WORST_CASE(Omega(n^1),O(n^1)) proof of input_XxItRaJM5m.trs # AProVE Commit ID: 5b976082cb74a395683ed8cc7acf94bd611ab29f fuhs 20230524 unpublished The Runtime Complexity (parallel-innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 215 ms] (2) CpxRelTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxWeightedTrs (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedTrs (15) CompletionProof [UPPER BOUND(ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) CompleteCoflocoProof [FINISHED, 588 ms] (20) BOUNDS(1, n^1) (21) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxRelTRS (25) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxRelTRS (27) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (28) typed CpxTrs (29) OrderProof [LOWER BOUND(ID), 12 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 419 ms] (32) BEST (33) proven lower bound (34) LowerBoundPropagationProof [FINISHED, 0 ms] (35) BOUNDS(n^1, INF) (36) typed CpxTrs (37) RewriteLemmaProof [LOWER BOUND(ID), 64 ms] (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 652 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 561 ms] (42) typed CpxTrs (43) RewriteLemmaProof [LOWER BOUND(ID), 75 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 86 ms] (46) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: lt0(Nil, Cons(x', xs)) -> True lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs) g(x, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(x, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False lt0(x, Nil) -> False g(x, Cons(x', xs)) -> g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)) f(x, Cons(x', xs)) -> f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)) number4(n) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(x, y) -> Cons(f(x, y), Cons(g(x, y), Nil)) The (relative) TRS S consists of the following rules: g[Ite][False][Ite](False, Cons(x, xs), y) -> g(xs, Cons(Cons(Nil, Nil), y)) g[Ite][False][Ite](True, x', Cons(x, xs)) -> g(x', xs) f[Ite][False][Ite](False, Cons(x, xs), y) -> f(xs, Cons(Cons(Nil, Nil), y)) f[Ite][False][Ite](True, x', Cons(x, xs)) -> f(x', xs) Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: lt0(Nil, Cons(x', xs)) -> True lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs) g(x, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(x, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False lt0(x, Nil) -> False g(x, Cons(x', xs)) -> g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)) f(x, Cons(x', xs)) -> f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)) number4(n) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(x, y) -> Cons(f(x, y), Cons(g(x, y), Nil)) The (relative) TRS S consists of the following rules: g[Ite][False][Ite](False, Cons(x, xs), y) -> g(xs, Cons(Cons(Nil, Nil), y)) g[Ite][False][Ite](True, x', Cons(x, xs)) -> g(x', xs) f[Ite][False][Ite](False, Cons(x, xs), y) -> f(xs, Cons(Cons(Nil, Nil), y)) f[Ite][False][Ite](True, x', Cons(x, xs)) -> f(x', xs) Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Tuples: G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) S tuples: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) K tuples:none Defined Rule Symbols: lt0_2, g_2, f_2, notEmpty_1, number4_1, goal_2, g[Ite][False][Ite]_3, f[Ite][False][Ite]_3 Defined Pair Symbols: G[ITE][FALSE][ITE]_3, F[ITE][FALSE][ITE]_3, LT0_2, G_2, F_2, NOTEMPTY_1, NUMBER4_1, GOAL_2 Compound Symbols: c_1, c1_1, c2_1, c3_1, c4, c5_1, c6, c7, c8_2, c9, c10_2, c11, c12, c13, c14_1, c15_1 ---------------------------------------- (5) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: GOAL(z0, z1) -> c15(G(z0, z1)) GOAL(z0, z1) -> c14(F(z0, z1)) Removed 5 trailing nodes: NUMBER4(z0) -> c13 LT0(z0, Nil) -> c6 NOTEMPTY(Nil) -> c12 NOTEMPTY(Cons(z0, z1)) -> c11 LT0(Nil, Cons(z0, z1)) -> c4 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Tuples: G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) S tuples: LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) K tuples:none Defined Rule Symbols: lt0_2, g_2, f_2, notEmpty_1, number4_1, goal_2, g[Ite][False][Ite]_3, f[Ite][False][Ite]_3 Defined Pair Symbols: G[ITE][FALSE][ITE]_3, F[ITE][FALSE][ITE]_3, LT0_2, G_2, F_2 Compound Symbols: c_1, c1_1, c2_1, c3_1, c5_1, c7, c8_2, c9, c10_2 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False Tuples: G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) S tuples: LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) K tuples:none Defined Rule Symbols: lt0_2 Defined Pair Symbols: G[ITE][FALSE][ITE]_3, F[ITE][FALSE][ITE]_3, LT0_2, G_2, F_2 Compound Symbols: c_1, c1_1, c2_1, c3_1, c5_1, c7, c8_2, c9, c10_2 ---------------------------------------- (9) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) The (relative) TRS S consists of the following rules: G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False Rewrite Strategy: INNERMOST ---------------------------------------- (11) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) [1] G(z0, Nil) -> c7 [1] G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) [1] F(z0, Nil) -> c9 [1] F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) [1] G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) [0] G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) [0] F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) [0] F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) [0] lt0(Nil, Cons(z0, z1)) -> True [0] lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) [0] lt0(z0, Nil) -> False [0] Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) [1] G(z0, Nil) -> c7 [1] G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) [1] F(z0, Nil) -> c9 [1] F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) [1] G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) [0] G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) [0] F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) [0] F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) [0] lt0(Nil, Cons(z0, z1)) -> True [0] lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) [0] lt0(z0, Nil) -> False [0] The TRS has the following type information: LT0 :: Cons:Nil -> Cons:Nil -> c5 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil c5 :: c5 -> c5 G :: Cons:Nil -> Cons:Nil -> c7:c8 Nil :: Cons:Nil c7 :: c7:c8 c8 :: c:c1 -> c5 -> c7:c8 G[ITE][FALSE][ITE] :: False:True -> Cons:Nil -> Cons:Nil -> c:c1 lt0 :: Cons:Nil -> Cons:Nil -> False:True F :: Cons:Nil -> Cons:Nil -> c9:c10 c9 :: c9:c10 c10 :: c2:c3 -> c5 -> c9:c10 F[ITE][FALSE][ITE] :: False:True -> Cons:Nil -> Cons:Nil -> c2:c3 False :: False:True c :: c7:c8 -> c:c1 True :: False:True c1 :: c7:c8 -> c:c1 c2 :: c9:c10 -> c2:c3 c3 :: c9:c10 -> c2:c3 Rewrite Strategy: INNERMOST ---------------------------------------- (15) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: G[ITE][FALSE][ITE](v0, v1, v2) -> null_G[ITE][FALSE][ITE] [0] F[ITE][FALSE][ITE](v0, v1, v2) -> null_F[ITE][FALSE][ITE] [0] lt0(v0, v1) -> null_lt0 [0] LT0(v0, v1) -> null_LT0 [0] And the following fresh constants: null_G[ITE][FALSE][ITE], null_F[ITE][FALSE][ITE], null_lt0, null_LT0 ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) [1] G(z0, Nil) -> c7 [1] G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) [1] F(z0, Nil) -> c9 [1] F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) [1] G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) [0] G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) [0] F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) [0] F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) [0] lt0(Nil, Cons(z0, z1)) -> True [0] lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) [0] lt0(z0, Nil) -> False [0] G[ITE][FALSE][ITE](v0, v1, v2) -> null_G[ITE][FALSE][ITE] [0] F[ITE][FALSE][ITE](v0, v1, v2) -> null_F[ITE][FALSE][ITE] [0] lt0(v0, v1) -> null_lt0 [0] LT0(v0, v1) -> null_LT0 [0] The TRS has the following type information: LT0 :: Cons:Nil -> Cons:Nil -> c5:null_LT0 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil c5 :: c5:null_LT0 -> c5:null_LT0 G :: Cons:Nil -> Cons:Nil -> c7:c8 Nil :: Cons:Nil c7 :: c7:c8 c8 :: c:c1:null_G[ITE][FALSE][ITE] -> c5:null_LT0 -> c7:c8 G[ITE][FALSE][ITE] :: False:True:null_lt0 -> Cons:Nil -> Cons:Nil -> c:c1:null_G[ITE][FALSE][ITE] lt0 :: Cons:Nil -> Cons:Nil -> False:True:null_lt0 F :: Cons:Nil -> Cons:Nil -> c9:c10 c9 :: c9:c10 c10 :: c2:c3:null_F[ITE][FALSE][ITE] -> c5:null_LT0 -> c9:c10 F[ITE][FALSE][ITE] :: False:True:null_lt0 -> Cons:Nil -> Cons:Nil -> c2:c3:null_F[ITE][FALSE][ITE] False :: False:True:null_lt0 c :: c7:c8 -> c:c1:null_G[ITE][FALSE][ITE] True :: False:True:null_lt0 c1 :: c7:c8 -> c:c1:null_G[ITE][FALSE][ITE] c2 :: c9:c10 -> c2:c3:null_F[ITE][FALSE][ITE] c3 :: c9:c10 -> c2:c3:null_F[ITE][FALSE][ITE] null_G[ITE][FALSE][ITE] :: c:c1:null_G[ITE][FALSE][ITE] null_F[ITE][FALSE][ITE] :: c2:c3:null_F[ITE][FALSE][ITE] null_lt0 :: False:True:null_lt0 null_LT0 :: c5:null_LT0 Rewrite Strategy: INNERMOST ---------------------------------------- (17) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 c7 => 0 c9 => 0 False => 1 True => 2 null_G[ITE][FALSE][ITE] => 0 null_F[ITE][FALSE][ITE] => 0 null_lt0 => 0 null_LT0 => 0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 0 :|: z = z0, z0 >= 0, z' = 0 F(z, z') -{ 1 }-> 1 + F[ITE][FALSE][ITE](lt0(z0, 1 + 0 + 0), z0, 1 + z1 + z2) + LT0(z0, 1 + 0 + 0) :|: z = z0, z1 >= 0, z' = 1 + z1 + z2, z0 >= 0, z2 >= 0 F[ITE][FALSE][ITE](z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 F[ITE][FALSE][ITE](z, z', z'') -{ 0 }-> 1 + F(z0, z2) :|: z = 2, z1 >= 0, z'' = 1 + z1 + z2, z0 >= 0, z' = z0, z2 >= 0 F[ITE][FALSE][ITE](z, z', z'') -{ 0 }-> 1 + F(z1, 1 + (1 + 0 + 0) + z2) :|: z'' = z2, z' = 1 + z0 + z1, z1 >= 0, z = 1, z0 >= 0, z2 >= 0 G(z, z') -{ 1 }-> 0 :|: z = z0, z0 >= 0, z' = 0 G(z, z') -{ 1 }-> 1 + G[ITE][FALSE][ITE](lt0(z0, 1 + 0 + 0), z0, 1 + z1 + z2) + LT0(z0, 1 + 0 + 0) :|: z = z0, z1 >= 0, z' = 1 + z1 + z2, z0 >= 0, z2 >= 0 G[ITE][FALSE][ITE](z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 G[ITE][FALSE][ITE](z, z', z'') -{ 0 }-> 1 + G(z0, z2) :|: z = 2, z1 >= 0, z'' = 1 + z1 + z2, z0 >= 0, z' = z0, z2 >= 0 G[ITE][FALSE][ITE](z, z', z'') -{ 0 }-> 1 + G(z1, 1 + (1 + 0 + 0) + z2) :|: z'' = z2, z' = 1 + z0 + z1, z1 >= 0, z = 1, z0 >= 0, z2 >= 0 LT0(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 LT0(z, z') -{ 1 }-> 1 + LT0(z1, z3) :|: z1 >= 0, z' = 1 + z2 + z3, z0 >= 0, z = 1 + z0 + z1, z2 >= 0, z3 >= 0 lt0(z, z') -{ 0 }-> lt0(z1, z3) :|: z1 >= 0, z' = 1 + z2 + z3, z0 >= 0, z = 1 + z0 + z1, z2 >= 0, z3 >= 0 lt0(z, z') -{ 0 }-> 2 :|: z' = 1 + z0 + z1, z1 >= 0, z0 >= 0, z = 0 lt0(z, z') -{ 0 }-> 1 :|: z = z0, z0 >= 0, z' = 0 lt0(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (19) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V15),0,[fun(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V15),0,[fun1(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V15),0,[fun3(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V15),0,[fun2(V1, V, V15, Out)],[V1 >= 0,V >= 0,V15 >= 0]). eq(start(V1, V, V15),0,[fun4(V1, V, V15, Out)],[V1 >= 0,V >= 0,V15 >= 0]). eq(start(V1, V, V15),0,[lt0(V1, V, Out)],[V1 >= 0,V >= 0]). eq(fun(V1, V, Out),1,[fun(V2, V4, Ret1)],[Out = 1 + Ret1,V2 >= 0,V = 1 + V4 + V5,V3 >= 0,V1 = 1 + V2 + V3,V5 >= 0,V4 >= 0]). eq(fun1(V1, V, Out),1,[],[Out = 0,V1 = V6,V6 >= 0,V = 0]). eq(fun1(V1, V, Out),1,[lt0(V9, 1 + 0 + 0, Ret010),fun2(Ret010, V9, 1 + V8 + V7, Ret01),fun(V9, 1 + 0 + 0, Ret11)],[Out = 1 + Ret01 + Ret11,V1 = V9,V8 >= 0,V = 1 + V7 + V8,V9 >= 0,V7 >= 0]). eq(fun3(V1, V, Out),1,[],[Out = 0,V1 = V10,V10 >= 0,V = 0]). eq(fun3(V1, V, Out),1,[lt0(V11, 1 + 0 + 0, Ret0101),fun4(Ret0101, V11, 1 + V13 + V12, Ret011),fun(V11, 1 + 0 + 0, Ret12)],[Out = 1 + Ret011 + Ret12,V1 = V11,V13 >= 0,V = 1 + V12 + V13,V11 >= 0,V12 >= 0]). eq(fun2(V1, V, V15, Out),0,[fun1(V17, 1 + (1 + 0 + 0) + V16, Ret13)],[Out = 1 + Ret13,V15 = V16,V = 1 + V14 + V17,V17 >= 0,V1 = 1,V14 >= 0,V16 >= 0]). eq(fun2(V1, V, V15, Out),0,[fun1(V19, V20, Ret14)],[Out = 1 + Ret14,V1 = 2,V18 >= 0,V15 = 1 + V18 + V20,V19 >= 0,V = V19,V20 >= 0]). eq(fun4(V1, V, V15, Out),0,[fun3(V22, 1 + (1 + 0 + 0) + V21, Ret15)],[Out = 1 + Ret15,V15 = V21,V = 1 + V22 + V23,V22 >= 0,V1 = 1,V23 >= 0,V21 >= 0]). eq(fun4(V1, V, V15, Out),0,[fun3(V26, V24, Ret16)],[Out = 1 + Ret16,V1 = 2,V25 >= 0,V15 = 1 + V24 + V25,V26 >= 0,V = V26,V24 >= 0]). eq(lt0(V1, V, Out),0,[],[Out = 2,V = 1 + V27 + V28,V28 >= 0,V27 >= 0,V1 = 0]). eq(lt0(V1, V, Out),0,[lt0(V32, V31, Ret)],[Out = Ret,V32 >= 0,V = 1 + V29 + V31,V30 >= 0,V1 = 1 + V30 + V32,V29 >= 0,V31 >= 0]). eq(lt0(V1, V, Out),0,[],[Out = 1,V1 = V33,V33 >= 0,V = 0]). eq(fun2(V1, V, V15, Out),0,[],[Out = 0,V35 >= 0,V15 = V36,V34 >= 0,V1 = V35,V = V34,V36 >= 0]). eq(fun4(V1, V, V15, Out),0,[],[Out = 0,V39 >= 0,V15 = V37,V38 >= 0,V1 = V39,V = V38,V37 >= 0]). eq(lt0(V1, V, Out),0,[],[Out = 0,V41 >= 0,V40 >= 0,V1 = V41,V = V40]). eq(fun(V1, V, Out),0,[],[Out = 0,V42 >= 0,V43 >= 0,V1 = V42,V = V43]). input_output_vars(fun(V1,V,Out),[V1,V],[Out]). input_output_vars(fun1(V1,V,Out),[V1,V],[Out]). input_output_vars(fun3(V1,V,Out),[V1,V],[Out]). input_output_vars(fun2(V1,V,V15,Out),[V1,V,V15],[Out]). input_output_vars(fun4(V1,V,V15,Out),[V1,V,V15],[Out]). input_output_vars(lt0(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [fun/3] 1. recursive : [lt0/3] 2. recursive [non_tail] : [fun1/3,fun2/4] 3. recursive [non_tail] : [fun3/3,fun4/4] 4. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into fun/3 1. SCC is partially evaluated into lt0/3 2. SCC is partially evaluated into fun1/3 3. SCC is partially evaluated into fun3/3 4. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations fun/3 * CE 19 is refined into CE [24] * CE 18 is refined into CE [25] ### Cost equations --> "Loop" of fun/3 * CEs [25] --> Loop 17 * CEs [24] --> Loop 18 ### Ranking functions of CR fun(V1,V,Out) * RF of phase [17]: [V,V1] #### Partial ranking functions of CR fun(V1,V,Out) * Partial RF of phase [17]: - RF of loop [17:1]: V V1 ### Specialization of cost equations lt0/3 * CE 23 is refined into CE [26] * CE 22 is refined into CE [27] * CE 20 is refined into CE [28] * CE 21 is refined into CE [29] ### Cost equations --> "Loop" of lt0/3 * CEs [29] --> Loop 19 * CEs [26] --> Loop 20 * CEs [27] --> Loop 21 * CEs [28] --> Loop 22 ### Ranking functions of CR lt0(V1,V,Out) * RF of phase [19]: [V,V1] #### Partial ranking functions of CR lt0(V1,V,Out) * Partial RF of phase [19]: - RF of loop [19:1]: V V1 ### Specialization of cost equations fun1/3 * CE 14 is refined into CE [30,31,32,33,34] * CE 17 is refined into CE [35] * CE 16 is refined into CE [36,37] * CE 15 is refined into CE [38] ### Cost equations --> "Loop" of fun1/3 * CEs [37] --> Loop 23 * CEs [36] --> Loop 24 * CEs [38] --> Loop 25 * CEs [32,34] --> Loop 26 * CEs [35] --> Loop 27 * CEs [30,31,33] --> Loop 28 ### Ranking functions of CR fun1(V1,V,Out) * RF of phase [23,24]: [V1] * RF of phase [25]: [V] #### Partial ranking functions of CR fun1(V1,V,Out) * Partial RF of phase [23,24]: - RF of loop [23:1,24:1]: V1 * Partial RF of phase [25]: - RF of loop [25:1]: V ### Specialization of cost equations fun3/3 * CE 10 is refined into CE [39,40,41,42,43] * CE 13 is refined into CE [44] * CE 12 is refined into CE [45,46] * CE 11 is refined into CE [47] ### Cost equations --> "Loop" of fun3/3 * CEs [46] --> Loop 29 * CEs [45] --> Loop 30 * CEs [47] --> Loop 31 * CEs [41,43] --> Loop 32 * CEs [44] --> Loop 33 * CEs [39,40,42] --> Loop 34 ### Ranking functions of CR fun3(V1,V,Out) * RF of phase [29,30]: [V1] * RF of phase [31]: [V] #### Partial ranking functions of CR fun3(V1,V,Out) * Partial RF of phase [29,30]: - RF of loop [29:1,30:1]: V1 * Partial RF of phase [31]: - RF of loop [31:1]: V ### Specialization of cost equations start/3 * CE 2 is refined into CE [48,49,50,51,52,53] * CE 4 is refined into CE [54,55,56,57,58,59] * CE 1 is refined into CE [60] * CE 3 is refined into CE [61,62,63,64,65] * CE 5 is refined into CE [66,67,68,69,70] * CE 6 is refined into CE [71,72] * CE 7 is refined into CE [73,74,75,76,77,78] * CE 8 is refined into CE [79,80,81,82,83,84] * CE 9 is refined into CE [85,86,87,88,89] ### Cost equations --> "Loop" of start/3 * CEs [74,80,86] --> Loop 35 * CEs [48,49,50,51,52,53,54,55,56,57,58,59] --> Loop 36 * CEs [61,62,63,64,65,66,67,68,69,70] --> Loop 37 * CEs [60,71,72,73,75,76,77,78,79,81,82,83,84,85,87,88,89] --> Loop 38 ### Ranking functions of CR start(V1,V,V15) #### Partial ranking functions of CR start(V1,V,V15) Computing Bounds ===================================== #### Cost of chains of fun(V1,V,Out): * Chain [[17],18]: 1*it(17)+0 Such that:it(17) =< V with precondition: [Out>=1,V1>=Out,V>=Out] * Chain [18]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of lt0(V1,V,Out): * Chain [[19],22]: 0 with precondition: [Out=2,V1>=1,V>=2] * Chain [[19],21]: 0 with precondition: [Out=1,V1>=1,V>=1] * Chain [[19],20]: 0 with precondition: [Out=0,V1>=1,V>=1] * Chain [22]: 0 with precondition: [V1=0,Out=2,V>=1] * Chain [21]: 0 with precondition: [V=0,Out=1,V1>=0] * Chain [20]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun1(V1,V,Out): * Chain [[25],28]: 1*it(25)+1 Such that:it(25) =< V with precondition: [V1=0,Out>=3,2*V>=Out+1] * Chain [[25],27]: 1*it(25)+1 Such that:it(25) =< V with precondition: [V1=0,Out>=2,2*V>=Out] * Chain [[23,24],[25],28]: 3*it(23)+1*it(25)+1 Such that:it(25) =< 2*V1+V aux(4) =< V1 it(23) =< aux(4) with precondition: [V1>=1,V>=1,Out>=5,2*V+7*V1>=Out+1] * Chain [[23,24],[25],27]: 3*it(23)+1*it(25)+1 Such that:it(25) =< 2*V1+V aux(5) =< V1 it(23) =< aux(5) with precondition: [V1>=1,V>=1,Out>=4,2*V+7*V1>=Out] * Chain [[23,24],28]: 3*it(23)+1 Such that:aux(6) =< V1 it(23) =< aux(6) with precondition: [V1>=1,V>=1,Out>=3,3*V1+1>=Out] * Chain [[23,24],26]: 3*it(23)+3 Such that:aux(8) =< V1 it(23) =< aux(8) with precondition: [V1>=2,V>=1,Out>=4,3*V1>=Out+1] * Chain [28]: 1 with precondition: [Out=1,V1>=0,V>=1] * Chain [27]: 1 with precondition: [V=0,Out=0,V1>=0] * Chain [26]: 3 with precondition: [Out=2,V1>=1,V>=1] #### Cost of chains of fun3(V1,V,Out): * Chain [[31],34]: 1*it(31)+1 Such that:it(31) =< V with precondition: [V1=0,Out>=3,2*V>=Out+1] * Chain [[31],33]: 1*it(31)+1 Such that:it(31) =< V with precondition: [V1=0,Out>=2,2*V>=Out] * Chain [[29,30],[31],34]: 3*it(29)+1*it(31)+1 Such that:it(31) =< 2*V1+V aux(16) =< V1 it(29) =< aux(16) with precondition: [V1>=1,V>=1,Out>=5,2*V+7*V1>=Out+1] * Chain [[29,30],[31],33]: 3*it(29)+1*it(31)+1 Such that:it(31) =< 2*V1+V aux(17) =< V1 it(29) =< aux(17) with precondition: [V1>=1,V>=1,Out>=4,2*V+7*V1>=Out] * Chain [[29,30],34]: 3*it(29)+1 Such that:aux(18) =< V1 it(29) =< aux(18) with precondition: [V1>=1,V>=1,Out>=3,3*V1+1>=Out] * Chain [[29,30],32]: 3*it(29)+3 Such that:aux(20) =< V1 it(29) =< aux(20) with precondition: [V1>=2,V>=1,Out>=4,3*V1>=Out+1] * Chain [34]: 1 with precondition: [Out=1,V1>=0,V>=1] * Chain [33]: 1 with precondition: [V=0,Out=0,V1>=0] * Chain [32]: 3 with precondition: [Out=2,V1>=1,V>=1] #### Cost of chains of start(V1,V,V15): * Chain [38]: 5*s(35)+24*s(39)+4*s(42)+3 Such that:aux(25) =< V1 aux(26) =< 2*V1+V aux(27) =< V s(35) =< aux(27) s(39) =< aux(25) s(42) =< aux(26) with precondition: [V1>=0,V>=0] * Chain [37]: 4*s(53)+24*s(55)+4*s(58)+3 Such that:aux(28) =< V aux(29) =< 2*V+V15 aux(30) =< V15+2 s(55) =< aux(28) s(58) =< aux(29) s(53) =< aux(30) with precondition: [V1=1,V>=1,V15>=0] * Chain [36]: 4*s(69)+24*s(71)+4*s(74)+3 Such that:aux(31) =< V aux(32) =< 2*V+V15 aux(33) =< V15 s(71) =< aux(31) s(74) =< aux(32) s(69) =< aux(33) with precondition: [V1=2,V>=0,V15>=1] * Chain [35]: 1 with precondition: [V=0,V1>=0] Closed-form bounds of start(V1,V,V15): ------------------------------------- * Chain [38] with precondition: [V1>=0,V>=0] - Upper bound: 32*V1+9*V+3 - Complexity: n * Chain [37] with precondition: [V1=1,V>=1,V15>=0] - Upper bound: 32*V+8*V15+11 - Complexity: n * Chain [36] with precondition: [V1=2,V>=0,V15>=1] - Upper bound: 32*V+8*V15+3 - Complexity: n * Chain [35] with precondition: [V=0,V1>=0] - Upper bound: 1 - Complexity: constant ### Maximum cost of start(V1,V,V15): 5*V+2+max([32*V1+4*V,nat(2*V+V15)*4+19*V+max([nat(V15)*4,nat(V15+2)*4])])+1 Asymptotic class: n * Total analysis performed in 523 ms. ---------------------------------------- (20) BOUNDS(1, n^1) ---------------------------------------- (21) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Tuples: G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) S tuples: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) K tuples:none Defined Rule Symbols: lt0_2, g_2, f_2, notEmpty_1, number4_1, goal_2, g[Ite][False][Ite]_3, f[Ite][False][Ite]_3 Defined Pair Symbols: G[ITE][FALSE][ITE]_3, F[ITE][FALSE][ITE]_3, LT0_2, G_2, F_2, NOTEMPTY_1, NUMBER4_1, GOAL_2 Compound Symbols: c_1, c1_1, c2_1, c3_1, c4, c5_1, c6, c7, c8_2, c9, c10_2, c11, c12, c13, c14_1, c15_1 ---------------------------------------- (23) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (24) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) The (relative) TRS S consists of the following rules: G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Rewrite Strategy: INNERMOST ---------------------------------------- (25) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) The (relative) TRS S consists of the following rules: G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Rewrite Strategy: INNERMOST ---------------------------------------- (27) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (28) Obligation: Innermost TRS: Rules: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Types: LT0 :: Nil:Cons -> Nil:Cons -> c4:c5:c6 Nil :: Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons c4 :: c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 c6 :: c4:c5:c6 G :: Nil:Cons -> Nil:Cons -> c7:c8 c7 :: c7:c8 c8 :: c:c1 -> c4:c5:c6 -> c7:c8 G[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c:c1 lt0 :: Nil:Cons -> Nil:Cons -> False:True F :: Nil:Cons -> Nil:Cons -> c9:c10 c9 :: c9:c10 c10 :: c2:c3 -> c4:c5:c6 -> c9:c10 F[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c2:c3 NOTEMPTY :: Nil:Cons -> c11:c12 c11 :: c11:c12 c12 :: c11:c12 NUMBER4 :: a -> c13 c13 :: c13 GOAL :: Nil:Cons -> Nil:Cons -> c14:c15 c14 :: c9:c10 -> c14:c15 c15 :: c7:c8 -> c14:c15 False :: False:True c :: c7:c8 -> c:c1 True :: False:True c1 :: c7:c8 -> c:c1 c2 :: c9:c10 -> c2:c3 c3 :: c9:c10 -> c2:c3 g[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons g :: Nil:Cons -> Nil:Cons -> Nil:Cons f[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons f :: Nil:Cons -> Nil:Cons -> Nil:Cons notEmpty :: Nil:Cons -> False:True number4 :: b -> Nil:Cons goal :: Nil:Cons -> Nil:Cons -> Nil:Cons hole_c4:c5:c61_16 :: c4:c5:c6 hole_Nil:Cons2_16 :: Nil:Cons hole_c7:c83_16 :: c7:c8 hole_c:c14_16 :: c:c1 hole_False:True5_16 :: False:True hole_c9:c106_16 :: c9:c10 hole_c2:c37_16 :: c2:c3 hole_c11:c128_16 :: c11:c12 hole_c139_16 :: c13 hole_a10_16 :: a hole_c14:c1511_16 :: c14:c15 hole_b12_16 :: b gen_c4:c5:c613_16 :: Nat -> c4:c5:c6 gen_Nil:Cons14_16 :: Nat -> Nil:Cons ---------------------------------------- (29) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: LT0, G, lt0, F, g, f They will be analysed ascendingly in the following order: LT0 < G LT0 < F lt0 < G lt0 < F lt0 < g lt0 < f ---------------------------------------- (30) Obligation: Innermost TRS: Rules: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Types: LT0 :: Nil:Cons -> Nil:Cons -> c4:c5:c6 Nil :: Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons c4 :: c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 c6 :: c4:c5:c6 G :: Nil:Cons -> Nil:Cons -> c7:c8 c7 :: c7:c8 c8 :: c:c1 -> c4:c5:c6 -> c7:c8 G[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c:c1 lt0 :: Nil:Cons -> Nil:Cons -> False:True F :: Nil:Cons -> Nil:Cons -> c9:c10 c9 :: c9:c10 c10 :: c2:c3 -> c4:c5:c6 -> c9:c10 F[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c2:c3 NOTEMPTY :: Nil:Cons -> c11:c12 c11 :: c11:c12 c12 :: c11:c12 NUMBER4 :: a -> c13 c13 :: c13 GOAL :: Nil:Cons -> Nil:Cons -> c14:c15 c14 :: c9:c10 -> c14:c15 c15 :: c7:c8 -> c14:c15 False :: False:True c :: c7:c8 -> c:c1 True :: False:True c1 :: c7:c8 -> c:c1 c2 :: c9:c10 -> c2:c3 c3 :: c9:c10 -> c2:c3 g[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons g :: Nil:Cons -> Nil:Cons -> Nil:Cons f[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons f :: Nil:Cons -> Nil:Cons -> Nil:Cons notEmpty :: Nil:Cons -> False:True number4 :: b -> Nil:Cons goal :: Nil:Cons -> Nil:Cons -> Nil:Cons hole_c4:c5:c61_16 :: c4:c5:c6 hole_Nil:Cons2_16 :: Nil:Cons hole_c7:c83_16 :: c7:c8 hole_c:c14_16 :: c:c1 hole_False:True5_16 :: False:True hole_c9:c106_16 :: c9:c10 hole_c2:c37_16 :: c2:c3 hole_c11:c128_16 :: c11:c12 hole_c139_16 :: c13 hole_a10_16 :: a hole_c14:c1511_16 :: c14:c15 hole_b12_16 :: b gen_c4:c5:c613_16 :: Nat -> c4:c5:c6 gen_Nil:Cons14_16 :: Nat -> Nil:Cons Generator Equations: gen_c4:c5:c613_16(0) <=> c4 gen_c4:c5:c613_16(+(x, 1)) <=> c5(gen_c4:c5:c613_16(x)) gen_Nil:Cons14_16(0) <=> Nil gen_Nil:Cons14_16(+(x, 1)) <=> Cons(Nil, gen_Nil:Cons14_16(x)) The following defined symbols remain to be analysed: LT0, G, lt0, F, g, f They will be analysed ascendingly in the following order: LT0 < G LT0 < F lt0 < G lt0 < F lt0 < g lt0 < f ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LT0(gen_Nil:Cons14_16(n16_16), gen_Nil:Cons14_16(+(1, n16_16))) -> gen_c4:c5:c613_16(n16_16), rt in Omega(1 + n16_16) Induction Base: LT0(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(+(1, 0))) ->_R^Omega(1) c4 Induction Step: LT0(gen_Nil:Cons14_16(+(n16_16, 1)), gen_Nil:Cons14_16(+(1, +(n16_16, 1)))) ->_R^Omega(1) c5(LT0(gen_Nil:Cons14_16(n16_16), gen_Nil:Cons14_16(+(1, n16_16)))) ->_IH c5(gen_c4:c5:c613_16(c17_16)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) Complex Obligation (BEST) ---------------------------------------- (33) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Types: LT0 :: Nil:Cons -> Nil:Cons -> c4:c5:c6 Nil :: Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons c4 :: c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 c6 :: c4:c5:c6 G :: Nil:Cons -> Nil:Cons -> c7:c8 c7 :: c7:c8 c8 :: c:c1 -> c4:c5:c6 -> c7:c8 G[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c:c1 lt0 :: Nil:Cons -> Nil:Cons -> False:True F :: Nil:Cons -> Nil:Cons -> c9:c10 c9 :: c9:c10 c10 :: c2:c3 -> c4:c5:c6 -> c9:c10 F[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c2:c3 NOTEMPTY :: Nil:Cons -> c11:c12 c11 :: c11:c12 c12 :: c11:c12 NUMBER4 :: a -> c13 c13 :: c13 GOAL :: Nil:Cons -> Nil:Cons -> c14:c15 c14 :: c9:c10 -> c14:c15 c15 :: c7:c8 -> c14:c15 False :: False:True c :: c7:c8 -> c:c1 True :: False:True c1 :: c7:c8 -> c:c1 c2 :: c9:c10 -> c2:c3 c3 :: c9:c10 -> c2:c3 g[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons g :: Nil:Cons -> Nil:Cons -> Nil:Cons f[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons f :: Nil:Cons -> Nil:Cons -> Nil:Cons notEmpty :: Nil:Cons -> False:True number4 :: b -> Nil:Cons goal :: Nil:Cons -> Nil:Cons -> Nil:Cons hole_c4:c5:c61_16 :: c4:c5:c6 hole_Nil:Cons2_16 :: Nil:Cons hole_c7:c83_16 :: c7:c8 hole_c:c14_16 :: c:c1 hole_False:True5_16 :: False:True hole_c9:c106_16 :: c9:c10 hole_c2:c37_16 :: c2:c3 hole_c11:c128_16 :: c11:c12 hole_c139_16 :: c13 hole_a10_16 :: a hole_c14:c1511_16 :: c14:c15 hole_b12_16 :: b gen_c4:c5:c613_16 :: Nat -> c4:c5:c6 gen_Nil:Cons14_16 :: Nat -> Nil:Cons Generator Equations: gen_c4:c5:c613_16(0) <=> c4 gen_c4:c5:c613_16(+(x, 1)) <=> c5(gen_c4:c5:c613_16(x)) gen_Nil:Cons14_16(0) <=> Nil gen_Nil:Cons14_16(+(x, 1)) <=> Cons(Nil, gen_Nil:Cons14_16(x)) The following defined symbols remain to be analysed: LT0, G, lt0, F, g, f They will be analysed ascendingly in the following order: LT0 < G LT0 < F lt0 < G lt0 < F lt0 < g lt0 < f ---------------------------------------- (34) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (35) BOUNDS(n^1, INF) ---------------------------------------- (36) Obligation: Innermost TRS: Rules: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Types: LT0 :: Nil:Cons -> Nil:Cons -> c4:c5:c6 Nil :: Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons c4 :: c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 c6 :: c4:c5:c6 G :: Nil:Cons -> Nil:Cons -> c7:c8 c7 :: c7:c8 c8 :: c:c1 -> c4:c5:c6 -> c7:c8 G[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c:c1 lt0 :: Nil:Cons -> Nil:Cons -> False:True F :: Nil:Cons -> Nil:Cons -> c9:c10 c9 :: c9:c10 c10 :: c2:c3 -> c4:c5:c6 -> c9:c10 F[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c2:c3 NOTEMPTY :: Nil:Cons -> c11:c12 c11 :: c11:c12 c12 :: c11:c12 NUMBER4 :: a -> c13 c13 :: c13 GOAL :: Nil:Cons -> Nil:Cons -> c14:c15 c14 :: c9:c10 -> c14:c15 c15 :: c7:c8 -> c14:c15 False :: False:True c :: c7:c8 -> c:c1 True :: False:True c1 :: c7:c8 -> c:c1 c2 :: c9:c10 -> c2:c3 c3 :: c9:c10 -> c2:c3 g[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons g :: Nil:Cons -> Nil:Cons -> Nil:Cons f[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons f :: Nil:Cons -> Nil:Cons -> Nil:Cons notEmpty :: Nil:Cons -> False:True number4 :: b -> Nil:Cons goal :: Nil:Cons -> Nil:Cons -> Nil:Cons hole_c4:c5:c61_16 :: c4:c5:c6 hole_Nil:Cons2_16 :: Nil:Cons hole_c7:c83_16 :: c7:c8 hole_c:c14_16 :: c:c1 hole_False:True5_16 :: False:True hole_c9:c106_16 :: c9:c10 hole_c2:c37_16 :: c2:c3 hole_c11:c128_16 :: c11:c12 hole_c139_16 :: c13 hole_a10_16 :: a hole_c14:c1511_16 :: c14:c15 hole_b12_16 :: b gen_c4:c5:c613_16 :: Nat -> c4:c5:c6 gen_Nil:Cons14_16 :: Nat -> Nil:Cons Lemmas: LT0(gen_Nil:Cons14_16(n16_16), gen_Nil:Cons14_16(+(1, n16_16))) -> gen_c4:c5:c613_16(n16_16), rt in Omega(1 + n16_16) Generator Equations: gen_c4:c5:c613_16(0) <=> c4 gen_c4:c5:c613_16(+(x, 1)) <=> c5(gen_c4:c5:c613_16(x)) gen_Nil:Cons14_16(0) <=> Nil gen_Nil:Cons14_16(+(x, 1)) <=> Cons(Nil, gen_Nil:Cons14_16(x)) The following defined symbols remain to be analysed: lt0, G, F, g, f They will be analysed ascendingly in the following order: lt0 < G lt0 < F lt0 < g lt0 < f ---------------------------------------- (37) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lt0(gen_Nil:Cons14_16(n696_16), gen_Nil:Cons14_16(+(1, n696_16))) -> True, rt in Omega(0) Induction Base: lt0(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(+(1, 0))) ->_R^Omega(0) True Induction Step: lt0(gen_Nil:Cons14_16(+(n696_16, 1)), gen_Nil:Cons14_16(+(1, +(n696_16, 1)))) ->_R^Omega(0) lt0(gen_Nil:Cons14_16(n696_16), gen_Nil:Cons14_16(+(1, n696_16))) ->_IH True We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (38) Obligation: Innermost TRS: Rules: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Types: LT0 :: Nil:Cons -> Nil:Cons -> c4:c5:c6 Nil :: Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons c4 :: c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 c6 :: c4:c5:c6 G :: Nil:Cons -> Nil:Cons -> c7:c8 c7 :: c7:c8 c8 :: c:c1 -> c4:c5:c6 -> c7:c8 G[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c:c1 lt0 :: Nil:Cons -> Nil:Cons -> False:True F :: Nil:Cons -> Nil:Cons -> c9:c10 c9 :: c9:c10 c10 :: c2:c3 -> c4:c5:c6 -> c9:c10 F[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c2:c3 NOTEMPTY :: Nil:Cons -> c11:c12 c11 :: c11:c12 c12 :: c11:c12 NUMBER4 :: a -> c13 c13 :: c13 GOAL :: Nil:Cons -> Nil:Cons -> c14:c15 c14 :: c9:c10 -> c14:c15 c15 :: c7:c8 -> c14:c15 False :: False:True c :: c7:c8 -> c:c1 True :: False:True c1 :: c7:c8 -> c:c1 c2 :: c9:c10 -> c2:c3 c3 :: c9:c10 -> c2:c3 g[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons g :: Nil:Cons -> Nil:Cons -> Nil:Cons f[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons f :: Nil:Cons -> Nil:Cons -> Nil:Cons notEmpty :: Nil:Cons -> False:True number4 :: b -> Nil:Cons goal :: Nil:Cons -> Nil:Cons -> Nil:Cons hole_c4:c5:c61_16 :: c4:c5:c6 hole_Nil:Cons2_16 :: Nil:Cons hole_c7:c83_16 :: c7:c8 hole_c:c14_16 :: c:c1 hole_False:True5_16 :: False:True hole_c9:c106_16 :: c9:c10 hole_c2:c37_16 :: c2:c3 hole_c11:c128_16 :: c11:c12 hole_c139_16 :: c13 hole_a10_16 :: a hole_c14:c1511_16 :: c14:c15 hole_b12_16 :: b gen_c4:c5:c613_16 :: Nat -> c4:c5:c6 gen_Nil:Cons14_16 :: Nat -> Nil:Cons Lemmas: LT0(gen_Nil:Cons14_16(n16_16), gen_Nil:Cons14_16(+(1, n16_16))) -> gen_c4:c5:c613_16(n16_16), rt in Omega(1 + n16_16) lt0(gen_Nil:Cons14_16(n696_16), gen_Nil:Cons14_16(+(1, n696_16))) -> True, rt in Omega(0) Generator Equations: gen_c4:c5:c613_16(0) <=> c4 gen_c4:c5:c613_16(+(x, 1)) <=> c5(gen_c4:c5:c613_16(x)) gen_Nil:Cons14_16(0) <=> Nil gen_Nil:Cons14_16(+(x, 1)) <=> Cons(Nil, gen_Nil:Cons14_16(x)) The following defined symbols remain to be analysed: G, F, g, f ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n1156_16)) -> *15_16, rt in Omega(n1156_16) Induction Base: G(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(0)) Induction Step: G(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(+(n1156_16, 1))) ->_R^Omega(1) c8(G[ITE][FALSE][ITE](lt0(gen_Nil:Cons14_16(0), Cons(Nil, Nil)), gen_Nil:Cons14_16(0), Cons(Nil, gen_Nil:Cons14_16(n1156_16))), LT0(gen_Nil:Cons14_16(0), Cons(Nil, Nil))) ->_L^Omega(0) c8(G[ITE][FALSE][ITE](True, gen_Nil:Cons14_16(0), Cons(Nil, gen_Nil:Cons14_16(n1156_16))), LT0(gen_Nil:Cons14_16(0), Cons(Nil, Nil))) ->_R^Omega(0) c8(c1(G(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n1156_16))), LT0(gen_Nil:Cons14_16(0), Cons(Nil, Nil))) ->_IH c8(c1(*15_16), LT0(gen_Nil:Cons14_16(0), Cons(Nil, Nil))) ->_L^Omega(1) c8(c1(*15_16), gen_c4:c5:c613_16(0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (40) Obligation: Innermost TRS: Rules: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Types: LT0 :: Nil:Cons -> Nil:Cons -> c4:c5:c6 Nil :: Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons c4 :: c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 c6 :: c4:c5:c6 G :: Nil:Cons -> Nil:Cons -> c7:c8 c7 :: c7:c8 c8 :: c:c1 -> c4:c5:c6 -> c7:c8 G[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c:c1 lt0 :: Nil:Cons -> Nil:Cons -> False:True F :: Nil:Cons -> Nil:Cons -> c9:c10 c9 :: c9:c10 c10 :: c2:c3 -> c4:c5:c6 -> c9:c10 F[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c2:c3 NOTEMPTY :: Nil:Cons -> c11:c12 c11 :: c11:c12 c12 :: c11:c12 NUMBER4 :: a -> c13 c13 :: c13 GOAL :: Nil:Cons -> Nil:Cons -> c14:c15 c14 :: c9:c10 -> c14:c15 c15 :: c7:c8 -> c14:c15 False :: False:True c :: c7:c8 -> c:c1 True :: False:True c1 :: c7:c8 -> c:c1 c2 :: c9:c10 -> c2:c3 c3 :: c9:c10 -> c2:c3 g[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons g :: Nil:Cons -> Nil:Cons -> Nil:Cons f[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons f :: Nil:Cons -> Nil:Cons -> Nil:Cons notEmpty :: Nil:Cons -> False:True number4 :: b -> Nil:Cons goal :: Nil:Cons -> Nil:Cons -> Nil:Cons hole_c4:c5:c61_16 :: c4:c5:c6 hole_Nil:Cons2_16 :: Nil:Cons hole_c7:c83_16 :: c7:c8 hole_c:c14_16 :: c:c1 hole_False:True5_16 :: False:True hole_c9:c106_16 :: c9:c10 hole_c2:c37_16 :: c2:c3 hole_c11:c128_16 :: c11:c12 hole_c139_16 :: c13 hole_a10_16 :: a hole_c14:c1511_16 :: c14:c15 hole_b12_16 :: b gen_c4:c5:c613_16 :: Nat -> c4:c5:c6 gen_Nil:Cons14_16 :: Nat -> Nil:Cons Lemmas: LT0(gen_Nil:Cons14_16(n16_16), gen_Nil:Cons14_16(+(1, n16_16))) -> gen_c4:c5:c613_16(n16_16), rt in Omega(1 + n16_16) lt0(gen_Nil:Cons14_16(n696_16), gen_Nil:Cons14_16(+(1, n696_16))) -> True, rt in Omega(0) G(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n1156_16)) -> *15_16, rt in Omega(n1156_16) Generator Equations: gen_c4:c5:c613_16(0) <=> c4 gen_c4:c5:c613_16(+(x, 1)) <=> c5(gen_c4:c5:c613_16(x)) gen_Nil:Cons14_16(0) <=> Nil gen_Nil:Cons14_16(+(x, 1)) <=> Cons(Nil, gen_Nil:Cons14_16(x)) The following defined symbols remain to be analysed: F, g, f ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: F(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n4129_16)) -> *15_16, rt in Omega(n4129_16) Induction Base: F(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(0)) Induction Step: F(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(+(n4129_16, 1))) ->_R^Omega(1) c10(F[ITE][FALSE][ITE](lt0(gen_Nil:Cons14_16(0), Cons(Nil, Nil)), gen_Nil:Cons14_16(0), Cons(Nil, gen_Nil:Cons14_16(n4129_16))), LT0(gen_Nil:Cons14_16(0), Cons(Nil, Nil))) ->_L^Omega(0) c10(F[ITE][FALSE][ITE](True, gen_Nil:Cons14_16(0), Cons(Nil, gen_Nil:Cons14_16(n4129_16))), LT0(gen_Nil:Cons14_16(0), Cons(Nil, Nil))) ->_R^Omega(0) c10(c3(F(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n4129_16))), LT0(gen_Nil:Cons14_16(0), Cons(Nil, Nil))) ->_IH c10(c3(*15_16), LT0(gen_Nil:Cons14_16(0), Cons(Nil, Nil))) ->_L^Omega(1) c10(c3(*15_16), gen_c4:c5:c613_16(0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) Obligation: Innermost TRS: Rules: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Types: LT0 :: Nil:Cons -> Nil:Cons -> c4:c5:c6 Nil :: Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons c4 :: c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 c6 :: c4:c5:c6 G :: Nil:Cons -> Nil:Cons -> c7:c8 c7 :: c7:c8 c8 :: c:c1 -> c4:c5:c6 -> c7:c8 G[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c:c1 lt0 :: Nil:Cons -> Nil:Cons -> False:True F :: Nil:Cons -> Nil:Cons -> c9:c10 c9 :: c9:c10 c10 :: c2:c3 -> c4:c5:c6 -> c9:c10 F[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c2:c3 NOTEMPTY :: Nil:Cons -> c11:c12 c11 :: c11:c12 c12 :: c11:c12 NUMBER4 :: a -> c13 c13 :: c13 GOAL :: Nil:Cons -> Nil:Cons -> c14:c15 c14 :: c9:c10 -> c14:c15 c15 :: c7:c8 -> c14:c15 False :: False:True c :: c7:c8 -> c:c1 True :: False:True c1 :: c7:c8 -> c:c1 c2 :: c9:c10 -> c2:c3 c3 :: c9:c10 -> c2:c3 g[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons g :: Nil:Cons -> Nil:Cons -> Nil:Cons f[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons f :: Nil:Cons -> Nil:Cons -> Nil:Cons notEmpty :: Nil:Cons -> False:True number4 :: b -> Nil:Cons goal :: Nil:Cons -> Nil:Cons -> Nil:Cons hole_c4:c5:c61_16 :: c4:c5:c6 hole_Nil:Cons2_16 :: Nil:Cons hole_c7:c83_16 :: c7:c8 hole_c:c14_16 :: c:c1 hole_False:True5_16 :: False:True hole_c9:c106_16 :: c9:c10 hole_c2:c37_16 :: c2:c3 hole_c11:c128_16 :: c11:c12 hole_c139_16 :: c13 hole_a10_16 :: a hole_c14:c1511_16 :: c14:c15 hole_b12_16 :: b gen_c4:c5:c613_16 :: Nat -> c4:c5:c6 gen_Nil:Cons14_16 :: Nat -> Nil:Cons Lemmas: LT0(gen_Nil:Cons14_16(n16_16), gen_Nil:Cons14_16(+(1, n16_16))) -> gen_c4:c5:c613_16(n16_16), rt in Omega(1 + n16_16) lt0(gen_Nil:Cons14_16(n696_16), gen_Nil:Cons14_16(+(1, n696_16))) -> True, rt in Omega(0) G(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n1156_16)) -> *15_16, rt in Omega(n1156_16) F(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n4129_16)) -> *15_16, rt in Omega(n4129_16) Generator Equations: gen_c4:c5:c613_16(0) <=> c4 gen_c4:c5:c613_16(+(x, 1)) <=> c5(gen_c4:c5:c613_16(x)) gen_Nil:Cons14_16(0) <=> Nil gen_Nil:Cons14_16(+(x, 1)) <=> Cons(Nil, gen_Nil:Cons14_16(x)) The following defined symbols remain to be analysed: g, f ---------------------------------------- (43) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n10234_16)) -> gen_Nil:Cons14_16(4), rt in Omega(0) Induction Base: g(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(0)) ->_R^Omega(0) Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) Induction Step: g(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(+(n10234_16, 1))) ->_R^Omega(0) g[Ite][False][Ite](lt0(gen_Nil:Cons14_16(0), Cons(Nil, Nil)), gen_Nil:Cons14_16(0), Cons(Nil, gen_Nil:Cons14_16(n10234_16))) ->_L^Omega(0) g[Ite][False][Ite](True, gen_Nil:Cons14_16(0), Cons(Nil, gen_Nil:Cons14_16(n10234_16))) ->_R^Omega(0) g(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n10234_16)) ->_IH gen_Nil:Cons14_16(4) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (44) Obligation: Innermost TRS: Rules: LT0(Nil, Cons(z0, z1)) -> c4 LT0(Cons(z0, z1), Cons(z2, z3)) -> c5(LT0(z1, z3)) LT0(z0, Nil) -> c6 G(z0, Nil) -> c7 G(z0, Cons(z1, z2)) -> c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) F(z0, Nil) -> c9 F(z0, Cons(z1, z2)) -> c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil))) NOTEMPTY(Cons(z0, z1)) -> c11 NOTEMPTY(Nil) -> c12 NUMBER4(z0) -> c13 GOAL(z0, z1) -> c14(F(z0, z1)) GOAL(z0, z1) -> c15(G(z0, z1)) G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c(G(z1, Cons(Cons(Nil, Nil), z2))) G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c1(G(z0, z2)) F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) -> c2(F(z1, Cons(Cons(Nil, Nil), z2))) F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) -> c3(F(z0, z2)) g[Ite][False][Ite](False, Cons(z0, z1), z2) -> g(z1, Cons(Cons(Nil, Nil), z2)) g[Ite][False][Ite](True, z0, Cons(z1, z2)) -> g(z0, z2) f[Ite][False][Ite](False, Cons(z0, z1), z2) -> f(z1, Cons(Cons(Nil, Nil), z2)) f[Ite][False][Ite](True, z0, Cons(z1, z2)) -> f(z0, z2) lt0(Nil, Cons(z0, z1)) -> True lt0(Cons(z0, z1), Cons(z2, z3)) -> lt0(z1, z3) lt0(z0, Nil) -> False g(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) g(z0, Cons(z1, z2)) -> g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) f(z0, Nil) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) f(z0, Cons(z1, z2)) -> f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)) notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False number4(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) goal(z0, z1) -> Cons(f(z0, z1), Cons(g(z0, z1), Nil)) Types: LT0 :: Nil:Cons -> Nil:Cons -> c4:c5:c6 Nil :: Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons c4 :: c4:c5:c6 c5 :: c4:c5:c6 -> c4:c5:c6 c6 :: c4:c5:c6 G :: Nil:Cons -> Nil:Cons -> c7:c8 c7 :: c7:c8 c8 :: c:c1 -> c4:c5:c6 -> c7:c8 G[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c:c1 lt0 :: Nil:Cons -> Nil:Cons -> False:True F :: Nil:Cons -> Nil:Cons -> c9:c10 c9 :: c9:c10 c10 :: c2:c3 -> c4:c5:c6 -> c9:c10 F[ITE][FALSE][ITE] :: False:True -> Nil:Cons -> Nil:Cons -> c2:c3 NOTEMPTY :: Nil:Cons -> c11:c12 c11 :: c11:c12 c12 :: c11:c12 NUMBER4 :: a -> c13 c13 :: c13 GOAL :: Nil:Cons -> Nil:Cons -> c14:c15 c14 :: c9:c10 -> c14:c15 c15 :: c7:c8 -> c14:c15 False :: False:True c :: c7:c8 -> c:c1 True :: False:True c1 :: c7:c8 -> c:c1 c2 :: c9:c10 -> c2:c3 c3 :: c9:c10 -> c2:c3 g[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons g :: Nil:Cons -> Nil:Cons -> Nil:Cons f[Ite][False][Ite] :: False:True -> Nil:Cons -> Nil:Cons -> Nil:Cons f :: Nil:Cons -> Nil:Cons -> Nil:Cons notEmpty :: Nil:Cons -> False:True number4 :: b -> Nil:Cons goal :: Nil:Cons -> Nil:Cons -> Nil:Cons hole_c4:c5:c61_16 :: c4:c5:c6 hole_Nil:Cons2_16 :: Nil:Cons hole_c7:c83_16 :: c7:c8 hole_c:c14_16 :: c:c1 hole_False:True5_16 :: False:True hole_c9:c106_16 :: c9:c10 hole_c2:c37_16 :: c2:c3 hole_c11:c128_16 :: c11:c12 hole_c139_16 :: c13 hole_a10_16 :: a hole_c14:c1511_16 :: c14:c15 hole_b12_16 :: b gen_c4:c5:c613_16 :: Nat -> c4:c5:c6 gen_Nil:Cons14_16 :: Nat -> Nil:Cons Lemmas: LT0(gen_Nil:Cons14_16(n16_16), gen_Nil:Cons14_16(+(1, n16_16))) -> gen_c4:c5:c613_16(n16_16), rt in Omega(1 + n16_16) lt0(gen_Nil:Cons14_16(n696_16), gen_Nil:Cons14_16(+(1, n696_16))) -> True, rt in Omega(0) G(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n1156_16)) -> *15_16, rt in Omega(n1156_16) F(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n4129_16)) -> *15_16, rt in Omega(n4129_16) g(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n10234_16)) -> gen_Nil:Cons14_16(4), rt in Omega(0) Generator Equations: gen_c4:c5:c613_16(0) <=> c4 gen_c4:c5:c613_16(+(x, 1)) <=> c5(gen_c4:c5:c613_16(x)) gen_Nil:Cons14_16(0) <=> Nil gen_Nil:Cons14_16(+(x, 1)) <=> Cons(Nil, gen_Nil:Cons14_16(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n11508_16)) -> gen_Nil:Cons14_16(4), rt in Omega(0) Induction Base: f(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(0)) ->_R^Omega(0) Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))) Induction Step: f(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(+(n11508_16, 1))) ->_R^Omega(0) f[Ite][False][Ite](lt0(gen_Nil:Cons14_16(0), Cons(Nil, Nil)), gen_Nil:Cons14_16(0), Cons(Nil, gen_Nil:Cons14_16(n11508_16))) ->_L^Omega(0) f[Ite][False][Ite](True, gen_Nil:Cons14_16(0), Cons(Nil, gen_Nil:Cons14_16(n11508_16))) ->_R^Omega(0) f(gen_Nil:Cons14_16(0), gen_Nil:Cons14_16(n11508_16)) ->_IH gen_Nil:Cons14_16(4) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (46) BOUNDS(1, INF)