8:c9:c10 c11 :: c11:c12 c12 :: c11:c12 cond :: true:false -> 0':s -> 0':s -> cond hole_c:c1:c2:c31_13 :: c:c1:c2:c3 hole_true:false2_13 :: true:false hole_0':s3_13 :: 0':s hole_c4:c5:c64_13 :: c4:c5:c6 hole_c7:c8:c9:c105_13 :: c7:c8:c9:c10 hole_c11:c126_13 :: c11:c12 hole_cond7_13 :: cond gen_c:c1:c2:c38_13 :: Nat -> c:c1:c2:c3 gen_0':s9_13 :: Nat -> 0':s gen_c7:c8:c9:c1010_13 :: Nat -> c7:c8:c9:c10 Generator Equations: gen_c:c1:c2:c38_13(0) <=> hole_c:c1:c2:c31_13 gen_c:c1:c2:c38_13(+(x, 1)) <=> c(gen_c:c1:c2:c38_13(x), c4, c7) gen_0':s9_13(0) <=> 0' gen_0':s9_13(+(x, 1)) <=> s(gen_0':s9_13(x)) gen_c7:c8:c9:c1010_13(0) <=> c7 gen_c7:c8:c9:c1010_13(+(x, 1)) <=> c10(gen_c7:c8:c9:c1010_13(x)) The following defined symbols remain to be analysed: gr, COND, GR, cond They will be analysed ascendingly in the following order: gr < COND GR < COND gr < cond ---------------------------------------- (53) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gr(gen_0':s9_13(n12_13), gen_0':s9_13(n12_13)) -> false, rt in Omega(0) Induction Base: gr(gen_0':s9_13(0), gen_0':s9_13(0)) ->_R^Omega(0) false Induction Step: gr(gen_0':s9_13(+(n12_13, 1)), gen_0':s9_13(+(n12_13, 1))) ->_R^Omega(0) gr(gen_0':s9_13(n12_13), gen_0':s9_13(n12_13)) ->_IH false We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (54) Obligation: Innermost TRS: Rules: COND(true, z0, z1) -> c(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND(true, z0, z1) -> c1(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND(true, z0, z1) -> c2(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z0)) COND(true, z0, z1) -> c3(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z1)) AND(true, true) -> c4 AND(z0, false) -> c5 AND(false, z0) -> c6 GR(0', 0') -> c7 GR(0', z0) -> c8 GR(s(z0), 0') -> c9 GR(s(z0), s(z1)) -> c10(GR(z0, z1)) P(0') -> c11 P(s(z0)) -> c12 cond(true, z0, z1) -> cond(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)) and(true, true) -> true and(z0, false) -> false and(false, z0) -> false gr(0', 0') -> false gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Types: COND :: true:false -> 0':s -> 0':s -> c:c1:c2:c3 true :: true:false c :: c:c1:c2:c3 -> c4:c5:c6 -> c7:c8:c9:c10 -> c:c1:c2:c3 and :: true:false -> true:false -> true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s AND :: true:false -> true:false -> c4:c5:c6 GR :: 0':s -> 0':s -> c7:c8:c9:c10 c1 :: c:c1:c2:c3 -> c4:c5:c6 -> c7:c8:c9:c10 -> c:c1:c2:c3 c2 :: c:c1:c2:c3 -> c11:c12 -> c:c1:c2:c3 P :: 0':s -> c11:c12 c3 :: c:c1:c2:c3 -> c11:c12 -> c:c1:c2:c3 c4 :: c4:c5:c6 false :: true:false c5 :: c4:c5:c6 c6 :: c4:c5:c6 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 s :: 0':s -> 0':s c9 :: c7:c8:c9:c10 c10 :: c7:c8:c9:c10 -> c7:c8:c9:c10 c11 :: c11:c12 c12 :: c11:c12 cond :: true:false -> 0':s -> 0':s -> cond hole_c:c1:c2:c31_13 :: c:c1:c2:c3 hole_true:false2_13 :: true:false hole_0':s3_13 :: 0':s hole_c4:c5:c64_13 :: c4:c5:c6 hole_c7:c8:c9:c105_13 :: c7:c8:c9:c10 hole_c11:c126_13 :: c11:c12 hole_cond7_13 :: cond gen_c:c1:c2:c38_13 :: Nat -> c:c1:c2:c3 gen_0':s9_13 :: Nat -> 0':s gen_c7:c8:c9:c1010_13 :: Nat -> c7:c8:c9:c10 Lemmas: gr(gen_0':s9_13(n12_13), gen_0':s9_13(n12_13)) -> false, rt in Omega(0) Generator Equations: gen_c:c1:c2:c38_13(0) <=> hole_c:c1:c2:c31_13 gen_c:c1:c2:c38_13(+(x, 1)) <=> c(gen_c:c1:c2:c38_13(x), c4, c7) gen_0':s9_13(0) <=> 0' gen_0':s9_13(+(x, 1)) <=> s(gen_0':s9_13(x)) gen_c7:c8:c9:c1010_13(0) <=> c7 gen_c7:c8:c9:c1010_13(+(x, 1)) <=> c10(gen_c7:c8:c9:c1010_13(x)) The following defined symbols remain to be analysed: GR, COND, cond They will be analysed ascendingly in the following order: GR < COND ---------------------------------------- (55) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: GR(gen_0':s9_13(n432_13), gen_0':s9_13(n432_13)) -> gen_c7:c8:c9:c1010_13(n432_13), rt in Omega(1 + n432_13) Induction Base: GR(gen_0':s9_13(0), gen_0':s9_13(0)) ->_R^Omega(1) c7 Induction Step: GR(gen_0':s9_13(+(n432_13, 1)), gen_0':s9_13(+(n432_13, 1))) ->_R^Omega(1) c10(GR(gen_0':s9_13(n432_13), gen_0':s9_13(n432_13))) ->_IH c10(gen_c7:c8:c9:c1010_13(c433_13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (56) Complex Obligation (BEST) ---------------------------------------- (57) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: COND(true, z0, z1) -> c(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND(true, z0, z1) -> c1(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND(true, z0, z1) -> c2(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z0)) COND(true, z0, z1) -> c3(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z1)) AND(true, true) -> c4 AND(z0, false) -> c5 AND(false, z0) -> c6 GR(0', 0') -> c7 GR(0', z0) -> c8 GR(s(z0), 0') -> c9 GR(s(z0), s(z1)) -> c10(GR(z0, z1)) P(0') -> c11 P(s(z0)) -> c12 cond(true, z0, z1) -> cond(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)) and(true, true) -> true and(z0, false) -> false and(false, z0) -> false gr(0', 0') -> false gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Types: COND :: true:false -> 0':s -> 0':s -> c:c1:c2:c3 true :: true:false c :: c:c1:c2:c3 -> c4:c5:c6 -> c7:c8:c9:c10 -> c:c1:c2:c3 and :: true:false -> true:false -> true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s AND :: true:false -> true:false -> c4:c5:c6 GR :: 0':s -> 0':s -> c7:c8:c9:c10 c1 :: c:c1:c2:c3 -> c4:c5:c6 -> c7:c8:c9:c10 -> c:c1:c2:c3 c2 :: c:c1:c2:c3 -> c11:c12 -> c:c1:c2:c3 P :: 0':s -> c11:c12 c3 :: c:c1:c2:c3 -> c11:c12 -> c:c1:c2:c3 c4 :: c4:c5:c6 false :: true:false c5 :: c4:c5:c6 c6 :: c4:c5:c6 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 s :: 0':s -> 0':s c9 :: c7:c8:c9:c10 c10 :: c7:c8:c9:c10 -> c7:c8:c9:c10 c11 :: c11:c12 c12 :: c11:c12 cond :: true:false -> 0':s -> 0':s -> cond hole_c:c1:c2:c31_13 :: c:c1:c2:c3 hole_true:false2_13 :: true:false hole_0':s3_13 :: 0':s hole_c4:c5:c64_13 :: c4:c5:c6 hole_c7:c8:c9:c105_13 :: c7:c8:c9:c10 hole_c11:c126_13 :: c11:c12 hole_cond7_13 :: cond gen_c:c1:c2:c38_13 :: Nat -> c:c1:c2:c3 gen_0':s9_13 :: Nat -> 0':s gen_c7:c8:c9:c1010_13 :: Nat -> c7:c8:c9:c10 Lemmas: gr(gen_0':s9_13(n12_13), gen_0':s9_13(n12_13)) -> false, rt in Omega(0) Generator Equations: gen_c:c1:c2:c38_13(0) <=> hole_c:c1:c2:c31_13 gen_c:c1:c2:c38_13(+(x, 1)) <=> c(gen_c:c1:c2:c38_13(x), c4, c7) gen_0':s9_13(0) <=> 0' gen_0':s9_13(+(x, 1)) <=> s(gen_0':s9_13(x)) gen_c7:c8:c9:c1010_13(0) <=> c7 gen_c7:c8:c9:c1010_13(+(x, 1)) <=> c10(gen_c7:c8:c9:c1010_13(x)) The following defined symbols remain to be analysed: GR, COND, cond They will be analysed ascendingly in the following order: GR < COND ---------------------------------------- (58) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (59) BOUNDS(n^1, INF) ---------------------------------------- (60) Obligation: Innermost TRS: Rules: COND(true, z0, z1) -> c(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z0, 0')) COND(true, z0, z1) -> c1(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), AND(gr(z0, 0'), gr(z1, 0')), GR(z1, 0')) COND(true, z0, z1) -> c2(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z0)) COND(true, z0, z1) -> c3(COND(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)), P(z1)) AND(true, true) -> c4 AND(z0, false) -> c5 AND(false, z0) -> c6 GR(0', 0') -> c7 GR(0', z0) -> c8 GR(s(z0), 0') -> c9 GR(s(z0), s(z1)) -> c10(GR(z0, z1)) P(0') -> c11 P(s(z0)) -> c12 cond(true, z0, z1) -> cond(and(gr(z0, 0'), gr(z1, 0')), p(z0), p(z1)) and(true, true) -> true and(z0, false) -> false and(false, z0) -> false gr(0', 0') -> false gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Types: COND :: true:false -> 0':s -> 0':s -> c:c1:c2:c3 true :: true:false c :: c:c1:c2:c3 -> c4:c5:c6 -> c7:c8:c9:c10 -> c:c1:c2:c3 and :: true:false -> true:false -> true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s AND :: true:false -> true:false -> c4:c5:c6 GR :: 0':s -> 0':s -> c7:c8:c9:c10 c1 :: c:c1:c2:c3 -> c4:c5:c6 -> c7:c8:c9:c10 -> c:c1:c2:c3 c2 :: c:c1:c2:c3 -> c11:c12 -> c:c1:c2:c3 P :: 0':s -> c11:c12 c3 :: c:c1:c2:c3 -> c11:c12 -> c:c1:c2:c3 c4 :: c4:c5:c6 false :: true:false c5 :: c4:c5:c6 c6 :: c4:c5:c6 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 s :: 0':s -> 0':s c9 :: c7:c8:c9:c10 c10 :: c7:c8:c9:c10 -> c7:c8:c9:c10 c11 :: c11:c12 c12 :: c11:c12 cond :: true:false -> 0':s -> 0':s -> cond hole_c:c1:c2:c31_13 :: c:c1:c2:c3 hole_true:false2_13 :: true:false hole_0':s3_13 :: 0':s hole_c4:c5:c64_13 :: c4:c5:c6 hole_c7:c8:c9:c105_13 :: c7:c8:c9:c10 hole_c11:c126_13 :: c11:c12 hole_cond7_13 :: cond gen_c:c1:c2:c38_13 :: Nat -> c:c1:c2:c3 gen_0':s9_13 :: Nat -> 0':s gen_c7:c8:c9:c1010_13 :: Nat -> c7:c8:c9:c10 Lemmas: gr(gen_0':s9_13(n12_13), gen_0':s9_13(n12_13)) -> false, rt in Omega(0) GR(gen_0':s9_13(n432_13), gen_0':s9_13(n432_13)) -> gen_c7:c8:c9:c1010_13(n432_13), rt in Omega(1 + n432_13) Generator Equations: gen_c:c1:c2:c38_13(0) <=> hole_c:c1:c2:c31_13 gen_c:c1:c2:c38_13(+(x, 1)) <=> c(gen_c:c1:c2:c38_13(x), c4, c7) gen_0':s9_13(0) <=> 0' gen_0':s9_13(+(x, 1)) <=> s(gen_0':s9_13(x)) gen_c7:c8:c9:c1010_13(0) <=> c7 gen_c7:c8:c9:c1010_13(+(x, 1)) <=> c10(gen_c7:c8:c9:c1010_13(x)) The following defined symbols remain to be analysed: COND, cond