WORST_CASE(Omega(n^1),O(n^2)) proof of input_A5t7ZFHiRX.trs # AProVE Commit ID: 5b976082cb74a395683ed8cc7acf94bd611ab29f fuhs 20230524 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 28 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 2 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 254 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 70 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 151 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 23 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 131 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 75 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 100 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 12 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 1823 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 888 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 168 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) FinalProof [FINISHED, 0 ms] (54) BOUNDS(1, n^2) (55) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (56) CdtProblem (57) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CpxRelTRS (59) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (60) CpxRelTRS (61) TypeInferenceProof [BOTH BOUNDS(ID, ID), 5 ms] (62) typed CpxTrs (63) OrderProof [LOWER BOUND(ID), 0 ms] (64) typed CpxTrs (65) RewriteLemmaProof [LOWER BOUND(ID), 314 ms] (66) BEST (67) proven lower bound (68) LowerBoundPropagationProof [FINISHED, 0 ms] (69) BOUNDS(n^1, INF) (70) typed CpxTrs (71) RewriteLemmaProof [LOWER BOUND(ID), 78 ms] (72) typed CpxTrs (73) RewriteLemmaProof [LOWER BOUND(ID), 53 ms] (74) typed CpxTrs (75) RewriteLemmaProof [LOWER BOUND(ID), 86 ms] (76) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x div(x, y) -> quot(x, y, 0) quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) if(true, x, y, z) -> p(z) if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] plus(0, y) -> y [1] plus(s(x), y) -> plus(x, s(y)) [1] zero(s(x)) -> false [1] zero(0) -> true [1] p(s(x)) -> x [1] div(x, y) -> quot(x, y, 0) [1] quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) [1] if(true, x, y, z) -> p(z) [1] if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] plus(0, y) -> y [1] plus(s(x), y) -> plus(x, s(y)) [1] zero(s(x)) -> false [1] zero(0) -> true [1] p(s(x)) -> x [1] div(x, y) -> quot(x, y, 0) [1] quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) [1] if(true, x, y, z) -> p(z) [1] if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) [1] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s zero :: 0:s -> false:true false :: false:true true :: false:true p :: 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s if :: false:true -> 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: p_1 div_2 quot_3 if_4 (c) The following functions are completely defined: minus_2 zero_1 plus_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] plus(0, y) -> y [1] plus(s(x), y) -> plus(x, s(y)) [1] zero(s(x)) -> false [1] zero(0) -> true [1] p(s(x)) -> x [1] div(x, y) -> quot(x, y, 0) [1] quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) [1] if(true, x, y, z) -> p(z) [1] if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) [1] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s zero :: 0:s -> false:true false :: false:true true :: false:true p :: 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s if :: false:true -> 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] plus(0, y) -> y [1] plus(s(x), y) -> plus(x, s(y)) [1] zero(s(x)) -> false [1] zero(0) -> true [1] p(s(x)) -> x [1] div(x, y) -> quot(x, y, 0) [1] quot(s(x'), y, 0) -> if(false, s(x'), y, s(0)) [3] quot(s(x'), y, s(x'')) -> if(false, s(x'), y, plus(x'', s(s(0)))) [3] quot(0, y, 0) -> if(true, 0, y, s(0)) [3] quot(0, y, s(x1)) -> if(true, 0, y, plus(x1, s(s(0)))) [3] if(true, x, y, z) -> p(z) [1] if(false, 0, s(y), z) -> quot(0, s(y), z) [2] if(false, s(x2), s(y), z) -> quot(minus(x2, y), s(y), z) [2] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s zero :: 0:s -> false:true false :: false:true true :: false:true p :: 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s if :: false:true -> 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 false => 0 true => 1 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(x, y, 0) :|: z' = x, z'' = y, x >= 0, y >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(x2, y), 1 + y, z) :|: z >= 0, z2 = z, y >= 0, z'' = 1 + x2, z1 = 1 + y, x2 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + y, z) :|: z'' = 0, z >= 0, z2 = z, y >= 0, z1 = 1 + y, z' = 0 if(z', z'', z1, z2) -{ 1 }-> p(z) :|: z1 = y, z >= 0, z2 = z, x >= 0, y >= 0, z'' = x, z' = 1 minus(z', z'') -{ 1 }-> x :|: z'' = 0, z' = x, x >= 0 minus(z', z'') -{ 1 }-> minus(x, y) :|: z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y minus(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 p(z') -{ 1 }-> x :|: z' = 1 + x, x >= 0 plus(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(x, 1 + y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, y, plus(x1, 1 + (1 + 0))) :|: x1 >= 0, z'' = y, y >= 0, z1 = 1 + x1, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, y, 1 + 0) :|: z1 = 0, z'' = y, y >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + x', y, plus(x'', 1 + (1 + 0))) :|: z1 = 1 + x'', z' = 1 + x', z'' = y, x' >= 0, y >= 0, x'' >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + x', y, 1 + 0) :|: z1 = 0, z' = 1 + x', z'' = y, x' >= 0, y >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' = 1 + x, x >= 0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: p(z') -{ 1 }-> x :|: z' = 1 + x, x >= 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(x, y, 0) :|: z' = x, z'' = y, x >= 0, y >= 0 if(z', z'', z1, z2) -{ 2 }-> x' :|: z1 = y, z >= 0, z2 = z, x >= 0, y >= 0, z'' = x, z' = 1, z = 1 + x', x' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(x2, y), 1 + y, z) :|: z >= 0, z2 = z, y >= 0, z'' = 1 + x2, z1 = 1 + y, x2 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + y, z) :|: z'' = 0, z >= 0, z2 = z, y >= 0, z1 = 1 + y, z' = 0 minus(z', z'') -{ 1 }-> x :|: z'' = 0, z' = x, x >= 0 minus(z', z'') -{ 1 }-> minus(x, y) :|: z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y minus(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 p(z') -{ 1 }-> x :|: z' = 1 + x, x >= 0 plus(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(x, 1 + y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, y, plus(x1, 1 + (1 + 0))) :|: x1 >= 0, z'' = y, y >= 0, z1 = 1 + x1, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, y, 1 + 0) :|: z1 = 0, z'' = y, y >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + x', y, plus(x'', 1 + (1 + 0))) :|: z1 = 1 + x'', z' = 1 + x', z'' = y, x' >= 0, y >= 0, x'' >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + x', y, 1 + 0) :|: z1 = 0, z' = 1 + x', z'' = y, x' >= 0, y >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' = 1 + x, x >= 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(z'' - 1, z1 - 1), 1 + (z1 - 1), z2) :|: z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { minus } { zero } { plus } { p } { if, quot } { div } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(z'' - 1, z1 - 1), 1 + (z1 - 1), z2) :|: z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {minus}, {zero}, {plus}, {p}, {if,quot}, {div} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(z'' - 1, z1 - 1), 1 + (z1 - 1), z2) :|: z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {minus}, {zero}, {plus}, {p}, {if,quot}, {div} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(z'' - 1, z1 - 1), 1 + (z1 - 1), z2) :|: z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {minus}, {zero}, {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z'' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(z'' - 1, z1 - 1), 1 + (z1 - 1), z2) :|: z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {zero}, {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {zero}, {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: zero after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {zero}, {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: ?, size: O(1) [1] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: zero after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z'' + z2 Computed SIZE bound using CoFloCo for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' + z1 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] if: runtime: ?, size: O(n^1) [1 + z'' + z2] quot: runtime: ?, size: O(n^1) [2 + z' + z1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 18 + 12*z'' + 2*z''*z1 + z''*z2 + z''^2 + 3*z1 + 2*z2 Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 92 + 26*z' + 4*z'*z'' + z'*z1 + 2*z'^2 + 12*z'' + 6*z1 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] if: runtime: O(n^2) [18 + 12*z'' + 2*z''*z1 + z''*z2 + z''^2 + 3*z1 + 2*z2], size: O(n^1) [1 + z'' + z2] quot: runtime: O(n^2) [92 + 26*z' + 4*z'*z'' + z'*z1 + 2*z'^2 + 12*z'' + 6*z1], size: O(n^1) [2 + z' + z1] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 93 + 26*z' + 4*z'*z'' + 2*z'^2 + 12*z'' }-> s3 :|: s3 >= 0, s3 <= z' + 0 + 2, z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 94 + 12*z1 + 6*z2 }-> s8 :|: s8 >= 0, s8 <= 0 + z2 + 2, z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 95 + 26*s' + 4*s'*z1 + s'*z2 + 2*s'^2 + 13*z1 + 6*z2 }-> s9 :|: s9 >= 0, s9 <= s' + z2 + 2, s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 23 + 13*z' + 2*z'*z'' + z'^2 + 3*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + 1 + (1 + (z' - 1)), z1 = 0, z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 21 + 2*s1 + s1*z' + 12*z' + 2*z'*z'' + z'^2 + 3*z'' + z1 }-> s5 :|: s5 >= 0, s5 <= s1 + 1 + (1 + (z' - 1)), s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 23 + 3*z'' }-> s6 :|: s6 >= 0, s6 <= 1 + 0 + 1 + 0, z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 21 + 2*s2 + 3*z'' + z1 }-> s7 :|: s7 >= 0, s7 <= s2 + 1 + 0, s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] if: runtime: O(n^2) [18 + 12*z'' + 2*z''*z1 + z''*z2 + z''^2 + 3*z1 + 2*z2], size: O(n^1) [1 + z'' + z2] quot: runtime: O(n^2) [92 + 26*z' + 4*z'*z'' + z'*z1 + 2*z'^2 + 12*z'' + 6*z1], size: O(n^1) [2 + z' + z1] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 93 + 26*z' + 4*z'*z'' + 2*z'^2 + 12*z'' }-> s3 :|: s3 >= 0, s3 <= z' + 0 + 2, z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 94 + 12*z1 + 6*z2 }-> s8 :|: s8 >= 0, s8 <= 0 + z2 + 2, z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 95 + 26*s' + 4*s'*z1 + s'*z2 + 2*s'^2 + 13*z1 + 6*z2 }-> s9 :|: s9 >= 0, s9 <= s' + z2 + 2, s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 23 + 13*z' + 2*z'*z'' + z'^2 + 3*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + 1 + (1 + (z' - 1)), z1 = 0, z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 21 + 2*s1 + s1*z' + 12*z' + 2*z'*z'' + z'^2 + 3*z'' + z1 }-> s5 :|: s5 >= 0, s5 <= s1 + 1 + (1 + (z' - 1)), s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 23 + 3*z'' }-> s6 :|: s6 >= 0, s6 <= 1 + 0 + 1 + 0, z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 21 + 2*s2 + 3*z'' + z1 }-> s7 :|: s7 >= 0, s7 <= s2 + 1 + 0, s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] if: runtime: O(n^2) [18 + 12*z'' + 2*z''*z1 + z''*z2 + z''^2 + 3*z1 + 2*z2], size: O(n^1) [1 + z'' + z2] quot: runtime: O(n^2) [92 + 26*z' + 4*z'*z'' + z'*z1 + 2*z'^2 + 12*z'' + 6*z1], size: O(n^1) [2 + z' + z1] div: runtime: ?, size: O(n^1) [2 + z'] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 93 + 26*z' + 4*z'*z'' + 2*z'^2 + 12*z'' ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 93 + 26*z' + 4*z'*z'' + 2*z'^2 + 12*z'' }-> s3 :|: s3 >= 0, s3 <= z' + 0 + 2, z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 94 + 12*z1 + 6*z2 }-> s8 :|: s8 >= 0, s8 <= 0 + z2 + 2, z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 95 + 26*s' + 4*s'*z1 + s'*z2 + 2*s'^2 + 13*z1 + 6*z2 }-> s9 :|: s9 >= 0, s9 <= s' + z2 + 2, s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 23 + 13*z' + 2*z'*z'' + z'^2 + 3*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + 1 + (1 + (z' - 1)), z1 = 0, z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 21 + 2*s1 + s1*z' + 12*z' + 2*z'*z'' + z'^2 + 3*z'' + z1 }-> s5 :|: s5 >= 0, s5 <= s1 + 1 + (1 + (z' - 1)), s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 23 + 3*z'' }-> s6 :|: s6 >= 0, s6 <= 1 + 0 + 1 + 0, z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 21 + 2*s2 + 3*z'' + z1 }-> s7 :|: s7 >= 0, s7 <= s2 + 1 + 0, s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] if: runtime: O(n^2) [18 + 12*z'' + 2*z''*z1 + z''*z2 + z''^2 + 3*z1 + 2*z2], size: O(n^1) [1 + z'' + z2] quot: runtime: O(n^2) [92 + 26*z' + 4*z'*z'' + z'*z1 + 2*z'^2 + 12*z'' + 6*z1], size: O(n^1) [2 + z' + z1] div: runtime: O(n^2) [93 + 26*z' + 4*z'*z'' + 2*z'^2 + 12*z''], size: O(n^1) [2 + z'] ---------------------------------------- (53) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (54) BOUNDS(1, n^2) ---------------------------------------- (55) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (56) Obligation: Complexity Dependency Tuples Problem Rules: minus(0, z0) -> 0 minus(z0, 0) -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(0, z0) -> z0 plus(s(z0), z1) -> plus(z0, s(z1)) zero(s(z0)) -> false zero(0) -> true p(s(z0)) -> z0 div(z0, z1) -> quot(z0, z1, 0) quot(z0, z1, z2) -> if(zero(z0), z0, z1, plus(z2, s(0))) if(true, z0, z1, z2) -> p(z2) if(false, z0, s(z1), z2) -> quot(minus(z0, s(z1)), s(z1), z2) Tuples: MINUS(0, z0) -> c MINUS(z0, 0) -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0, z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0) -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0)) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0))), PLUS(z2, s(0))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) S tuples: MINUS(0, z0) -> c MINUS(z0, 0) -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0, z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0) -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0)) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0))), PLUS(z2, s(0))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) K tuples:none Defined Rule Symbols: minus_2, plus_2, zero_1, p_1, div_2, quot_3, if_4 Defined Pair Symbols: MINUS_2, PLUS_2, ZERO_1, P_1, DIV_2, QUOT_3, IF_4 Compound Symbols: c, c1, c2_1, c3, c4_1, c5, c6, c7, c8_1, c9_2, c10_2, c11_1, c12_2 ---------------------------------------- (57) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (58) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: MINUS(0, z0) -> c MINUS(z0, 0) -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0, z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0) -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0)) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0))), PLUS(z2, s(0))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) The (relative) TRS S consists of the following rules: minus(0, z0) -> 0 minus(z0, 0) -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(0, z0) -> z0 plus(s(z0), z1) -> plus(z0, s(z1)) zero(s(z0)) -> false zero(0) -> true p(s(z0)) -> z0 div(z0, z1) -> quot(z0, z1, 0) quot(z0, z1, z2) -> if(zero(z0), z0, z1, plus(z2, s(0))) if(true, z0, z1, z2) -> p(z2) if(false, z0, s(z1), z2) -> quot(minus(z0, s(z1)), s(z1), z2) Rewrite Strategy: INNERMOST ---------------------------------------- (59) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (60) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: MINUS(0', z0) -> c MINUS(z0, 0') -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0') -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0')) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0'))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0'))), PLUS(z2, s(0'))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) The (relative) TRS S consists of the following rules: minus(0', z0) -> 0' minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(0', z0) -> z0 plus(s(z0), z1) -> plus(z0, s(z1)) zero(s(z0)) -> false zero(0') -> true p(s(z0)) -> z0 div(z0, z1) -> quot(z0, z1, 0') quot(z0, z1, z2) -> if(zero(z0), z0, z1, plus(z2, s(0'))) if(true, z0, z1, z2) -> p(z2) if(false, z0, s(z1), z2) -> quot(minus(z0, s(z1)), s(z1), z2) Rewrite Strategy: INNERMOST ---------------------------------------- (61) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (62) Obligation: Innermost TRS: Rules: MINUS(0', z0) -> c MINUS(z0, 0') -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0') -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0')) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0'))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0'))), PLUS(z2, s(0'))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) minus(0', z0) -> 0' minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(0', z0) -> z0 plus(s(z0), z1) -> plus(z0, s(z1)) zero(s(z0)) -> false zero(0') -> true p(s(z0)) -> z0 div(z0, z1) -> quot(z0, z1, 0') quot(z0, z1, z2) -> if(zero(z0), z0, z1, plus(z2, s(0'))) if(true, z0, z1, z2) -> p(z2) if(false, z0, s(z1), z2) -> quot(minus(z0, s(z1)), s(z1), z2) Types: MINUS :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 c1 :: c:c1:c2 s :: 0':s -> 0':s c2 :: c:c1:c2 -> c:c1:c2 PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 ZERO :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 P :: 0':s -> c7 c7 :: c7 DIV :: 0':s -> 0':s -> c8 c8 :: c9:c10 -> c8 QUOT :: 0':s -> 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c5:c6 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> 0':s -> c11:c12 zero :: 0':s -> true:false plus :: 0':s -> 0':s -> 0':s c10 :: c11:c12 -> c3:c4 -> c9:c10 true :: true:false c11 :: c7 -> c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 minus :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_c5:c64_13 :: c5:c6 hole_c75_13 :: c7 hole_c86_13 :: c8 hole_c9:c107_13 :: c9:c10 hole_c11:c128_13 :: c11:c12 hole_true:false9_13 :: true:false gen_c:c1:c210_13 :: Nat -> c:c1:c2 gen_0':s11_13 :: Nat -> 0':s gen_c3:c412_13 :: Nat -> c3:c4 ---------------------------------------- (63) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: MINUS, PLUS, QUOT, plus, minus, quot They will be analysed ascendingly in the following order: MINUS < QUOT PLUS < QUOT plus < QUOT minus < QUOT plus < quot minus < quot ---------------------------------------- (64) Obligation: Innermost TRS: Rules: MINUS(0', z0) -> c MINUS(z0, 0') -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0') -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0')) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0'))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0'))), PLUS(z2, s(0'))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) minus(0', z0) -> 0' minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(0', z0) -> z0 plus(s(z0), z1) -> plus(z0, s(z1)) zero(s(z0)) -> false zero(0') -> true p(s(z0)) -> z0 div(z0, z1) -> quot(z0, z1, 0') quot(z0, z1, z2) -> if(zero(z0), z0, z1, plus(z2, s(0'))) if(true, z0, z1, z2) -> p(z2) if(false, z0, s(z1), z2) -> quot(minus(z0, s(z1)), s(z1), z2) Types: MINUS :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 c1 :: c:c1:c2 s :: 0':s -> 0':s c2 :: c:c1:c2 -> c:c1:c2 PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 ZERO :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 P :: 0':s -> c7 c7 :: c7 DIV :: 0':s -> 0':s -> c8 c8 :: c9:c10 -> c8 QUOT :: 0':s -> 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c5:c6 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> 0':s -> c11:c12 zero :: 0':s -> true:false plus :: 0':s -> 0':s -> 0':s c10 :: c11:c12 -> c3:c4 -> c9:c10 true :: true:false c11 :: c7 -> c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 minus :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_c5:c64_13 :: c5:c6 hole_c75_13 :: c7 hole_c86_13 :: c8 hole_c9:c107_13 :: c9:c10 hole_c11:c128_13 :: c11:c12 hole_true:false9_13 :: true:false gen_c:c1:c210_13 :: Nat -> c:c1:c2 gen_0':s11_13 :: Nat -> 0':s gen_c3:c412_13 :: Nat -> c3:c4 Generator Equations: gen_c:c1:c210_13(0) <=> c gen_c:c1:c210_13(+(x, 1)) <=> c2(gen_c:c1:c210_13(x)) gen_0':s11_13(0) <=> 0' gen_0':s11_13(+(x, 1)) <=> s(gen_0':s11_13(x)) gen_c3:c412_13(0) <=> c3 gen_c3:c412_13(+(x, 1)) <=> c4(gen_c3:c412_13(x)) The following defined symbols remain to be analysed: MINUS, PLUS, QUOT, plus, minus, quot They will be analysed ascendingly in the following order: MINUS < QUOT PLUS < QUOT plus < QUOT minus < QUOT plus < quot minus < quot ---------------------------------------- (65) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: MINUS(gen_0':s11_13(n14_13), gen_0':s11_13(n14_13)) -> gen_c:c1:c210_13(n14_13), rt in Omega(1 + n14_13) Induction Base: MINUS(gen_0':s11_13(0), gen_0':s11_13(0)) ->_R^Omega(1) c Induction Step: MINUS(gen_0':s11_13(+(n14_13, 1)), gen_0':s11_13(+(n14_13, 1))) ->_R^Omega(1) c2(MINUS(gen_0':s11_13(n14_13), gen_0':s11_13(n14_13))) ->_IH c2(gen_c:c1:c210_13(c15_13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (66) Complex Obligation (BEST) ---------------------------------------- (67) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: MINUS(0', z0) -> c MINUS(z0, 0') -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0') -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0')) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0'))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0'))), PLUS(z2, s(0'))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) minus(0', z0) -> 0' minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(0', z0) -> z0 plus(s(z0), z1) -> plus(z0, s(z1)) zero(s(z0)) -> false zero(0') -> true p(s(z0)) -> z0 div(z0, z1) -> quot(z0, z1, 0') quot(z0, z1, z2) -> if(zero(z0), z0, z1, plus(z2, s(0'))) if(true, z0, z1, z2) -> p(z2) if(false, z0, s(z1), z2) -> quot(minus(z0, s(z1)), s(z1), z2) Types: MINUS :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 c1 :: c:c1:c2 s :: 0':s -> 0':s c2 :: c:c1:c2 -> c:c1:c2 PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 ZERO :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 P :: 0':s -> c7 c7 :: c7 DIV :: 0':s -> 0':s -> c8 c8 :: c9:c10 -> c8 QUOT :: 0':s -> 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c5:c6 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> 0':s -> c11:c12 zero :: 0':s -> true:false plus :: 0':s -> 0':s -> 0':s c10 :: c11:c12 -> c3:c4 -> c9:c10 true :: true:false c11 :: c7 -> c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 minus :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_c5:c64_13 :: c5:c6 hole_c75_13 :: c7 hole_c86_13 :: c8 hole_c9:c107_13 :: c9:c10 hole_c11:c128_13 :: c11:c12 hole_true:false9_13 :: true:false gen_c:c1:c210_13 :: Nat -> c:c1:c2 gen_0':s11_13 :: Nat -> 0':s gen_c3:c412_13 :: Nat -> c3:c4 Generator Equations: gen_c:c1:c210_13(0) <=> c gen_c:c1:c210_13(+(x, 1)) <=> c2(gen_c:c1:c210_13(x)) gen_0':s11_13(0) <=> 0' gen_0':s11_13(+(x, 1)) <=> s(gen_0':s11_13(x)) gen_c3:c412_13(0) <=> c3 gen_c3:c412_13(+(x, 1)) <=> c4(gen_c3:c412_13(x)) The following defined symbols remain to be analysed: MINUS, PLUS, QUOT, plus, minus, quot They will be analysed ascendingly in the following order: MINUS < QUOT PLUS < QUOT plus < QUOT minus < QUOT plus < quot minus < quot ---------------------------------------- (68) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (69) BOUNDS(n^1, INF) ---------------------------------------- (70) Obligation: Innermost TRS: Rules: MINUS(0', z0) -> c MINUS(z0, 0') -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0') -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0')) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0'))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0'))), PLUS(z2, s(0'))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) minus(0', z0) -> 0' minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(0', z0) -> z0 plus(s(z0), z1) -> plus(z0, s(z1)) zero(s(z0)) -> false zero(0') -> true p(s(z0)) -> z0 div(z0, z1) -> quot(z0, z1, 0') quot(z0, z1, z2) -> if(zero(z0), z0, z1, plus(z2, s(0'))) if(true, z0, z1, z2) -> p(z2) if(false, z0, s(z1), z2) -> quot(minus(z0, s(z1)), s(z1), z2) Types: MINUS :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 c1 :: c:c1:c2 s :: 0':s -> 0':s c2 :: c:c1:c2 -> c:c1:c2 PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 ZERO :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 P :: 0':s -> c7 c7 :: c7 DIV :: 0':s -> 0':s -> c8 c8 :: c9:c10 -> c8 QUOT :: 0':s -> 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c5:c6 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> 0':s -> c11:c12 zero :: 0':s -> true:false plus :: 0':s -> 0':s -> 0':s c10 :: c11:c12 -> c3:c4 -> c9:c10 true :: true:false c11 :: c7 -> c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 minus :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_c5:c64_13 :: c5:c6 hole_c75_13 :: c7 hole_c86_13 :: c8 hole_c9:c107_13 :: c9:c10 hole_c11:c128_13 :: c11:c12 hole_true:false9_13 :: true:false gen_c:c1:c210_13 :: Nat -> c:c1:c2 gen_0':s11_13 :: Nat -> 0':s gen_c3:c412_13 :: Nat -> c3:c4 Lemmas: MINUS(gen_0':s11_13(n14_13), gen_0':s11_13(n14_13)) -> gen_c:c1:c210_13(n14_13), rt in Omega(1 + n14_13) Generator Equations: gen_c:c1:c210_13(0) <=> c gen_c:c1:c210_13(+(x, 1)) <=> c2(gen_c:c1:c210_13(x)) gen_0':s11_13(0) <=> 0' gen_0':s11_13(+(x, 1)) <=> s(gen_0':s11_13(x)) gen_c3:c412_13(0) <=> c3 gen_c3:c412_13(+(x, 1)) <=> c4(gen_c3:c412_13(x)) The following defined symbols remain to be analysed: PLUS, QUOT, plus, minus, quot They will be analysed ascendingly in the following order: PLUS < QUOT plus < QUOT minus < QUOT plus < quot minus < quot ---------------------------------------- (71) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: PLUS(gen_0':s11_13(n491_13), gen_0':s11_13(b)) -> gen_c3:c412_13(n491_13), rt in Omega(1 + n491_13) Induction Base: PLUS(gen_0':s11_13(0), gen_0':s11_13(b)) ->_R^Omega(1) c3 Induction Step: PLUS(gen_0':s11_13(+(n491_13, 1)), gen_0':s11_13(b)) ->_R^Omega(1) c4(PLUS(gen_0':s11_13(n491_13), s(gen_0':s11_13(b)))) ->_IH c4(gen_c3:c412_13(c492_13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (72) Obligation: Innermost TRS: Rules: MINUS(0', z0) -> c MINUS(z0, 0') -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0') -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0')) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0'))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0'))), PLUS(z2, s(0'))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) minus(0', z0) -> 0' minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(0', z0) -> z0 plus(s(z0), z1) -> plus(z0, s(z1)) zero(s(z0)) -> false zero(0') -> true p(s(z0)) -> z0 div(z0, z1) -> quot(z0, z1, 0') quot(z0, z1, z2) -> if(zero(z0), z0, z1, plus(z2, s(0'))) if(true, z0, z1, z2) -> p(z2) if(false, z0, s(z1), z2) -> quot(minus(z0, s(z1)), s(z1), z2) Types: MINUS :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 c1 :: c:c1:c2 s :: 0':s -> 0':s c2 :: c:c1:c2 -> c:c1:c2 PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 ZERO :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 P :: 0':s -> c7 c7 :: c7 DIV :: 0':s -> 0':s -> c8 c8 :: c9:c10 -> c8 QUOT :: 0':s -> 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c5:c6 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> 0':s -> c11:c12 zero :: 0':s -> true:false plus :: 0':s -> 0':s -> 0':s c10 :: c11:c12 -> c3:c4 -> c9:c10 true :: true:false c11 :: c7 -> c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 minus :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_c5:c64_13 :: c5:c6 hole_c75_13 :: c7 hole_c86_13 :: c8 hole_c9:c107_13 :: c9:c10 hole_c11:c128_13 :: c11:c12 hole_true:false9_13 :: true:false gen_c:c1:c210_13 :: Nat -> c:c1:c2 gen_0':s11_13 :: Nat -> 0':s gen_c3:c412_13 :: Nat -> c3:c4 Lemmas: MINUS(gen_0':s11_13(n14_13), gen_0':s11_13(n14_13)) -> gen_c:c1:c210_13(n14_13), rt in Omega(1 + n14_13) PLUS(gen_0':s11_13(n491_13), gen_0':s11_13(b)) -> gen_c3:c412_13(n491_13), rt in Omega(1 + n491_13) Generator Equations: gen_c:c1:c210_13(0) <=> c gen_c:c1:c210_13(+(x, 1)) <=> c2(gen_c:c1:c210_13(x)) gen_0':s11_13(0) <=> 0' gen_0':s11_13(+(x, 1)) <=> s(gen_0':s11_13(x)) gen_c3:c412_13(0) <=> c3 gen_c3:c412_13(+(x, 1)) <=> c4(gen_c3:c412_13(x)) The following defined symbols remain to be analysed: plus, QUOT, minus, quot They will be analysed ascendingly in the following order: plus < QUOT minus < QUOT plus < quot minus < quot ---------------------------------------- (73) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s11_13(n1206_13), gen_0':s11_13(b)) -> gen_0':s11_13(+(n1206_13, b)), rt in Omega(0) Induction Base: plus(gen_0':s11_13(0), gen_0':s11_13(b)) ->_R^Omega(0) gen_0':s11_13(b) Induction Step: plus(gen_0':s11_13(+(n1206_13, 1)), gen_0':s11_13(b)) ->_R^Omega(0) plus(gen_0':s11_13(n1206_13), s(gen_0':s11_13(b))) ->_IH gen_0':s11_13(+(+(b, 1), c1207_13)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (74) Obligation: Innermost TRS: Rules: MINUS(0', z0) -> c MINUS(z0, 0') -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0') -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0')) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0'))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0'))), PLUS(z2, s(0'))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) minus(0', z0) -> 0' minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(0', z0) -> z0 plus(s(z0), z1) -> plus(z0, s(z1)) zero(s(z0)) -> false zero(0') -> true p(s(z0)) -> z0 div(z0, z1) -> quot(z0, z1, 0') quot(z0, z1, z2) -> if(zero(z0), z0, z1, plus(z2, s(0'))) if(true, z0, z1, z2) -> p(z2) if(false, z0, s(z1), z2) -> quot(minus(z0, s(z1)), s(z1), z2) Types: MINUS :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 c1 :: c:c1:c2 s :: 0':s -> 0':s c2 :: c:c1:c2 -> c:c1:c2 PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 ZERO :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 P :: 0':s -> c7 c7 :: c7 DIV :: 0':s -> 0':s -> c8 c8 :: c9:c10 -> c8 QUOT :: 0':s -> 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c5:c6 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> 0':s -> c11:c12 zero :: 0':s -> true:false plus :: 0':s -> 0':s -> 0':s c10 :: c11:c12 -> c3:c4 -> c9:c10 true :: true:false c11 :: c7 -> c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 minus :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_c5:c64_13 :: c5:c6 hole_c75_13 :: c7 hole_c86_13 :: c8 hole_c9:c107_13 :: c9:c10 hole_c11:c128_13 :: c11:c12 hole_true:false9_13 :: true:false gen_c:c1:c210_13 :: Nat -> c:c1:c2 gen_0':s11_13 :: Nat -> 0':s gen_c3:c412_13 :: Nat -> c3:c4 Lemmas: MINUS(gen_0':s11_13(n14_13), gen_0':s11_13(n14_13)) -> gen_c:c1:c210_13(n14_13), rt in Omega(1 + n14_13) PLUS(gen_0':s11_13(n491_13), gen_0':s11_13(b)) -> gen_c3:c412_13(n491_13), rt in Omega(1 + n491_13) plus(gen_0':s11_13(n1206_13), gen_0':s11_13(b)) -> gen_0':s11_13(+(n1206_13, b)), rt in Omega(0) Generator Equations: gen_c:c1:c210_13(0) <=> c gen_c:c1:c210_13(+(x, 1)) <=> c2(gen_c:c1:c210_13(x)) gen_0':s11_13(0) <=> 0' gen_0':s11_13(+(x, 1)) <=> s(gen_0':s11_13(x)) gen_c3:c412_13(0) <=> c3 gen_c3:c412_13(+(x, 1)) <=> c4(gen_c3:c412_13(x)) The following defined symbols remain to be analysed: minus, QUOT, quot They will be analysed ascendingly in the following order: minus < QUOT minus < quot ---------------------------------------- (75) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s11_13(n2428_13), gen_0':s11_13(n2428_13)) -> gen_0':s11_13(0), rt in Omega(0) Induction Base: minus(gen_0':s11_13(0), gen_0':s11_13(0)) ->_R^Omega(0) 0' Induction Step: minus(gen_0':s11_13(+(n2428_13, 1)), gen_0':s11_13(+(n2428_13, 1))) ->_R^Omega(0) minus(gen_0':s11_13(n2428_13), gen_0':s11_13(n2428_13)) ->_IH gen_0':s11_13(0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (76) Obligation: Innermost TRS: Rules: MINUS(0', z0) -> c MINUS(z0, 0') -> c1 MINUS(s(z0), s(z1)) -> c2(MINUS(z0, z1)) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, s(z1))) ZERO(s(z0)) -> c5 ZERO(0') -> c6 P(s(z0)) -> c7 DIV(z0, z1) -> c8(QUOT(z0, z1, 0')) QUOT(z0, z1, z2) -> c9(IF(zero(z0), z0, z1, plus(z2, s(0'))), ZERO(z0)) QUOT(z0, z1, z2) -> c10(IF(zero(z0), z0, z1, plus(z2, s(0'))), PLUS(z2, s(0'))) IF(true, z0, z1, z2) -> c11(P(z2)) IF(false, z0, s(z1), z2) -> c12(QUOT(minus(z0, s(z1)), s(z1), z2), MINUS(z0, s(z1))) minus(0', z0) -> 0' minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(0', z0) -> z0 plus(s(z0), z1) -> plus(z0, s(z1)) zero(s(z0)) -> false zero(0') -> true p(s(z0)) -> z0 div(z0, z1) -> quot(z0, z1, 0') quot(z0, z1, z2) -> if(zero(z0), z0, z1, plus(z2, s(0'))) if(true, z0, z1, z2) -> p(z2) if(false, z0, s(z1), z2) -> quot(minus(z0, s(z1)), s(z1), z2) Types: MINUS :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 c1 :: c:c1:c2 s :: 0':s -> 0':s c2 :: c:c1:c2 -> c:c1:c2 PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 ZERO :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 P :: 0':s -> c7 c7 :: c7 DIV :: 0':s -> 0':s -> c8 c8 :: c9:c10 -> c8 QUOT :: 0':s -> 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c5:c6 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> 0':s -> c11:c12 zero :: 0':s -> true:false plus :: 0':s -> 0':s -> 0':s c10 :: c11:c12 -> c3:c4 -> c9:c10 true :: true:false c11 :: c7 -> c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 minus :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_c5:c64_13 :: c5:c6 hole_c75_13 :: c7 hole_c86_13 :: c8 hole_c9:c107_13 :: c9:c10 hole_c11:c128_13 :: c11:c12 hole_true:false9_13 :: true:false gen_c:c1:c210_13 :: Nat -> c:c1:c2 gen_0':s11_13 :: Nat -> 0':s gen_c3:c412_13 :: Nat -> c3:c4 Lemmas: MINUS(gen_0':s11_13(n14_13), gen_0':s11_13(n14_13)) -> gen_c:c1:c210_13(n14_13), rt in Omega(1 + n14_13) PLUS(gen_0':s11_13(n491_13), gen_0':s11_13(b)) -> gen_c3:c412_13(n491_13), rt in Omega(1 + n491_13) plus(gen_0':s11_13(n1206_13), gen_0':s11_13(b)) -> gen_0':s11_13(+(n1206_13, b)), rt in Omega(0) minus(gen_0':s11_13(n2428_13), gen_0':s11_13(n2428_13)) -> gen_0':s11_13(0), rt in Omega(0) Generator Equations: gen_c:c1:c210_13(0) <=> c gen_c:c1:c210_13(+(x, 1)) <=> c2(gen_c:c1:c210_13(x)) gen_0':s11_13(0) <=> 0' gen_0':s11_13(+(x, 1)) <=> s(gen_0':s11_13(x)) gen_c3:c412_13(0) <=> c3 gen_c3:c412_13(+(x, 1)) <=> c4(gen_c3:c412_13(x)) The following defined symbols remain to be analysed: QUOT, quot