WORST_CASE(Omega(n^1),O(n^2)) proof of input_NaZ4ppsR3b.trs # AProVE Commit ID: 5b976082cb74a395683ed8cc7acf94bd611ab29f fuhs 20230524 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 3 ms] (8) CdtProblem (9) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxWeightedTrs (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedTrs (15) CompletionProof [UPPER BOUND(ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxTypedWeightedCompleteTrs (19) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 108 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 150 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 5 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 181 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 33 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 198 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 33 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 80 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 54 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 300 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 54 ms] (60) CpxRNTS (61) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 4233 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 2609 ms] (66) CpxRNTS (67) FinalProof [FINISHED, 0 ms] (68) BOUNDS(1, n^2) (69) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (70) CdtProblem (71) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (72) CpxRelTRS (73) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (74) CpxRelTRS (75) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (76) typed CpxTrs (77) OrderProof [LOWER BOUND(ID), 0 ms] (78) typed CpxTrs (79) RewriteLemmaProof [LOWER BOUND(ID), 314 ms] (80) typed CpxTrs (81) RewriteLemmaProof [LOWER BOUND(ID), 119 ms] (82) BEST (83) proven lower bound (84) LowerBoundPropagationProof [FINISHED, 0 ms] (85) BOUNDS(n^1, INF) (86) typed CpxTrs (87) RewriteLemmaProof [LOWER BOUND(ID), 109 ms] (88) typed CpxTrs (89) RewriteLemmaProof [LOWER BOUND(ID), 99 ms] (90) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0), p(z0)) neq(0, 0) -> false neq(0, s(z0)) -> true neq(s(z0), 0) -> true neq(s(z0), s(y)) -> neq(z0, y) even(0) -> true even(s(0)) -> false even(s(s(z0))) -> even(z0) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(z0))) -> s(div2(z0)) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0)), NEQ(z0, 0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0)), NEQ(z0, 0)) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0)), P(z0)) NEQ(0, 0) -> c5 NEQ(0, s(z0)) -> c6 NEQ(s(z0), 0) -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0) -> c9 EVEN(s(0)) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0) -> c12 DIV2(s(0)) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0) -> c15 P(s(z0)) -> c16 S tuples: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0)), NEQ(z0, 0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0)), NEQ(z0, 0)) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0)), P(z0)) NEQ(0, 0) -> c5 NEQ(0, s(z0)) -> c6 NEQ(s(z0), 0) -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0) -> c9 EVEN(s(0)) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0) -> c12 DIV2(s(0)) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0) -> c15 P(s(z0)) -> c16 K tuples:none Defined Rule Symbols: cond1_2, cond2_2, neq_2, even_1, div2_1, p_1 Defined Pair Symbols: COND1_2, COND2_2, NEQ_2, EVEN_1, DIV2_1, P_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4_2, c5, c6, c7, c8_1, c9, c10, c11_1, c12, c13, c14_1, c15, c16 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 10 trailing nodes: DIV2(s(0)) -> c13 NEQ(0, s(z0)) -> c6 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) NEQ(s(z0), 0) -> c7 P(s(z0)) -> c16 EVEN(s(0)) -> c10 P(0) -> c15 DIV2(0) -> c12 NEQ(0, 0) -> c5 EVEN(0) -> c9 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0), p(z0)) neq(0, 0) -> false neq(0, s(z0)) -> true neq(s(z0), 0) -> true neq(s(z0), s(y)) -> neq(z0, y) even(0) -> true even(s(0)) -> false even(s(s(z0))) -> even(z0) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(z0))) -> s(div2(z0)) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0)), NEQ(z0, 0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0)), NEQ(z0, 0)) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0)), P(z0)) EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(s(s(z0))) -> c14(DIV2(z0)) S tuples: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0)), NEQ(z0, 0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0)), NEQ(z0, 0)) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0)), P(z0)) EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(s(s(z0))) -> c14(DIV2(z0)) K tuples:none Defined Rule Symbols: cond1_2, cond2_2, neq_2, even_1, div2_1, p_1 Defined Pair Symbols: COND1_2, COND2_2, EVEN_1, DIV2_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4_2, c11_1, c14_1 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0), p(z0)) neq(0, 0) -> false neq(0, s(z0)) -> true neq(s(z0), 0) -> true neq(s(z0), s(y)) -> neq(z0, y) even(0) -> true even(s(0)) -> false even(s(s(z0))) -> even(z0) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(z0))) -> s(div2(z0)) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(s(s(z0))) -> c14(DIV2(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0))) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0))) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0))) S tuples: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(s(s(z0))) -> c14(DIV2(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0))) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0))) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0))) K tuples:none Defined Rule Symbols: cond1_2, cond2_2, neq_2, even_1, div2_1, p_1 Defined Pair Symbols: COND1_2, COND2_2, EVEN_1, DIV2_1 Compound Symbols: c_2, c2_2, c11_1, c14_1, c1_1, c3_1, c4_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0), p(z0)) neq(0, s(z0)) -> true neq(s(z0), s(y)) -> neq(z0, y) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: even(0) -> true even(s(0)) -> false even(s(s(z0))) -> even(z0) neq(0, 0) -> false neq(s(z0), 0) -> true div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(z0))) -> s(div2(z0)) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(s(s(z0))) -> c14(DIV2(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0))) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0))) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0))) S tuples: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(s(s(z0))) -> c14(DIV2(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0))) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0))) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0))) K tuples:none Defined Rule Symbols: even_1, neq_2, div2_1, p_1 Defined Pair Symbols: COND1_2, COND2_2, EVEN_1, DIV2_1 Compound Symbols: c_2, c2_2, c11_1, c14_1, c1_1, c3_1, c4_1 ---------------------------------------- (9) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(s(s(z0))) -> c14(DIV2(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0))) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0))) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0))) The (relative) TRS S consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(z0))) -> even(z0) neq(0, 0) -> false neq(s(z0), 0) -> true div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(z0))) -> s(div2(z0)) p(0) -> 0 p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (11) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) [1] COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) [1] EVEN(s(s(z0))) -> c11(EVEN(z0)) [1] DIV2(s(s(z0))) -> c14(DIV2(z0)) [1] COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0))) [1] COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0))) [1] COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0))) [1] even(0) -> true [0] even(s(0)) -> false [0] even(s(s(z0))) -> even(z0) [0] neq(0, 0) -> false [0] neq(s(z0), 0) -> true [0] div2(0) -> 0 [0] div2(s(0)) -> 0 [0] div2(s(s(z0))) -> s(div2(z0)) [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) [1] COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) [1] EVEN(s(s(z0))) -> c11(EVEN(z0)) [1] DIV2(s(s(z0))) -> c14(DIV2(z0)) [1] COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0))) [1] COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0))) [1] COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0))) [1] even(0) -> true [0] even(s(0)) -> false [0] even(s(s(z0))) -> even(z0) [0] neq(0, 0) -> false [0] neq(s(z0), 0) -> true [0] div2(0) -> 0 [0] div2(s(0)) -> 0 [0] div2(s(s(z0))) -> s(div2(z0)) [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] The TRS has the following type information: COND1 :: true:false -> 0:s -> c true :: true:false c :: c2:c1:c3:c4 -> c11 -> c COND2 :: true:false -> 0:s -> c2:c1:c3:c4 even :: 0:s -> true:false EVEN :: 0:s -> c11 c2 :: c -> c14 -> c2:c1:c3:c4 neq :: 0:s -> 0:s -> true:false 0 :: 0:s div2 :: 0:s -> 0:s DIV2 :: 0:s -> c14 s :: 0:s -> 0:s c11 :: c11 -> c11 c14 :: c14 -> c14 c1 :: c -> c2:c1:c3:c4 false :: true:false c3 :: c -> c2:c1:c3:c4 p :: 0:s -> 0:s c4 :: c -> c2:c1:c3:c4 Rewrite Strategy: INNERMOST ---------------------------------------- (15) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: COND1_2 COND2_2 EVEN_1 DIV2_1 (c) The following functions are completely defined: even_1 neq_2 div2_1 p_1 Due to the following rules being added: even(v0) -> null_even [0] neq(v0, v1) -> null_neq [0] div2(v0) -> 0 [0] p(v0) -> 0 [0] And the following fresh constants: null_even, null_neq, const, const1, const2, const3 ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) [1] COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) [1] EVEN(s(s(z0))) -> c11(EVEN(z0)) [1] DIV2(s(s(z0))) -> c14(DIV2(z0)) [1] COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0))) [1] COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0))) [1] COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0))) [1] even(0) -> true [0] even(s(0)) -> false [0] even(s(s(z0))) -> even(z0) [0] neq(0, 0) -> false [0] neq(s(z0), 0) -> true [0] div2(0) -> 0 [0] div2(s(0)) -> 0 [0] div2(s(s(z0))) -> s(div2(z0)) [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] even(v0) -> null_even [0] neq(v0, v1) -> null_neq [0] div2(v0) -> 0 [0] p(v0) -> 0 [0] The TRS has the following type information: COND1 :: true:false:null_even:null_neq -> 0:s -> c true :: true:false:null_even:null_neq c :: c2:c1:c3:c4 -> c11 -> c COND2 :: true:false:null_even:null_neq -> 0:s -> c2:c1:c3:c4 even :: 0:s -> true:false:null_even:null_neq EVEN :: 0:s -> c11 c2 :: c -> c14 -> c2:c1:c3:c4 neq :: 0:s -> 0:s -> true:false:null_even:null_neq 0 :: 0:s div2 :: 0:s -> 0:s DIV2 :: 0:s -> c14 s :: 0:s -> 0:s c11 :: c11 -> c11 c14 :: c14 -> c14 c1 :: c -> c2:c1:c3:c4 false :: true:false:null_even:null_neq c3 :: c -> c2:c1:c3:c4 p :: 0:s -> 0:s c4 :: c -> c2:c1:c3:c4 null_even :: true:false:null_even:null_neq null_neq :: true:false:null_even:null_neq const :: c const1 :: c2:c1:c3:c4 const2 :: c11 const3 :: c14 Rewrite Strategy: INNERMOST ---------------------------------------- (17) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (18) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: COND1(true, 0) -> c(COND2(true, 0), EVEN(0)) [1] COND1(true, s(0)) -> c(COND2(false, s(0)), EVEN(s(0))) [1] COND1(true, s(s(z0'))) -> c(COND2(even(z0'), s(s(z0'))), EVEN(s(s(z0')))) [1] COND1(true, z0) -> c(COND2(null_even, z0), EVEN(z0)) [1] COND2(true, 0) -> c2(COND1(false, 0), DIV2(0)) [1] COND2(true, 0) -> c2(COND1(false, 0), DIV2(0)) [1] COND2(true, s(0)) -> c2(COND1(true, 0), DIV2(s(0))) [1] COND2(true, s(s(z01))) -> c2(COND1(true, s(div2(z01))), DIV2(s(s(z01)))) [1] COND2(true, s(z0'')) -> c2(COND1(true, 0), DIV2(s(z0''))) [1] COND2(true, 0) -> c2(COND1(null_neq, 0), DIV2(0)) [1] COND2(true, s(0)) -> c2(COND1(null_neq, 0), DIV2(s(0))) [1] COND2(true, s(s(z02))) -> c2(COND1(null_neq, s(div2(z02))), DIV2(s(s(z02)))) [1] COND2(true, z0) -> c2(COND1(null_neq, 0), DIV2(z0)) [1] EVEN(s(s(z0))) -> c11(EVEN(z0)) [1] DIV2(s(s(z0))) -> c14(DIV2(z0)) [1] COND2(true, 0) -> c1(COND1(false, 0)) [1] COND2(true, 0) -> c1(COND1(false, 0)) [1] COND2(true, s(0)) -> c1(COND1(true, 0)) [1] COND2(true, s(s(z04))) -> c1(COND1(true, s(div2(z04)))) [1] COND2(true, s(z03)) -> c1(COND1(true, 0)) [1] COND2(true, 0) -> c1(COND1(null_neq, 0)) [1] COND2(true, s(0)) -> c1(COND1(null_neq, 0)) [1] COND2(true, s(s(z05))) -> c1(COND1(null_neq, s(div2(z05)))) [1] COND2(true, z0) -> c1(COND1(null_neq, 0)) [1] COND2(false, 0) -> c3(COND1(false, 0)) [1] COND2(false, 0) -> c3(COND1(false, 0)) [1] COND2(false, s(z06)) -> c3(COND1(true, z06)) [1] COND2(false, s(z06)) -> c3(COND1(true, 0)) [1] COND2(false, 0) -> c3(COND1(null_neq, 0)) [1] COND2(false, s(z07)) -> c3(COND1(null_neq, z07)) [1] COND2(false, z0) -> c3(COND1(null_neq, 0)) [1] COND2(false, 0) -> c4(COND1(false, 0)) [1] COND2(false, 0) -> c4(COND1(false, 0)) [1] COND2(false, s(z08)) -> c4(COND1(true, z08)) [1] COND2(false, s(z08)) -> c4(COND1(true, 0)) [1] COND2(false, 0) -> c4(COND1(null_neq, 0)) [1] COND2(false, s(z09)) -> c4(COND1(null_neq, z09)) [1] COND2(false, z0) -> c4(COND1(null_neq, 0)) [1] even(0) -> true [0] even(s(0)) -> false [0] even(s(s(z0))) -> even(z0) [0] neq(0, 0) -> false [0] neq(s(z0), 0) -> true [0] div2(0) -> 0 [0] div2(s(0)) -> 0 [0] div2(s(s(z0))) -> s(div2(z0)) [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] even(v0) -> null_even [0] neq(v0, v1) -> null_neq [0] div2(v0) -> 0 [0] p(v0) -> 0 [0] The TRS has the following type information: COND1 :: true:false:null_even:null_neq -> 0:s -> c true :: true:false:null_even:null_neq c :: c2:c1:c3:c4 -> c11 -> c COND2 :: true:false:null_even:null_neq -> 0:s -> c2:c1:c3:c4 even :: 0:s -> true:false:null_even:null_neq EVEN :: 0:s -> c11 c2 :: c -> c14 -> c2:c1:c3:c4 neq :: 0:s -> 0:s -> true:false:null_even:null_neq 0 :: 0:s div2 :: 0:s -> 0:s DIV2 :: 0:s -> c14 s :: 0:s -> 0:s c11 :: c11 -> c11 c14 :: c14 -> c14 c1 :: c -> c2:c1:c3:c4 false :: true:false:null_even:null_neq c3 :: c -> c2:c1:c3:c4 p :: 0:s -> 0:s c4 :: c -> c2:c1:c3:c4 null_even :: true:false:null_even:null_neq null_neq :: true:false:null_even:null_neq const :: c const1 :: c2:c1:c3:c4 const2 :: c11 const3 :: c14 Rewrite Strategy: INNERMOST ---------------------------------------- (19) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 2 0 => 0 false => 1 null_even => 0 null_neq => 0 const => 0 const1 => 0 const2 => 0 const3 => 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 }-> 1 + COND2(even(z0'), 1 + (1 + z0')) + EVEN(1 + (1 + z0')) :|: z = 2, z' = 1 + (1 + z0'), z0' >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + EVEN(0) :|: z = 2, z' = 0 COND1(z, z') -{ 1 }-> 1 + COND2(1, 1 + 0) + EVEN(1 + 0) :|: z = 2, z' = 1 + 0 COND1(z, z') -{ 1 }-> 1 + COND2(0, z0) + EVEN(z0) :|: z = 2, z0 >= 0, z' = z0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z06) :|: z = 1, z06 >= 0, z' = 1 + z06 COND2(z, z') -{ 1 }-> 1 + COND1(2, z08) :|: z08 >= 0, z' = 1 + z08, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + z03, z03 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z06 >= 0, z' = 1 + z06 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z08 >= 0, z' = 1 + z08, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z04)) :|: z = 2, z04 >= 0, z' = 1 + (1 + z04) COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z07) :|: z07 >= 0, z = 1, z' = 1 + z07 COND2(z, z') -{ 1 }-> 1 + COND1(0, z09) :|: z = 1, z' = 1 + z09, z09 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z0 >= 0, z' = z0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z0 >= 0, z' = z0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z05)) :|: z = 2, z05 >= 0, z' = 1 + (1 + z05) COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + z0'') :|: z = 2, z' = 1 + z0'', z0'' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z01)) + DIV2(1 + (1 + z01)) :|: z = 2, z01 >= 0, z' = 1 + (1 + z01) COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(z0) :|: z = 2, z0 >= 0, z' = z0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z02)) + DIV2(1 + (1 + z02)) :|: z = 2, z' = 1 + (1 + z02), z02 >= 0 DIV2(z) -{ 1 }-> 1 + DIV2(z0) :|: z0 >= 0, z = 1 + (1 + z0) EVEN(z) -{ 1 }-> 1 + EVEN(z0) :|: z0 >= 0, z = 1 + (1 + z0) div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 div2(z) -{ 0 }-> 1 + div2(z0) :|: z0 >= 0, z = 1 + (1 + z0) even(z) -{ 0 }-> even(z0) :|: z0 >= 0, z = 1 + (1 + z0) even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 neq(z, z') -{ 0 }-> 2 :|: z = 1 + z0, z0 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 p(z) -{ 0 }-> z0 :|: z = 1 + z0, z0 >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (21) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + EVEN(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + EVEN(0) :|: z = 2, z' = 0 COND1(z, z') -{ 1 }-> 1 + COND2(1, 1 + 0) + EVEN(1 + 0) :|: z = 2, z' = 1 + 0 COND1(z, z') -{ 1 }-> 1 + COND2(0, z') + EVEN(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + (z' - 1)) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) + DIV2(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) + DIV2(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 DIV2(z) -{ 1 }-> 1 + DIV2(z - 2) :|: z - 2 >= 0 EVEN(z) -{ 1 }-> 1 + EVEN(z - 2) :|: z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (23) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { DIV2 } { EVEN } { div2 } { neq } { p } { even } { COND2, COND1 } ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + EVEN(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + EVEN(0) :|: z = 2, z' = 0 COND1(z, z') -{ 1 }-> 1 + COND2(1, 1 + 0) + EVEN(1 + 0) :|: z = 2, z' = 1 + 0 COND1(z, z') -{ 1 }-> 1 + COND2(0, z') + EVEN(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + (z' - 1)) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) + DIV2(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) + DIV2(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 DIV2(z) -{ 1 }-> 1 + DIV2(z - 2) :|: z - 2 >= 0 EVEN(z) -{ 1 }-> 1 + EVEN(z - 2) :|: z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {DIV2}, {EVEN}, {div2}, {neq}, {p}, {even}, {COND2,COND1} ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + EVEN(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + EVEN(0) :|: z = 2, z' = 0 COND1(z, z') -{ 1 }-> 1 + COND2(1, 1 + 0) + EVEN(1 + 0) :|: z = 2, z' = 1 + 0 COND1(z, z') -{ 1 }-> 1 + COND2(0, z') + EVEN(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + (z' - 1)) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) + DIV2(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) + DIV2(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 DIV2(z) -{ 1 }-> 1 + DIV2(z - 2) :|: z - 2 >= 0 EVEN(z) -{ 1 }-> 1 + EVEN(z - 2) :|: z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {DIV2}, {EVEN}, {div2}, {neq}, {p}, {even}, {COND2,COND1} ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: DIV2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + EVEN(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + EVEN(0) :|: z = 2, z' = 0 COND1(z, z') -{ 1 }-> 1 + COND2(1, 1 + 0) + EVEN(1 + 0) :|: z = 2, z' = 1 + 0 COND1(z, z') -{ 1 }-> 1 + COND2(0, z') + EVEN(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + (z' - 1)) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) + DIV2(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) + DIV2(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 DIV2(z) -{ 1 }-> 1 + DIV2(z - 2) :|: z - 2 >= 0 EVEN(z) -{ 1 }-> 1 + EVEN(z - 2) :|: z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {DIV2}, {EVEN}, {div2}, {neq}, {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: ?, size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: DIV2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + EVEN(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + EVEN(0) :|: z = 2, z' = 0 COND1(z, z') -{ 1 }-> 1 + COND2(1, 1 + 0) + EVEN(1 + 0) :|: z = 2, z' = 1 + 0 COND1(z, z') -{ 1 }-> 1 + COND2(0, z') + EVEN(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) + DIV2(1 + (z' - 1)) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) + DIV2(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + DIV2(1 + 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) + DIV2(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 DIV2(z) -{ 1 }-> 1 + DIV2(z - 2) :|: z - 2 >= 0 EVEN(z) -{ 1 }-> 1 + EVEN(z - 2) :|: z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {EVEN}, {div2}, {neq}, {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + EVEN(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + EVEN(0) :|: z = 2, z' = 0 COND1(z, z') -{ 1 }-> 1 + COND2(1, 1 + 0) + EVEN(1 + 0) :|: z = 2, z' = 1 + 0 COND1(z, z') -{ 1 }-> 1 + COND2(0, z') + EVEN(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + div2(z' - 2)) + s'' :|: s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + div2(z' - 2)) + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ 1 }-> 1 + EVEN(z - 2) :|: z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {EVEN}, {div2}, {neq}, {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: EVEN after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + EVEN(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + EVEN(0) :|: z = 2, z' = 0 COND1(z, z') -{ 1 }-> 1 + COND2(1, 1 + 0) + EVEN(1 + 0) :|: z = 2, z' = 1 + 0 COND1(z, z') -{ 1 }-> 1 + COND2(0, z') + EVEN(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + div2(z' - 2)) + s'' :|: s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + div2(z' - 2)) + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ 1 }-> 1 + EVEN(z - 2) :|: z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {EVEN}, {div2}, {neq}, {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: ?, size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: EVEN after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + EVEN(1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + EVEN(0) :|: z = 2, z' = 0 COND1(z, z') -{ 1 }-> 1 + COND2(1, 1 + 0) + EVEN(1 + 0) :|: z = 2, z' = 1 + 0 COND1(z, z') -{ 1 }-> 1 + COND2(0, z') + EVEN(z') :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + div2(z' - 2)) + s'' :|: s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + div2(z' - 2)) + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ 1 }-> 1 + EVEN(z - 2) :|: z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {div2}, {neq}, {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + div2(z' - 2)) + s'' :|: s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + div2(z' - 2)) + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {div2}, {neq}, {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: div2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + div2(z' - 2)) + s'' :|: s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + div2(z' - 2)) + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {div2}, {neq}, {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: ?, size: O(n^1) [z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: div2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + div2(z' - 2)) + s'' :|: s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + div2(z' - 2)) + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {neq}, {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {neq}, {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: neq after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {neq}, {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: ?, size: O(1) [2] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: neq after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: O(1) [0], size: O(1) [2] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: O(1) [0], size: O(1) [2] p: runtime: O(1) [0], size: O(n^1) [z] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: O(1) [0], size: O(1) [2] p: runtime: O(1) [0], size: O(n^1) [z] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: even after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {even}, {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: O(1) [0], size: O(1) [2] p: runtime: O(1) [0], size: O(n^1) [z] even: runtime: ?, size: O(1) [2] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: even after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(even(z' - 2), 1 + (1 + (z' - 2))) + s9 :|: s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: O(1) [0], size: O(1) [2] p: runtime: O(1) [0], size: O(n^1) [z] even: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (61) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(s17, 1 + (1 + (z' - 2))) + s9 :|: s17 >= 0, s17 <= 2, s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> s18 :|: s18 >= 0, s18 <= 2, z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: O(1) [0], size: O(1) [2] p: runtime: O(1) [0], size: O(n^1) [z] even: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: COND2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: COND1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(s17, 1 + (1 + (z' - 2))) + s9 :|: s17 >= 0, s17 <= 2, s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> s18 :|: s18 >= 0, s18 <= 2, z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {COND2,COND1} Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: O(1) [0], size: O(1) [2] p: runtime: O(1) [0], size: O(n^1) [z] even: runtime: O(1) [0], size: O(1) [2] COND2: runtime: ?, size: O(1) [0] COND1: runtime: ?, size: O(1) [1] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: COND2 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 5*z' + 2*z'^2 Computed RUNTIME bound using KoAT for: COND1 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 44 + 12*z' + 4*z'^2 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z') -{ 1 + z' }-> 1 + COND2(s17, 1 + (1 + (z' - 2))) + s9 :|: s17 >= 0, s17 <= 2, s9 >= 0, s9 <= 0, z = 2, z' - 2 >= 0 COND1(z, z') -{ 1 }-> 1 + COND2(2, 0) + s7 :|: s7 >= 0, s7 <= 0, z = 2, z' = 0 COND1(z, z') -{ 2 }-> 1 + COND2(1, 1 + 0) + s8 :|: s8 >= 0, s8 <= 0, z = 2, z' = 1 + 0 COND1(z, z') -{ 1 + z' }-> 1 + COND2(0, z') + s10 :|: s10 >= 0, s10 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 0) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, z' - 1) :|: z = 1, z' - 1 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(2, 1 + s14) :|: s14 >= 0, s14 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' = 1 + 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 2, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) :|: z = 1, z' >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, z' - 1) :|: z' - 1 >= 0, z = 1 COND2(z, z') -{ 1 }-> 1 + COND1(0, 1 + s15) :|: s15 >= 0, s15 <= z' - 2, z = 2, z' - 2 >= 0 COND2(z, z') -{ 2 }-> 1 + COND1(2, 0) + s' :|: s' >= 0, s' <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 0) + s1 :|: s1 >= 0, s1 <= 0, z = 2, z' - 1 >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(2, 1 + s12) + s'' :|: s12 >= 0, s12 <= z' - 2, s'' >= 0, s'' <= 0, z = 2, z' - 2 >= 0 COND2(z, z') -{ 1 }-> 1 + COND1(1, 0) + s :|: s >= 0, s <= 0, z = 2, z' = 0 COND2(z, z') -{ 1 }-> 1 + COND1(0, 0) + s2 :|: s2 >= 0, s2 <= 0, z = 2, z' = 0 COND2(z, z') -{ 2 }-> 1 + COND1(0, 0) + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' = 1 + 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 0) + s5 :|: s5 >= 0, s5 <= 0, z = 2, z' >= 0 COND2(z, z') -{ 1 + z' }-> 1 + COND1(0, 1 + s13) + s4 :|: s13 >= 0, s13 <= z' - 2, s4 >= 0, s4 <= 0, z = 2, z' - 2 >= 0 DIV2(z) -{ -1 + z }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z - 2 >= 0 EVEN(z) -{ -1 + z }-> 1 + s11 :|: s11 >= 0, s11 <= 0, z - 2 >= 0 div2(z) -{ 0 }-> 0 :|: z = 0 div2(z) -{ 0 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 0 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 2, z - 2 >= 0 even(z) -{ 0 }-> s18 :|: s18 >= 0, s18 <= 2, z - 2 >= 0 even(z) -{ 0 }-> 2 :|: z = 0 even(z) -{ 0 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 0 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: DIV2: runtime: O(n^1) [z], size: O(1) [0] EVEN: runtime: O(n^1) [z], size: O(1) [0] div2: runtime: O(1) [0], size: O(n^1) [z] neq: runtime: O(1) [0], size: O(1) [2] p: runtime: O(1) [0], size: O(n^1) [z] even: runtime: O(1) [0], size: O(1) [2] COND2: runtime: O(n^2) [8 + 5*z' + 2*z'^2], size: O(1) [0] COND1: runtime: O(n^2) [44 + 12*z' + 4*z'^2], size: O(1) [1] ---------------------------------------- (67) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (68) BOUNDS(1, n^2) ---------------------------------------- (69) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (70) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0), p(z0)) neq(0, 0) -> false neq(0, s(z0)) -> true neq(s(z0), 0) -> true neq(s(z0), s(y)) -> neq(z0, y) even(0) -> true even(s(0)) -> false even(s(s(z0))) -> even(z0) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(z0))) -> s(div2(z0)) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0)), NEQ(z0, 0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0)), NEQ(z0, 0)) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0)), P(z0)) NEQ(0, 0) -> c5 NEQ(0, s(z0)) -> c6 NEQ(s(z0), 0) -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0) -> c9 EVEN(s(0)) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0) -> c12 DIV2(s(0)) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0) -> c15 P(s(z0)) -> c16 S tuples: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0)), NEQ(z0, 0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0)), NEQ(z0, 0)) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0)), P(z0)) NEQ(0, 0) -> c5 NEQ(0, s(z0)) -> c6 NEQ(s(z0), 0) -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0) -> c9 EVEN(s(0)) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0) -> c12 DIV2(s(0)) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0) -> c15 P(s(z0)) -> c16 K tuples:none Defined Rule Symbols: cond1_2, cond2_2, neq_2, even_1, div2_1, p_1 Defined Pair Symbols: COND1_2, COND2_2, NEQ_2, EVEN_1, DIV2_1, P_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4_2, c5, c6, c7, c8_1, c9, c10, c11_1, c12, c13, c14_1, c15, c16 ---------------------------------------- (71) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (72) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0), div2(z0)), NEQ(z0, 0)) COND2(true, z0) -> c2(COND1(neq(z0, 0), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0), p(z0)), NEQ(z0, 0)) COND2(false, z0) -> c4(COND1(neq(z0, 0), p(z0)), P(z0)) NEQ(0, 0) -> c5 NEQ(0, s(z0)) -> c6 NEQ(s(z0), 0) -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0) -> c9 EVEN(s(0)) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0) -> c12 DIV2(s(0)) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0) -> c15 P(s(z0)) -> c16 The (relative) TRS S consists of the following rules: cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0), p(z0)) neq(0, 0) -> false neq(0, s(z0)) -> true neq(s(z0), 0) -> true neq(s(z0), s(y)) -> neq(z0, y) even(0) -> true even(s(0)) -> false even(s(s(z0))) -> even(z0) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(z0))) -> s(div2(z0)) p(0) -> 0 p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (73) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (74) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0'), div2(z0)), NEQ(z0, 0')) COND2(true, z0) -> c2(COND1(neq(z0, 0'), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0'), p(z0)), NEQ(z0, 0')) COND2(false, z0) -> c4(COND1(neq(z0, 0'), p(z0)), P(z0)) NEQ(0', 0') -> c5 NEQ(0', s(z0)) -> c6 NEQ(s(z0), 0') -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0') -> c9 EVEN(s(0')) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0') -> c12 DIV2(s(0')) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0') -> c15 P(s(z0)) -> c16 The (relative) TRS S consists of the following rules: cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0'), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0'), p(z0)) neq(0', 0') -> false neq(0', s(z0)) -> true neq(s(z0), 0') -> true neq(s(z0), s(y)) -> neq(z0, y) even(0') -> true even(s(0')) -> false even(s(s(z0))) -> even(z0) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(z0))) -> s(div2(z0)) p(0') -> 0' p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (75) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (76) Obligation: Innermost TRS: Rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0'), div2(z0)), NEQ(z0, 0')) COND2(true, z0) -> c2(COND1(neq(z0, 0'), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0'), p(z0)), NEQ(z0, 0')) COND2(false, z0) -> c4(COND1(neq(z0, 0'), p(z0)), P(z0)) NEQ(0', 0') -> c5 NEQ(0', s(z0)) -> c6 NEQ(s(z0), 0') -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0') -> c9 EVEN(s(0')) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0') -> c12 DIV2(s(0')) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0') -> c15 P(s(z0)) -> c16 cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0'), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0'), p(z0)) neq(0', 0') -> false neq(0', s(z0)) -> true neq(s(z0), 0') -> true neq(s(z0), s(y)) -> neq(z0, y) even(0') -> true even(s(0')) -> false even(s(s(z0))) -> even(z0) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(z0))) -> s(div2(z0)) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s:y -> c true :: true:false c :: c1:c2:c3:c4 -> c9:c10:c11 -> c COND2 :: true:false -> 0':s:y -> c1:c2:c3:c4 even :: 0':s:y -> true:false EVEN :: 0':s:y -> c9:c10:c11 c1 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y NEQ :: 0':s:y -> 0':s:y -> c5:c6:c7:c8 c2 :: c -> c12:c13:c14 -> c1:c2:c3:c4 DIV2 :: 0':s:y -> c12:c13:c14 false :: true:false c3 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 p :: 0':s:y -> 0':s:y c4 :: c -> c15:c16 -> c1:c2:c3:c4 P :: 0':s:y -> c15:c16 c5 :: c5:c6:c7:c8 s :: 0':s:y -> 0':s:y c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 y :: 0':s:y c8 :: c5:c6:c7:c8 -> c5:c6:c7:c8 c9 :: c9:c10:c11 c10 :: c9:c10:c11 c11 :: c9:c10:c11 -> c9:c10:c11 c12 :: c12:c13:c14 c13 :: c12:c13:c14 c14 :: c12:c13:c14 -> c12:c13:c14 c15 :: c15:c16 c16 :: c15:c16 cond1 :: true:false -> 0':s:y -> cond1:cond2 cond2 :: true:false -> 0':s:y -> cond1:cond2 hole_c1_17 :: c hole_true:false2_17 :: true:false hole_0':s:y3_17 :: 0':s:y hole_c1:c2:c3:c44_17 :: c1:c2:c3:c4 hole_c9:c10:c115_17 :: c9:c10:c11 hole_c5:c6:c7:c86_17 :: c5:c6:c7:c8 hole_c12:c13:c147_17 :: c12:c13:c14 hole_c15:c168_17 :: c15:c16 hole_cond1:cond29_17 :: cond1:cond2 gen_0':s:y10_17 :: Nat -> 0':s:y gen_c9:c10:c1111_17 :: Nat -> c9:c10:c11 gen_c5:c6:c7:c812_17 :: Nat -> c5:c6:c7:c8 gen_c12:c13:c1413_17 :: Nat -> c12:c13:c14 ---------------------------------------- (77) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: COND1, COND2, even, EVEN, neq, div2, NEQ, DIV2, cond1, cond2 They will be analysed ascendingly in the following order: COND1 = COND2 even < COND1 EVEN < COND1 neq < COND2 div2 < COND2 NEQ < COND2 DIV2 < COND2 even < cond1 neq < cond2 div2 < cond2 cond1 = cond2 ---------------------------------------- (78) Obligation: Innermost TRS: Rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0'), div2(z0)), NEQ(z0, 0')) COND2(true, z0) -> c2(COND1(neq(z0, 0'), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0'), p(z0)), NEQ(z0, 0')) COND2(false, z0) -> c4(COND1(neq(z0, 0'), p(z0)), P(z0)) NEQ(0', 0') -> c5 NEQ(0', s(z0)) -> c6 NEQ(s(z0), 0') -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0') -> c9 EVEN(s(0')) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0') -> c12 DIV2(s(0')) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0') -> c15 P(s(z0)) -> c16 cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0'), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0'), p(z0)) neq(0', 0') -> false neq(0', s(z0)) -> true neq(s(z0), 0') -> true neq(s(z0), s(y)) -> neq(z0, y) even(0') -> true even(s(0')) -> false even(s(s(z0))) -> even(z0) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(z0))) -> s(div2(z0)) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s:y -> c true :: true:false c :: c1:c2:c3:c4 -> c9:c10:c11 -> c COND2 :: true:false -> 0':s:y -> c1:c2:c3:c4 even :: 0':s:y -> true:false EVEN :: 0':s:y -> c9:c10:c11 c1 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y NEQ :: 0':s:y -> 0':s:y -> c5:c6:c7:c8 c2 :: c -> c12:c13:c14 -> c1:c2:c3:c4 DIV2 :: 0':s:y -> c12:c13:c14 false :: true:false c3 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 p :: 0':s:y -> 0':s:y c4 :: c -> c15:c16 -> c1:c2:c3:c4 P :: 0':s:y -> c15:c16 c5 :: c5:c6:c7:c8 s :: 0':s:y -> 0':s:y c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 y :: 0':s:y c8 :: c5:c6:c7:c8 -> c5:c6:c7:c8 c9 :: c9:c10:c11 c10 :: c9:c10:c11 c11 :: c9:c10:c11 -> c9:c10:c11 c12 :: c12:c13:c14 c13 :: c12:c13:c14 c14 :: c12:c13:c14 -> c12:c13:c14 c15 :: c15:c16 c16 :: c15:c16 cond1 :: true:false -> 0':s:y -> cond1:cond2 cond2 :: true:false -> 0':s:y -> cond1:cond2 hole_c1_17 :: c hole_true:false2_17 :: true:false hole_0':s:y3_17 :: 0':s:y hole_c1:c2:c3:c44_17 :: c1:c2:c3:c4 hole_c9:c10:c115_17 :: c9:c10:c11 hole_c5:c6:c7:c86_17 :: c5:c6:c7:c8 hole_c12:c13:c147_17 :: c12:c13:c14 hole_c15:c168_17 :: c15:c16 hole_cond1:cond29_17 :: cond1:cond2 gen_0':s:y10_17 :: Nat -> 0':s:y gen_c9:c10:c1111_17 :: Nat -> c9:c10:c11 gen_c5:c6:c7:c812_17 :: Nat -> c5:c6:c7:c8 gen_c12:c13:c1413_17 :: Nat -> c12:c13:c14 Generator Equations: gen_0':s:y10_17(0) <=> 0' gen_0':s:y10_17(+(x, 1)) <=> s(gen_0':s:y10_17(x)) gen_c9:c10:c1111_17(0) <=> c9 gen_c9:c10:c1111_17(+(x, 1)) <=> c11(gen_c9:c10:c1111_17(x)) gen_c5:c6:c7:c812_17(0) <=> c5 gen_c5:c6:c7:c812_17(+(x, 1)) <=> c8(gen_c5:c6:c7:c812_17(x)) gen_c12:c13:c1413_17(0) <=> c12 gen_c12:c13:c1413_17(+(x, 1)) <=> c14(gen_c12:c13:c1413_17(x)) The following defined symbols remain to be analysed: even, COND1, COND2, EVEN, neq, div2, NEQ, DIV2, cond1, cond2 They will be analysed ascendingly in the following order: COND1 = COND2 even < COND1 EVEN < COND1 neq < COND2 div2 < COND2 NEQ < COND2 DIV2 < COND2 even < cond1 neq < cond2 div2 < cond2 cond1 = cond2 ---------------------------------------- (79) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: even(gen_0':s:y10_17(*(2, n15_17))) -> true, rt in Omega(0) Induction Base: even(gen_0':s:y10_17(*(2, 0))) ->_R^Omega(0) true Induction Step: even(gen_0':s:y10_17(*(2, +(n15_17, 1)))) ->_R^Omega(0) even(gen_0':s:y10_17(*(2, n15_17))) ->_IH true We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (80) Obligation: Innermost TRS: Rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0'), div2(z0)), NEQ(z0, 0')) COND2(true, z0) -> c2(COND1(neq(z0, 0'), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0'), p(z0)), NEQ(z0, 0')) COND2(false, z0) -> c4(COND1(neq(z0, 0'), p(z0)), P(z0)) NEQ(0', 0') -> c5 NEQ(0', s(z0)) -> c6 NEQ(s(z0), 0') -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0') -> c9 EVEN(s(0')) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0') -> c12 DIV2(s(0')) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0') -> c15 P(s(z0)) -> c16 cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0'), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0'), p(z0)) neq(0', 0') -> false neq(0', s(z0)) -> true neq(s(z0), 0') -> true neq(s(z0), s(y)) -> neq(z0, y) even(0') -> true even(s(0')) -> false even(s(s(z0))) -> even(z0) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(z0))) -> s(div2(z0)) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s:y -> c true :: true:false c :: c1:c2:c3:c4 -> c9:c10:c11 -> c COND2 :: true:false -> 0':s:y -> c1:c2:c3:c4 even :: 0':s:y -> true:false EVEN :: 0':s:y -> c9:c10:c11 c1 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y NEQ :: 0':s:y -> 0':s:y -> c5:c6:c7:c8 c2 :: c -> c12:c13:c14 -> c1:c2:c3:c4 DIV2 :: 0':s:y -> c12:c13:c14 false :: true:false c3 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 p :: 0':s:y -> 0':s:y c4 :: c -> c15:c16 -> c1:c2:c3:c4 P :: 0':s:y -> c15:c16 c5 :: c5:c6:c7:c8 s :: 0':s:y -> 0':s:y c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 y :: 0':s:y c8 :: c5:c6:c7:c8 -> c5:c6:c7:c8 c9 :: c9:c10:c11 c10 :: c9:c10:c11 c11 :: c9:c10:c11 -> c9:c10:c11 c12 :: c12:c13:c14 c13 :: c12:c13:c14 c14 :: c12:c13:c14 -> c12:c13:c14 c15 :: c15:c16 c16 :: c15:c16 cond1 :: true:false -> 0':s:y -> cond1:cond2 cond2 :: true:false -> 0':s:y -> cond1:cond2 hole_c1_17 :: c hole_true:false2_17 :: true:false hole_0':s:y3_17 :: 0':s:y hole_c1:c2:c3:c44_17 :: c1:c2:c3:c4 hole_c9:c10:c115_17 :: c9:c10:c11 hole_c5:c6:c7:c86_17 :: c5:c6:c7:c8 hole_c12:c13:c147_17 :: c12:c13:c14 hole_c15:c168_17 :: c15:c16 hole_cond1:cond29_17 :: cond1:cond2 gen_0':s:y10_17 :: Nat -> 0':s:y gen_c9:c10:c1111_17 :: Nat -> c9:c10:c11 gen_c5:c6:c7:c812_17 :: Nat -> c5:c6:c7:c8 gen_c12:c13:c1413_17 :: Nat -> c12:c13:c14 Lemmas: even(gen_0':s:y10_17(*(2, n15_17))) -> true, rt in Omega(0) Generator Equations: gen_0':s:y10_17(0) <=> 0' gen_0':s:y10_17(+(x, 1)) <=> s(gen_0':s:y10_17(x)) gen_c9:c10:c1111_17(0) <=> c9 gen_c9:c10:c1111_17(+(x, 1)) <=> c11(gen_c9:c10:c1111_17(x)) gen_c5:c6:c7:c812_17(0) <=> c5 gen_c5:c6:c7:c812_17(+(x, 1)) <=> c8(gen_c5:c6:c7:c812_17(x)) gen_c12:c13:c1413_17(0) <=> c12 gen_c12:c13:c1413_17(+(x, 1)) <=> c14(gen_c12:c13:c1413_17(x)) The following defined symbols remain to be analysed: EVEN, COND1, COND2, neq, div2, NEQ, DIV2, cond1, cond2 They will be analysed ascendingly in the following order: COND1 = COND2 EVEN < COND1 neq < COND2 div2 < COND2 NEQ < COND2 DIV2 < COND2 neq < cond2 div2 < cond2 cond1 = cond2 ---------------------------------------- (81) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: EVEN(gen_0':s:y10_17(*(2, n243_17))) -> gen_c9:c10:c1111_17(n243_17), rt in Omega(1 + n243_17) Induction Base: EVEN(gen_0':s:y10_17(*(2, 0))) ->_R^Omega(1) c9 Induction Step: EVEN(gen_0':s:y10_17(*(2, +(n243_17, 1)))) ->_R^Omega(1) c11(EVEN(gen_0':s:y10_17(*(2, n243_17)))) ->_IH c11(gen_c9:c10:c1111_17(c244_17)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (82) Complex Obligation (BEST) ---------------------------------------- (83) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0'), div2(z0)), NEQ(z0, 0')) COND2(true, z0) -> c2(COND1(neq(z0, 0'), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0'), p(z0)), NEQ(z0, 0')) COND2(false, z0) -> c4(COND1(neq(z0, 0'), p(z0)), P(z0)) NEQ(0', 0') -> c5 NEQ(0', s(z0)) -> c6 NEQ(s(z0), 0') -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0') -> c9 EVEN(s(0')) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0') -> c12 DIV2(s(0')) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0') -> c15 P(s(z0)) -> c16 cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0'), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0'), p(z0)) neq(0', 0') -> false neq(0', s(z0)) -> true neq(s(z0), 0') -> true neq(s(z0), s(y)) -> neq(z0, y) even(0') -> true even(s(0')) -> false even(s(s(z0))) -> even(z0) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(z0))) -> s(div2(z0)) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s:y -> c true :: true:false c :: c1:c2:c3:c4 -> c9:c10:c11 -> c COND2 :: true:false -> 0':s:y -> c1:c2:c3:c4 even :: 0':s:y -> true:false EVEN :: 0':s:y -> c9:c10:c11 c1 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y NEQ :: 0':s:y -> 0':s:y -> c5:c6:c7:c8 c2 :: c -> c12:c13:c14 -> c1:c2:c3:c4 DIV2 :: 0':s:y -> c12:c13:c14 false :: true:false c3 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 p :: 0':s:y -> 0':s:y c4 :: c -> c15:c16 -> c1:c2:c3:c4 P :: 0':s:y -> c15:c16 c5 :: c5:c6:c7:c8 s :: 0':s:y -> 0':s:y c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 y :: 0':s:y c8 :: c5:c6:c7:c8 -> c5:c6:c7:c8 c9 :: c9:c10:c11 c10 :: c9:c10:c11 c11 :: c9:c10:c11 -> c9:c10:c11 c12 :: c12:c13:c14 c13 :: c12:c13:c14 c14 :: c12:c13:c14 -> c12:c13:c14 c15 :: c15:c16 c16 :: c15:c16 cond1 :: true:false -> 0':s:y -> cond1:cond2 cond2 :: true:false -> 0':s:y -> cond1:cond2 hole_c1_17 :: c hole_true:false2_17 :: true:false hole_0':s:y3_17 :: 0':s:y hole_c1:c2:c3:c44_17 :: c1:c2:c3:c4 hole_c9:c10:c115_17 :: c9:c10:c11 hole_c5:c6:c7:c86_17 :: c5:c6:c7:c8 hole_c12:c13:c147_17 :: c12:c13:c14 hole_c15:c168_17 :: c15:c16 hole_cond1:cond29_17 :: cond1:cond2 gen_0':s:y10_17 :: Nat -> 0':s:y gen_c9:c10:c1111_17 :: Nat -> c9:c10:c11 gen_c5:c6:c7:c812_17 :: Nat -> c5:c6:c7:c8 gen_c12:c13:c1413_17 :: Nat -> c12:c13:c14 Lemmas: even(gen_0':s:y10_17(*(2, n15_17))) -> true, rt in Omega(0) Generator Equations: gen_0':s:y10_17(0) <=> 0' gen_0':s:y10_17(+(x, 1)) <=> s(gen_0':s:y10_17(x)) gen_c9:c10:c1111_17(0) <=> c9 gen_c9:c10:c1111_17(+(x, 1)) <=> c11(gen_c9:c10:c1111_17(x)) gen_c5:c6:c7:c812_17(0) <=> c5 gen_c5:c6:c7:c812_17(+(x, 1)) <=> c8(gen_c5:c6:c7:c812_17(x)) gen_c12:c13:c1413_17(0) <=> c12 gen_c12:c13:c1413_17(+(x, 1)) <=> c14(gen_c12:c13:c1413_17(x)) The following defined symbols remain to be analysed: EVEN, COND1, COND2, neq, div2, NEQ, DIV2, cond1, cond2 They will be analysed ascendingly in the following order: COND1 = COND2 EVEN < COND1 neq < COND2 div2 < COND2 NEQ < COND2 DIV2 < COND2 neq < cond2 div2 < cond2 cond1 = cond2 ---------------------------------------- (84) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (85) BOUNDS(n^1, INF) ---------------------------------------- (86) Obligation: Innermost TRS: Rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0'), div2(z0)), NEQ(z0, 0')) COND2(true, z0) -> c2(COND1(neq(z0, 0'), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0'), p(z0)), NEQ(z0, 0')) COND2(false, z0) -> c4(COND1(neq(z0, 0'), p(z0)), P(z0)) NEQ(0', 0') -> c5 NEQ(0', s(z0)) -> c6 NEQ(s(z0), 0') -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0') -> c9 EVEN(s(0')) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0') -> c12 DIV2(s(0')) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0') -> c15 P(s(z0)) -> c16 cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0'), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0'), p(z0)) neq(0', 0') -> false neq(0', s(z0)) -> true neq(s(z0), 0') -> true neq(s(z0), s(y)) -> neq(z0, y) even(0') -> true even(s(0')) -> false even(s(s(z0))) -> even(z0) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(z0))) -> s(div2(z0)) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s:y -> c true :: true:false c :: c1:c2:c3:c4 -> c9:c10:c11 -> c COND2 :: true:false -> 0':s:y -> c1:c2:c3:c4 even :: 0':s:y -> true:false EVEN :: 0':s:y -> c9:c10:c11 c1 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y NEQ :: 0':s:y -> 0':s:y -> c5:c6:c7:c8 c2 :: c -> c12:c13:c14 -> c1:c2:c3:c4 DIV2 :: 0':s:y -> c12:c13:c14 false :: true:false c3 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 p :: 0':s:y -> 0':s:y c4 :: c -> c15:c16 -> c1:c2:c3:c4 P :: 0':s:y -> c15:c16 c5 :: c5:c6:c7:c8 s :: 0':s:y -> 0':s:y c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 y :: 0':s:y c8 :: c5:c6:c7:c8 -> c5:c6:c7:c8 c9 :: c9:c10:c11 c10 :: c9:c10:c11 c11 :: c9:c10:c11 -> c9:c10:c11 c12 :: c12:c13:c14 c13 :: c12:c13:c14 c14 :: c12:c13:c14 -> c12:c13:c14 c15 :: c15:c16 c16 :: c15:c16 cond1 :: true:false -> 0':s:y -> cond1:cond2 cond2 :: true:false -> 0':s:y -> cond1:cond2 hole_c1_17 :: c hole_true:false2_17 :: true:false hole_0':s:y3_17 :: 0':s:y hole_c1:c2:c3:c44_17 :: c1:c2:c3:c4 hole_c9:c10:c115_17 :: c9:c10:c11 hole_c5:c6:c7:c86_17 :: c5:c6:c7:c8 hole_c12:c13:c147_17 :: c12:c13:c14 hole_c15:c168_17 :: c15:c16 hole_cond1:cond29_17 :: cond1:cond2 gen_0':s:y10_17 :: Nat -> 0':s:y gen_c9:c10:c1111_17 :: Nat -> c9:c10:c11 gen_c5:c6:c7:c812_17 :: Nat -> c5:c6:c7:c8 gen_c12:c13:c1413_17 :: Nat -> c12:c13:c14 Lemmas: even(gen_0':s:y10_17(*(2, n15_17))) -> true, rt in Omega(0) EVEN(gen_0':s:y10_17(*(2, n243_17))) -> gen_c9:c10:c1111_17(n243_17), rt in Omega(1 + n243_17) Generator Equations: gen_0':s:y10_17(0) <=> 0' gen_0':s:y10_17(+(x, 1)) <=> s(gen_0':s:y10_17(x)) gen_c9:c10:c1111_17(0) <=> c9 gen_c9:c10:c1111_17(+(x, 1)) <=> c11(gen_c9:c10:c1111_17(x)) gen_c5:c6:c7:c812_17(0) <=> c5 gen_c5:c6:c7:c812_17(+(x, 1)) <=> c8(gen_c5:c6:c7:c812_17(x)) gen_c12:c13:c1413_17(0) <=> c12 gen_c12:c13:c1413_17(+(x, 1)) <=> c14(gen_c12:c13:c1413_17(x)) The following defined symbols remain to be analysed: neq, COND1, COND2, div2, NEQ, DIV2, cond1, cond2 They will be analysed ascendingly in the following order: COND1 = COND2 neq < COND2 div2 < COND2 NEQ < COND2 DIV2 < COND2 neq < cond2 div2 < cond2 cond1 = cond2 ---------------------------------------- (87) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: div2(gen_0':s:y10_17(*(2, n779_17))) -> gen_0':s:y10_17(n779_17), rt in Omega(0) Induction Base: div2(gen_0':s:y10_17(*(2, 0))) ->_R^Omega(0) 0' Induction Step: div2(gen_0':s:y10_17(*(2, +(n779_17, 1)))) ->_R^Omega(0) s(div2(gen_0':s:y10_17(*(2, n779_17)))) ->_IH s(gen_0':s:y10_17(c780_17)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (88) Obligation: Innermost TRS: Rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0'), div2(z0)), NEQ(z0, 0')) COND2(true, z0) -> c2(COND1(neq(z0, 0'), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0'), p(z0)), NEQ(z0, 0')) COND2(false, z0) -> c4(COND1(neq(z0, 0'), p(z0)), P(z0)) NEQ(0', 0') -> c5 NEQ(0', s(z0)) -> c6 NEQ(s(z0), 0') -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0') -> c9 EVEN(s(0')) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0') -> c12 DIV2(s(0')) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0') -> c15 P(s(z0)) -> c16 cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0'), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0'), p(z0)) neq(0', 0') -> false neq(0', s(z0)) -> true neq(s(z0), 0') -> true neq(s(z0), s(y)) -> neq(z0, y) even(0') -> true even(s(0')) -> false even(s(s(z0))) -> even(z0) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(z0))) -> s(div2(z0)) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s:y -> c true :: true:false c :: c1:c2:c3:c4 -> c9:c10:c11 -> c COND2 :: true:false -> 0':s:y -> c1:c2:c3:c4 even :: 0':s:y -> true:false EVEN :: 0':s:y -> c9:c10:c11 c1 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y NEQ :: 0':s:y -> 0':s:y -> c5:c6:c7:c8 c2 :: c -> c12:c13:c14 -> c1:c2:c3:c4 DIV2 :: 0':s:y -> c12:c13:c14 false :: true:false c3 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 p :: 0':s:y -> 0':s:y c4 :: c -> c15:c16 -> c1:c2:c3:c4 P :: 0':s:y -> c15:c16 c5 :: c5:c6:c7:c8 s :: 0':s:y -> 0':s:y c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 y :: 0':s:y c8 :: c5:c6:c7:c8 -> c5:c6:c7:c8 c9 :: c9:c10:c11 c10 :: c9:c10:c11 c11 :: c9:c10:c11 -> c9:c10:c11 c12 :: c12:c13:c14 c13 :: c12:c13:c14 c14 :: c12:c13:c14 -> c12:c13:c14 c15 :: c15:c16 c16 :: c15:c16 cond1 :: true:false -> 0':s:y -> cond1:cond2 cond2 :: true:false -> 0':s:y -> cond1:cond2 hole_c1_17 :: c hole_true:false2_17 :: true:false hole_0':s:y3_17 :: 0':s:y hole_c1:c2:c3:c44_17 :: c1:c2:c3:c4 hole_c9:c10:c115_17 :: c9:c10:c11 hole_c5:c6:c7:c86_17 :: c5:c6:c7:c8 hole_c12:c13:c147_17 :: c12:c13:c14 hole_c15:c168_17 :: c15:c16 hole_cond1:cond29_17 :: cond1:cond2 gen_0':s:y10_17 :: Nat -> 0':s:y gen_c9:c10:c1111_17 :: Nat -> c9:c10:c11 gen_c5:c6:c7:c812_17 :: Nat -> c5:c6:c7:c8 gen_c12:c13:c1413_17 :: Nat -> c12:c13:c14 Lemmas: even(gen_0':s:y10_17(*(2, n15_17))) -> true, rt in Omega(0) EVEN(gen_0':s:y10_17(*(2, n243_17))) -> gen_c9:c10:c1111_17(n243_17), rt in Omega(1 + n243_17) div2(gen_0':s:y10_17(*(2, n779_17))) -> gen_0':s:y10_17(n779_17), rt in Omega(0) Generator Equations: gen_0':s:y10_17(0) <=> 0' gen_0':s:y10_17(+(x, 1)) <=> s(gen_0':s:y10_17(x)) gen_c9:c10:c1111_17(0) <=> c9 gen_c9:c10:c1111_17(+(x, 1)) <=> c11(gen_c9:c10:c1111_17(x)) gen_c5:c6:c7:c812_17(0) <=> c5 gen_c5:c6:c7:c812_17(+(x, 1)) <=> c8(gen_c5:c6:c7:c812_17(x)) gen_c12:c13:c1413_17(0) <=> c12 gen_c12:c13:c1413_17(+(x, 1)) <=> c14(gen_c12:c13:c1413_17(x)) The following defined symbols remain to be analysed: NEQ, COND1, COND2, DIV2, cond1, cond2 They will be analysed ascendingly in the following order: COND1 = COND2 NEQ < COND2 DIV2 < COND2 cond1 = cond2 ---------------------------------------- (89) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: DIV2(gen_0':s:y10_17(*(2, n1244_17))) -> gen_c12:c13:c1413_17(n1244_17), rt in Omega(1 + n1244_17) Induction Base: DIV2(gen_0':s:y10_17(*(2, 0))) ->_R^Omega(1) c12 Induction Step: DIV2(gen_0':s:y10_17(*(2, +(n1244_17, 1)))) ->_R^Omega(1) c14(DIV2(gen_0':s:y10_17(*(2, n1244_17)))) ->_IH c14(gen_c12:c13:c1413_17(c1245_17)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (90) Obligation: Innermost TRS: Rules: COND1(true, z0) -> c(COND2(even(z0), z0), EVEN(z0)) COND2(true, z0) -> c1(COND1(neq(z0, 0'), div2(z0)), NEQ(z0, 0')) COND2(true, z0) -> c2(COND1(neq(z0, 0'), div2(z0)), DIV2(z0)) COND2(false, z0) -> c3(COND1(neq(z0, 0'), p(z0)), NEQ(z0, 0')) COND2(false, z0) -> c4(COND1(neq(z0, 0'), p(z0)), P(z0)) NEQ(0', 0') -> c5 NEQ(0', s(z0)) -> c6 NEQ(s(z0), 0') -> c7 NEQ(s(z0), s(y)) -> c8(NEQ(z0, y)) EVEN(0') -> c9 EVEN(s(0')) -> c10 EVEN(s(s(z0))) -> c11(EVEN(z0)) DIV2(0') -> c12 DIV2(s(0')) -> c13 DIV2(s(s(z0))) -> c14(DIV2(z0)) P(0') -> c15 P(s(z0)) -> c16 cond1(true, z0) -> cond2(even(z0), z0) cond2(true, z0) -> cond1(neq(z0, 0'), div2(z0)) cond2(false, z0) -> cond1(neq(z0, 0'), p(z0)) neq(0', 0') -> false neq(0', s(z0)) -> true neq(s(z0), 0') -> true neq(s(z0), s(y)) -> neq(z0, y) even(0') -> true even(s(0')) -> false even(s(s(z0))) -> even(z0) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(z0))) -> s(div2(z0)) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s:y -> c true :: true:false c :: c1:c2:c3:c4 -> c9:c10:c11 -> c COND2 :: true:false -> 0':s:y -> c1:c2:c3:c4 even :: 0':s:y -> true:false EVEN :: 0':s:y -> c9:c10:c11 c1 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y NEQ :: 0':s:y -> 0':s:y -> c5:c6:c7:c8 c2 :: c -> c12:c13:c14 -> c1:c2:c3:c4 DIV2 :: 0':s:y -> c12:c13:c14 false :: true:false c3 :: c -> c5:c6:c7:c8 -> c1:c2:c3:c4 p :: 0':s:y -> 0':s:y c4 :: c -> c15:c16 -> c1:c2:c3:c4 P :: 0':s:y -> c15:c16 c5 :: c5:c6:c7:c8 s :: 0':s:y -> 0':s:y c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 y :: 0':s:y c8 :: c5:c6:c7:c8 -> c5:c6:c7:c8 c9 :: c9:c10:c11 c10 :: c9:c10:c11 c11 :: c9:c10:c11 -> c9:c10:c11 c12 :: c12:c13:c14 c13 :: c12:c13:c14 c14 :: c12:c13:c14 -> c12:c13:c14 c15 :: c15:c16 c16 :: c15:c16 cond1 :: true:false -> 0':s:y -> cond1:cond2 cond2 :: true:false -> 0':s:y -> cond1:cond2 hole_c1_17 :: c hole_true:false2_17 :: true:false hole_0':s:y3_17 :: 0':s:y hole_c1:c2:c3:c44_17 :: c1:c2:c3:c4 hole_c9:c10:c115_17 :: c9:c10:c11 hole_c5:c6:c7:c86_17 :: c5:c6:c7:c8 hole_c12:c13:c147_17 :: c12:c13:c14 hole_c15:c168_17 :: c15:c16 hole_cond1:cond29_17 :: cond1:cond2 gen_0':s:y10_17 :: Nat -> 0':s:y gen_c9:c10:c1111_17 :: Nat -> c9:c10:c11 gen_c5:c6:c7:c812_17 :: Nat -> c5:c6:c7:c8 gen_c12:c13:c1413_17 :: Nat -> c12:c13:c14 Lemmas: even(gen_0':s:y10_17(*(2, n15_17))) -> true, rt in Omega(0) EVEN(gen_0':s:y10_17(*(2, n243_17))) -> gen_c9:c10:c1111_17(n243_17), rt in Omega(1 + n243_17) div2(gen_0':s:y10_17(*(2, n779_17))) -> gen_0':s:y10_17(n779_17), rt in Omega(0) DIV2(gen_0':s:y10_17(*(2, n1244_17))) -> gen_c12:c13:c1413_17(n1244_17), rt in Omega(1 + n1244_17) Generator Equations: gen_0':s:y10_17(0) <=> 0' gen_0':s:y10_17(+(x, 1)) <=> s(gen_0':s:y10_17(x)) gen_c9:c10:c1111_17(0) <=> c9 gen_c9:c10:c1111_17(+(x, 1)) <=> c11(gen_c9:c10:c1111_17(x)) gen_c5:c6:c7:c812_17(0) <=> c5 gen_c5:c6:c7:c812_17(+(x, 1)) <=> c8(gen_c5:c6:c7:c812_17(x)) gen_c12:c13:c1413_17(0) <=> c12 gen_c12:c13:c1413_17(+(x, 1)) <=> c14(gen_c12:c13:c1413_17(x)) The following defined symbols remain to be analysed: cond2, COND1, COND2, cond1 They will be analysed ascendingly in the following order: COND1 = COND2 cond1 = cond2