WORST_CASE(Omega(n^1),O(n^1)) proof of input_XMGfBc5HLm.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxWeightedTrs (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedTrs (13) CompletionProof [UPPER BOUND(ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 186 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 72 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 97 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 230 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 26 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 32 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 190 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 42 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 186 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 42 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 279 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 103 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 136 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (70) CpxRNTS (71) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 269 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 124 ms] (76) CpxRNTS (77) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (78) CpxRNTS (79) IntTrsBoundProof [UPPER BOUND(ID), 46 ms] (80) CpxRNTS (81) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (82) CpxRNTS (83) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (84) CpxRNTS (85) IntTrsBoundProof [UPPER BOUND(ID), 317 ms] (86) CpxRNTS (87) IntTrsBoundProof [UPPER BOUND(ID), 104 ms] (88) CpxRNTS (89) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (90) CpxRNTS (91) IntTrsBoundProof [UPPER BOUND(ID), 126 ms] (92) CpxRNTS (93) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (94) CpxRNTS (95) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (96) CpxRNTS (97) IntTrsBoundProof [UPPER BOUND(ID), 327 ms] (98) CpxRNTS (99) IntTrsBoundProof [UPPER BOUND(ID), 105 ms] (100) CpxRNTS (101) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (102) CpxRNTS (103) IntTrsBoundProof [UPPER BOUND(ID), 137 ms] (104) CpxRNTS (105) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (106) CpxRNTS (107) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (108) CpxRNTS (109) IntTrsBoundProof [UPPER BOUND(ID), 317 ms] (110) CpxRNTS (111) IntTrsBoundProof [UPPER BOUND(ID), 94 ms] (112) CpxRNTS (113) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (114) CpxRNTS (115) IntTrsBoundProof [UPPER BOUND(ID), 126 ms] (116) CpxRNTS (117) IntTrsBoundProof [UPPER BOUND(ID), 42 ms] (118) CpxRNTS (119) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (120) CpxRNTS (121) IntTrsBoundProof [UPPER BOUND(ID), 307 ms] (122) CpxRNTS (123) IntTrsBoundProof [UPPER BOUND(ID), 102 ms] (124) CpxRNTS (125) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (126) CpxRNTS (127) IntTrsBoundProof [UPPER BOUND(ID), 198 ms] (128) CpxRNTS (129) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (130) CpxRNTS (131) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (132) CpxRNTS (133) IntTrsBoundProof [UPPER BOUND(ID), 318 ms] (134) CpxRNTS (135) IntTrsBoundProof [UPPER BOUND(ID), 103 ms] (136) CpxRNTS (137) FinalProof [FINISHED, 0 ms] (138) BOUNDS(1, n^1) (139) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (140) CdtProblem (141) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (142) CpxRelTRS (143) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (144) CpxRelTRS (145) TypeInferenceProof [BOTH BOUNDS(ID, ID), 10 ms] (146) typed CpxTrs (147) OrderProof [LOWER BOUND(ID), 0 ms] (148) typed CpxTrs (149) RewriteLemmaProof [LOWER BOUND(ID), 443 ms] (150) BEST (151) proven lower bound (152) LowerBoundPropagationProof [FINISHED, 0 ms] (153) BOUNDS(n^1, INF) (154) typed CpxTrs (155) RewriteLemmaProof [LOWER BOUND(ID), 183 ms] (156) typed CpxTrs (157) RewriteLemmaProof [LOWER BOUND(ID), 149 ms] (158) typed CpxTrs (159) RewriteLemmaProof [LOWER BOUND(ID), 127 ms] (160) typed CpxTrs (161) RewriteLemmaProof [LOWER BOUND(ID), 136 ms] (162) typed CpxTrs (163) RewriteLemmaProof [LOWER BOUND(ID), 74 ms] (164) typed CpxTrs (165) RewriteLemmaProof [LOWER BOUND(ID), 112 ms] (166) typed CpxTrs (167) RewriteLemmaProof [LOWER BOUND(ID), 154 ms] (168) typed CpxTrs (169) RewriteLemmaProof [LOWER BOUND(ID), 142 ms] (170) typed CpxTrs (171) RewriteLemmaProof [LOWER BOUND(ID), 175 ms] (172) typed CpxTrs (173) RewriteLemmaProof [LOWER BOUND(ID), 330 ms] (174) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f_0(x) -> a f_1(x) -> g_1(x, x) g_1(s(x), y) -> b(f_0(y), g_1(x, y)) f_2(x) -> g_2(x, x) g_2(s(x), y) -> b(f_1(y), g_2(x, y)) f_3(x) -> g_3(x, x) g_3(s(x), y) -> b(f_2(y), g_3(x, y)) f_4(x) -> g_4(x, x) g_4(s(x), y) -> b(f_3(y), g_4(x, y)) f_5(x) -> g_5(x, x) g_5(s(x), y) -> b(f_4(y), g_5(x, y)) f_6(x) -> g_6(x, x) g_6(s(x), y) -> b(f_5(y), g_6(x, y)) f_7(x) -> g_7(x, x) g_7(s(x), y) -> b(f_6(y), g_7(x, y)) f_8(x) -> g_8(x, x) g_8(s(x), y) -> b(f_7(y), g_8(x, y)) f_9(x) -> g_9(x, x) g_9(s(x), y) -> b(f_8(y), g_9(x, y)) f_10(x) -> g_10(x, x) g_10(s(x), y) -> b(f_9(y), g_10(x, y)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Tuples: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) S tuples: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) K tuples:none Defined Rule Symbols: f_0_1, f_1_1, g_1_2, f_2_1, g_2_2, f_3_1, g_3_2, f_4_1, g_4_2, f_5_1, g_5_2, f_6_1, g_6_2, f_7_1, g_7_2, f_8_1, g_8_2, f_9_1, g_9_2, f_10_1, g_10_2 Defined Pair Symbols: F_0_1, F_1_1, G_1_2, F_2_1, G_2_2, F_3_1, G_3_2, F_4_1, G_4_2, F_5_1, G_5_2, F_6_1, G_6_2, F_7_1, G_7_2, F_8_1, G_8_2, F_9_1, G_9_2, F_10_1, G_10_2 Compound Symbols: c, c1_1, c2_1, c3_1, c4_1, c5_1, c6_1, c7_1, c8_1, c9_1, c10_1, c11_1, c12_1, c13_1, c14_1, c15_1, c16_1, c17_1, c18_1, c19_1, c20_1, c21_1, c22_1, c23_1, c24_1, c25_1, c26_1, c27_1, c28_1, c29_1, c30_1 ---------------------------------------- (3) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: F_10(z0) -> c28(G_10(z0, z0)) Removed 2 trailing nodes: F_0(z0) -> c G_1(s(z0), z1) -> c2(F_0(z1)) ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Tuples: F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) S tuples: F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) K tuples:none Defined Rule Symbols: f_0_1, f_1_1, g_1_2, f_2_1, g_2_2, f_3_1, g_3_2, f_4_1, g_4_2, f_5_1, g_5_2, f_6_1, g_6_2, f_7_1, g_7_2, f_8_1, g_8_2, f_9_1, g_9_2, f_10_1, g_10_2 Defined Pair Symbols: F_1_1, G_1_2, F_2_1, G_2_2, F_3_1, G_3_2, F_4_1, G_4_2, F_5_1, G_5_2, F_6_1, G_6_2, F_7_1, G_7_2, F_8_1, G_8_2, F_9_1, G_9_2, G_10_2 Compound Symbols: c1_1, c3_1, c4_1, c5_1, c6_1, c7_1, c8_1, c9_1, c10_1, c11_1, c12_1, c13_1, c14_1, c15_1, c16_1, c17_1, c18_1, c19_1, c20_1, c21_1, c22_1, c23_1, c24_1, c25_1, c26_1, c27_1, c29_1, c30_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) S tuples: F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_1_1, G_1_2, F_2_1, G_2_2, F_3_1, G_3_2, F_4_1, G_4_2, F_5_1, G_5_2, F_6_1, G_6_2, F_7_1, G_7_2, F_8_1, G_8_2, F_9_1, G_9_2, G_10_2 Compound Symbols: c1_1, c3_1, c4_1, c5_1, c6_1, c7_1, c8_1, c9_1, c10_1, c11_1, c12_1, c13_1, c14_1, c15_1, c16_1, c17_1, c18_1, c19_1, c20_1, c21_1, c22_1, c23_1, c24_1, c25_1, c26_1, c27_1, c29_1, c30_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: F_1(z0) -> c1(G_1(z0, z0)) [1] G_1(s(z0), z1) -> c3(G_1(z0, z1)) [1] F_2(z0) -> c4(G_2(z0, z0)) [1] G_2(s(z0), z1) -> c5(F_1(z1)) [1] G_2(s(z0), z1) -> c6(G_2(z0, z1)) [1] F_3(z0) -> c7(G_3(z0, z0)) [1] G_3(s(z0), z1) -> c8(F_2(z1)) [1] G_3(s(z0), z1) -> c9(G_3(z0, z1)) [1] F_4(z0) -> c10(G_4(z0, z0)) [1] G_4(s(z0), z1) -> c11(F_3(z1)) [1] G_4(s(z0), z1) -> c12(G_4(z0, z1)) [1] F_5(z0) -> c13(G_5(z0, z0)) [1] G_5(s(z0), z1) -> c14(F_4(z1)) [1] G_5(s(z0), z1) -> c15(G_5(z0, z1)) [1] F_6(z0) -> c16(G_6(z0, z0)) [1] G_6(s(z0), z1) -> c17(F_5(z1)) [1] G_6(s(z0), z1) -> c18(G_6(z0, z1)) [1] F_7(z0) -> c19(G_7(z0, z0)) [1] G_7(s(z0), z1) -> c20(F_6(z1)) [1] G_7(s(z0), z1) -> c21(G_7(z0, z1)) [1] F_8(z0) -> c22(G_8(z0, z0)) [1] G_8(s(z0), z1) -> c23(F_7(z1)) [1] G_8(s(z0), z1) -> c24(G_8(z0, z1)) [1] F_9(z0) -> c25(G_9(z0, z0)) [1] G_9(s(z0), z1) -> c26(F_8(z1)) [1] G_9(s(z0), z1) -> c27(G_9(z0, z1)) [1] G_10(s(z0), z1) -> c29(F_9(z1)) [1] G_10(s(z0), z1) -> c30(G_10(z0, z1)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F_1(z0) -> c1(G_1(z0, z0)) [1] G_1(s(z0), z1) -> c3(G_1(z0, z1)) [1] F_2(z0) -> c4(G_2(z0, z0)) [1] G_2(s(z0), z1) -> c5(F_1(z1)) [1] G_2(s(z0), z1) -> c6(G_2(z0, z1)) [1] F_3(z0) -> c7(G_3(z0, z0)) [1] G_3(s(z0), z1) -> c8(F_2(z1)) [1] G_3(s(z0), z1) -> c9(G_3(z0, z1)) [1] F_4(z0) -> c10(G_4(z0, z0)) [1] G_4(s(z0), z1) -> c11(F_3(z1)) [1] G_4(s(z0), z1) -> c12(G_4(z0, z1)) [1] F_5(z0) -> c13(G_5(z0, z0)) [1] G_5(s(z0), z1) -> c14(F_4(z1)) [1] G_5(s(z0), z1) -> c15(G_5(z0, z1)) [1] F_6(z0) -> c16(G_6(z0, z0)) [1] G_6(s(z0), z1) -> c17(F_5(z1)) [1] G_6(s(z0), z1) -> c18(G_6(z0, z1)) [1] F_7(z0) -> c19(G_7(z0, z0)) [1] G_7(s(z0), z1) -> c20(F_6(z1)) [1] G_7(s(z0), z1) -> c21(G_7(z0, z1)) [1] F_8(z0) -> c22(G_8(z0, z0)) [1] G_8(s(z0), z1) -> c23(F_7(z1)) [1] G_8(s(z0), z1) -> c24(G_8(z0, z1)) [1] F_9(z0) -> c25(G_9(z0, z0)) [1] G_9(s(z0), z1) -> c26(F_8(z1)) [1] G_9(s(z0), z1) -> c27(G_9(z0, z1)) [1] G_10(s(z0), z1) -> c29(F_9(z1)) [1] G_10(s(z0), z1) -> c30(G_10(z0, z1)) [1] The TRS has the following type information: F_1 :: s -> c1 c1 :: c3 -> c1 G_1 :: s -> s -> c3 s :: s -> s c3 :: c3 -> c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 Rewrite Strategy: INNERMOST ---------------------------------------- (13) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: F_1_1 G_1_2 F_2_1 G_2_2 F_3_1 G_3_2 F_4_1 G_4_2 F_5_1 G_5_2 F_6_1 G_6_2 F_7_1 G_7_2 F_8_1 G_8_2 F_9_1 G_9_2 G_10_2 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const, const1, const2, const3, const4, const5, const6, const7, const8, const9, const10, const11, const12, const13, const14, const15, const16, const17, const18, const19 ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F_1(z0) -> c1(G_1(z0, z0)) [1] G_1(s(z0), z1) -> c3(G_1(z0, z1)) [1] F_2(z0) -> c4(G_2(z0, z0)) [1] G_2(s(z0), z1) -> c5(F_1(z1)) [1] G_2(s(z0), z1) -> c6(G_2(z0, z1)) [1] F_3(z0) -> c7(G_3(z0, z0)) [1] G_3(s(z0), z1) -> c8(F_2(z1)) [1] G_3(s(z0), z1) -> c9(G_3(z0, z1)) [1] F_4(z0) -> c10(G_4(z0, z0)) [1] G_4(s(z0), z1) -> c11(F_3(z1)) [1] G_4(s(z0), z1) -> c12(G_4(z0, z1)) [1] F_5(z0) -> c13(G_5(z0, z0)) [1] G_5(s(z0), z1) -> c14(F_4(z1)) [1] G_5(s(z0), z1) -> c15(G_5(z0, z1)) [1] F_6(z0) -> c16(G_6(z0, z0)) [1] G_6(s(z0), z1) -> c17(F_5(z1)) [1] G_6(s(z0), z1) -> c18(G_6(z0, z1)) [1] F_7(z0) -> c19(G_7(z0, z0)) [1] G_7(s(z0), z1) -> c20(F_6(z1)) [1] G_7(s(z0), z1) -> c21(G_7(z0, z1)) [1] F_8(z0) -> c22(G_8(z0, z0)) [1] G_8(s(z0), z1) -> c23(F_7(z1)) [1] G_8(s(z0), z1) -> c24(G_8(z0, z1)) [1] F_9(z0) -> c25(G_9(z0, z0)) [1] G_9(s(z0), z1) -> c26(F_8(z1)) [1] G_9(s(z0), z1) -> c27(G_9(z0, z1)) [1] G_10(s(z0), z1) -> c29(F_9(z1)) [1] G_10(s(z0), z1) -> c30(G_10(z0, z1)) [1] The TRS has the following type information: F_1 :: s -> c1 c1 :: c3 -> c1 G_1 :: s -> s -> c3 s :: s -> s c3 :: c3 -> c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 const :: c1 const1 :: s const2 :: c3 const3 :: c4 const4 :: c5:c6 const5 :: c7 const6 :: c8:c9 const7 :: c10 const8 :: c11:c12 const9 :: c13 const10 :: c14:c15 const11 :: c16 const12 :: c17:c18 const13 :: c19 const14 :: c20:c21 const15 :: c22 const16 :: c23:c24 const17 :: c25 const18 :: c26:c27 const19 :: c29:c30 Rewrite Strategy: INNERMOST ---------------------------------------- (15) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F_1(z0) -> c1(G_1(z0, z0)) [1] G_1(s(z0), z1) -> c3(G_1(z0, z1)) [1] F_2(z0) -> c4(G_2(z0, z0)) [1] G_2(s(z0), z1) -> c5(F_1(z1)) [1] G_2(s(z0), z1) -> c6(G_2(z0, z1)) [1] F_3(z0) -> c7(G_3(z0, z0)) [1] G_3(s(z0), z1) -> c8(F_2(z1)) [1] G_3(s(z0), z1) -> c9(G_3(z0, z1)) [1] F_4(z0) -> c10(G_4(z0, z0)) [1] G_4(s(z0), z1) -> c11(F_3(z1)) [1] G_4(s(z0), z1) -> c12(G_4(z0, z1)) [1] F_5(z0) -> c13(G_5(z0, z0)) [1] G_5(s(z0), z1) -> c14(F_4(z1)) [1] G_5(s(z0), z1) -> c15(G_5(z0, z1)) [1] F_6(z0) -> c16(G_6(z0, z0)) [1] G_6(s(z0), z1) -> c17(F_5(z1)) [1] G_6(s(z0), z1) -> c18(G_6(z0, z1)) [1] F_7(z0) -> c19(G_7(z0, z0)) [1] G_7(s(z0), z1) -> c20(F_6(z1)) [1] G_7(s(z0), z1) -> c21(G_7(z0, z1)) [1] F_8(z0) -> c22(G_8(z0, z0)) [1] G_8(s(z0), z1) -> c23(F_7(z1)) [1] G_8(s(z0), z1) -> c24(G_8(z0, z1)) [1] F_9(z0) -> c25(G_9(z0, z0)) [1] G_9(s(z0), z1) -> c26(F_8(z1)) [1] G_9(s(z0), z1) -> c27(G_9(z0, z1)) [1] G_10(s(z0), z1) -> c29(F_9(z1)) [1] G_10(s(z0), z1) -> c30(G_10(z0, z1)) [1] The TRS has the following type information: F_1 :: s -> c1 c1 :: c3 -> c1 G_1 :: s -> s -> c3 s :: s -> s c3 :: c3 -> c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 const :: c1 const1 :: s const2 :: c3 const3 :: c4 const4 :: c5:c6 const5 :: c7 const6 :: c8:c9 const7 :: c10 const8 :: c11:c12 const9 :: c13 const10 :: c14:c15 const11 :: c16 const12 :: c17:c18 const13 :: c19 const14 :: c20:c21 const15 :: c22 const16 :: c23:c24 const17 :: c25 const18 :: c26:c27 const19 :: c29:c30 Rewrite Strategy: INNERMOST ---------------------------------------- (17) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 const1 => 0 const2 => 0 const3 => 0 const4 => 0 const5 => 0 const6 => 0 const7 => 0 const8 => 0 const9 => 0 const10 => 0 const11 => 0 const12 => 0 const13 => 0 const14 => 0 const15 => 0 const16 => 0 const17 => 0 const18 => 0 const19 => 0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 }-> 1 + G_1(z0, z0) :|: z = z0, z0 >= 0 F_2(z) -{ 1 }-> 1 + G_2(z0, z0) :|: z = z0, z0 >= 0 F_3(z) -{ 1 }-> 1 + G_3(z0, z0) :|: z = z0, z0 >= 0 F_4(z) -{ 1 }-> 1 + G_4(z0, z0) :|: z = z0, z0 >= 0 F_5(z) -{ 1 }-> 1 + G_5(z0, z0) :|: z = z0, z0 >= 0 F_6(z) -{ 1 }-> 1 + G_6(z0, z0) :|: z = z0, z0 >= 0 F_7(z) -{ 1 }-> 1 + G_7(z0, z0) :|: z = z0, z0 >= 0 F_8(z) -{ 1 }-> 1 + G_8(z0, z0) :|: z = z0, z0 >= 0 F_9(z) -{ 1 }-> 1 + G_9(z0, z0) :|: z = z0, z0 >= 0 G_1(z, z') -{ 1 }-> 1 + G_1(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_2(z, z') -{ 1 }-> 1 + F_1(z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 ---------------------------------------- (19) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 }-> 1 + G_1(z, z) :|: z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ 1 }-> 1 + G_1(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + F_1(z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 ---------------------------------------- (21) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { G_1 } { F_1 } { G_2 } { F_2 } { G_3 } { F_3 } { G_4 } { F_4 } { G_5 } { F_5 } { G_6 } { F_6 } { G_7 } { F_7 } { G_8 } { F_8 } { G_9 } { F_9 } { G_10 } ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 }-> 1 + G_1(z, z) :|: z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ 1 }-> 1 + G_1(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + F_1(z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_1}, {F_1}, {G_2}, {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 }-> 1 + G_1(z, z) :|: z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ 1 }-> 1 + G_1(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + F_1(z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_1}, {F_1}, {G_2}, {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: G_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 }-> 1 + G_1(z, z) :|: z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ 1 }-> 1 + G_1(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + F_1(z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_1}, {F_1}, {G_2}, {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: ?, size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: G_1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 }-> 1 + G_1(z, z) :|: z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ 1 }-> 1 + G_1(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + F_1(z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_1}, {G_2}, {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + F_1(z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_1}, {G_2}, {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + F_1(z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_1}, {G_2}, {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: ?, size: O(1) [1] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F_1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + F_1(z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_2}, {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_2}, {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: G_2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_2}, {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: G_2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z + z' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 1 }-> 1 + G_2(z, z) :|: z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 1 }-> 1 + G_2(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F_2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_2}, {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: ?, size: O(n^1) [2 + z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F_2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + F_2(z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: G_3 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z + z' ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_3}, {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: ?, size: O(n^1) [2 + z + z'] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: G_3 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + z + 2*z' ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 1 }-> 1 + G_3(z, z) :|: z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 1 }-> 1 + G_3(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F_3 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_3}, {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: ?, size: O(n^1) [3 + 2*z] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F_3 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 3*z ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + F_3(z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: G_4 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z + 2*z' ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_4}, {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: ?, size: O(n^1) [3 + z + 2*z'] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: G_4 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 6 + z + 3*z' ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 1 }-> 1 + G_4(z, z) :|: z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 1 }-> 1 + G_4(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F_4 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 3*z ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_4}, {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: ?, size: O(n^1) [4 + 3*z] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F_4 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 7 + 4*z ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + F_4(z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] ---------------------------------------- (71) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: G_5 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + z + 3*z' ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_5}, {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: ?, size: O(n^1) [4 + z + 3*z'] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: G_5 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 8 + z + 4*z' ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 1 }-> 1 + G_5(z, z) :|: z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 1 }-> 1 + G_5(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] ---------------------------------------- (77) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] ---------------------------------------- (79) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F_5 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 4*z ---------------------------------------- (80) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_5}, {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: ?, size: O(n^1) [5 + 4*z] ---------------------------------------- (81) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F_5 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 9 + 5*z ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + F_5(z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] ---------------------------------------- (83) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] ---------------------------------------- (85) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: G_6 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + z + 4*z' ---------------------------------------- (86) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_6}, {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: ?, size: O(n^1) [5 + z + 4*z'] ---------------------------------------- (87) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: G_6 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 10 + z + 5*z' ---------------------------------------- (88) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 1 }-> 1 + G_6(z, z) :|: z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 1 }-> 1 + G_6(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] ---------------------------------------- (89) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (90) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] ---------------------------------------- (91) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F_6 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 6 + 5*z ---------------------------------------- (92) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_6}, {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: ?, size: O(n^1) [6 + 5*z] ---------------------------------------- (93) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F_6 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 11 + 6*z ---------------------------------------- (94) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + F_6(z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] ---------------------------------------- (95) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (96) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] ---------------------------------------- (97) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: G_7 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 6 + z + 5*z' ---------------------------------------- (98) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_7}, {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: ?, size: O(n^1) [6 + z + 5*z'] ---------------------------------------- (99) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: G_7 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 12 + z + 6*z' ---------------------------------------- (100) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 1 }-> 1 + G_7(z, z) :|: z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 1 }-> 1 + G_7(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] ---------------------------------------- (101) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (102) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] ---------------------------------------- (103) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F_7 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 7 + 6*z ---------------------------------------- (104) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_7}, {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: ?, size: O(n^1) [7 + 6*z] ---------------------------------------- (105) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F_7 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 13 + 7*z ---------------------------------------- (106) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + F_7(z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] ---------------------------------------- (107) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (108) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] ---------------------------------------- (109) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: G_8 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 7 + z + 6*z' ---------------------------------------- (110) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_8}, {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: ?, size: O(n^1) [7 + z + 6*z'] ---------------------------------------- (111) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: G_8 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 14 + z + 7*z' ---------------------------------------- (112) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 1 }-> 1 + G_8(z, z) :|: z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 1 }-> 1 + G_8(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] ---------------------------------------- (113) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (114) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] ---------------------------------------- (115) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F_8 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 8 + 7*z ---------------------------------------- (116) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_8}, {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: ?, size: O(n^1) [8 + 7*z] ---------------------------------------- (117) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F_8 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 15 + 8*z ---------------------------------------- (118) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + F_8(z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: O(n^1) [15 + 8*z], size: O(n^1) [8 + 7*z] ---------------------------------------- (119) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (120) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + 8*z' }-> 1 + s21 :|: s21 >= 0, s21 <= 7 * z' + 8, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: O(n^1) [15 + 8*z], size: O(n^1) [8 + 7*z] ---------------------------------------- (121) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: G_9 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 8 + z + 7*z' ---------------------------------------- (122) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + 8*z' }-> 1 + s21 :|: s21 >= 0, s21 <= 7 * z' + 8, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_9}, {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: O(n^1) [15 + 8*z], size: O(n^1) [8 + 7*z] G_9: runtime: ?, size: O(n^1) [8 + z + 7*z'] ---------------------------------------- (123) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: G_9 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 16 + z + 8*z' ---------------------------------------- (124) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 1 }-> 1 + G_9(z, z) :|: z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + 8*z' }-> 1 + s21 :|: s21 >= 0, s21 <= 7 * z' + 8, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 1 }-> 1 + G_9(z - 1, z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: O(n^1) [15 + 8*z], size: O(n^1) [8 + 7*z] G_9: runtime: O(n^1) [16 + z + 8*z'], size: O(n^1) [8 + z + 7*z'] ---------------------------------------- (125) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (126) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 17 + 9*z }-> 1 + s22 :|: s22 >= 0, s22 <= z + 7 * z + 8, z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + 8*z' }-> 1 + s21 :|: s21 >= 0, s21 <= 7 * z' + 8, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + z + 8*z' }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + 7 * z' + 8, z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: O(n^1) [15 + 8*z], size: O(n^1) [8 + 7*z] G_9: runtime: O(n^1) [16 + z + 8*z'], size: O(n^1) [8 + z + 7*z'] ---------------------------------------- (127) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F_9 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 9 + 8*z ---------------------------------------- (128) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 17 + 9*z }-> 1 + s22 :|: s22 >= 0, s22 <= z + 7 * z + 8, z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + 8*z' }-> 1 + s21 :|: s21 >= 0, s21 <= 7 * z' + 8, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + z + 8*z' }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + 7 * z' + 8, z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {F_9}, {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: O(n^1) [15 + 8*z], size: O(n^1) [8 + 7*z] G_9: runtime: O(n^1) [16 + z + 8*z'], size: O(n^1) [8 + z + 7*z'] F_9: runtime: ?, size: O(n^1) [9 + 8*z] ---------------------------------------- (129) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F_9 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 17 + 9*z ---------------------------------------- (130) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 17 + 9*z }-> 1 + s22 :|: s22 >= 0, s22 <= z + 7 * z + 8, z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + F_9(z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + 8*z' }-> 1 + s21 :|: s21 >= 0, s21 <= 7 * z' + 8, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + z + 8*z' }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + 7 * z' + 8, z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: O(n^1) [15 + 8*z], size: O(n^1) [8 + 7*z] G_9: runtime: O(n^1) [16 + z + 8*z'], size: O(n^1) [8 + z + 7*z'] F_9: runtime: O(n^1) [17 + 9*z], size: O(n^1) [9 + 8*z] ---------------------------------------- (131) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (132) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 17 + 9*z }-> 1 + s22 :|: s22 >= 0, s22 <= z + 7 * z + 8, z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 18 + 9*z' }-> 1 + s24 :|: s24 >= 0, s24 <= 8 * z' + 9, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + 8*z' }-> 1 + s21 :|: s21 >= 0, s21 <= 7 * z' + 8, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + z + 8*z' }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + 7 * z' + 8, z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: O(n^1) [15 + 8*z], size: O(n^1) [8 + 7*z] G_9: runtime: O(n^1) [16 + z + 8*z'], size: O(n^1) [8 + z + 7*z'] F_9: runtime: O(n^1) [17 + 9*z], size: O(n^1) [9 + 8*z] ---------------------------------------- (133) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: G_10 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 9 + z + 8*z' ---------------------------------------- (134) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 17 + 9*z }-> 1 + s22 :|: s22 >= 0, s22 <= z + 7 * z + 8, z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 18 + 9*z' }-> 1 + s24 :|: s24 >= 0, s24 <= 8 * z' + 9, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + 8*z' }-> 1 + s21 :|: s21 >= 0, s21 <= 7 * z' + 8, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + z + 8*z' }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + 7 * z' + 8, z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {G_10} Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: O(n^1) [15 + 8*z], size: O(n^1) [8 + 7*z] G_9: runtime: O(n^1) [16 + z + 8*z'], size: O(n^1) [8 + z + 7*z'] F_9: runtime: O(n^1) [17 + 9*z], size: O(n^1) [9 + 8*z] G_10: runtime: ?, size: O(n^1) [9 + z + 8*z'] ---------------------------------------- (135) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: G_10 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 18 + z + 9*z' ---------------------------------------- (136) Obligation: Complexity RNTS consisting of the following rules: F_1(z) -{ 1 + z }-> 1 + s :|: s >= 0, s <= 0, z >= 0 F_2(z) -{ 3 + 2*z }-> 1 + s1 :|: s1 >= 0, s1 <= z + 1, z >= 0 F_3(z) -{ 5 + 3*z }-> 1 + s4 :|: s4 >= 0, s4 <= z + z + 2, z >= 0 F_4(z) -{ 7 + 4*z }-> 1 + s7 :|: s7 >= 0, s7 <= z + 2 * z + 3, z >= 0 F_5(z) -{ 9 + 5*z }-> 1 + s10 :|: s10 >= 0, s10 <= z + 3 * z + 4, z >= 0 F_6(z) -{ 11 + 6*z }-> 1 + s13 :|: s13 >= 0, s13 <= z + 4 * z + 5, z >= 0 F_7(z) -{ 13 + 7*z }-> 1 + s16 :|: s16 >= 0, s16 <= z + 5 * z + 6, z >= 0 F_8(z) -{ 15 + 8*z }-> 1 + s19 :|: s19 >= 0, s19 <= z + 6 * z + 7, z >= 0 F_9(z) -{ 17 + 9*z }-> 1 + s22 :|: s22 >= 0, s22 <= z + 7 * z + 8, z >= 0 G_1(z, z') -{ z }-> 1 + s' :|: s' >= 0, s' <= 0, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 18 + 9*z' }-> 1 + s24 :|: s24 >= 0, s24 <= 8 * z' + 9, z' >= 0, z - 1 >= 0 G_10(z, z') -{ 1 }-> 1 + G_10(z - 1, z') :|: z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= 1, z' >= 0, z - 1 >= 0 G_2(z, z') -{ 2 + z + z' }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + 1, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + 2*z' }-> 1 + s3 :|: s3 >= 0, s3 <= z' + 2, z' >= 0, z - 1 >= 0 G_3(z, z') -{ 4 + z + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= z - 1 + z' + 2, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + 3*z' }-> 1 + s6 :|: s6 >= 0, s6 <= 2 * z' + 3, z' >= 0, z - 1 >= 0 G_4(z, z') -{ 6 + z + 3*z' }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1 + 2 * z' + 3, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + z + 4*z' }-> 1 + s11 :|: s11 >= 0, s11 <= z - 1 + 3 * z' + 4, z' >= 0, z - 1 >= 0 G_5(z, z') -{ 8 + 4*z' }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * z' + 4, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + 5*z' }-> 1 + s12 :|: s12 >= 0, s12 <= 4 * z' + 5, z' >= 0, z - 1 >= 0 G_6(z, z') -{ 10 + z + 5*z' }-> 1 + s14 :|: s14 >= 0, s14 <= z - 1 + 4 * z' + 5, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + 6*z' }-> 1 + s15 :|: s15 >= 0, s15 <= 5 * z' + 6, z' >= 0, z - 1 >= 0 G_7(z, z') -{ 12 + z + 6*z' }-> 1 + s17 :|: s17 >= 0, s17 <= z - 1 + 5 * z' + 6, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + 7*z' }-> 1 + s18 :|: s18 >= 0, s18 <= 6 * z' + 7, z' >= 0, z - 1 >= 0 G_8(z, z') -{ 14 + z + 7*z' }-> 1 + s20 :|: s20 >= 0, s20 <= z - 1 + 6 * z' + 7, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + 8*z' }-> 1 + s21 :|: s21 >= 0, s21 <= 7 * z' + 8, z' >= 0, z - 1 >= 0 G_9(z, z') -{ 16 + z + 8*z' }-> 1 + s23 :|: s23 >= 0, s23 <= z - 1 + 7 * z' + 8, z' >= 0, z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: G_1: runtime: O(n^1) [z], size: O(1) [0] F_1: runtime: O(n^1) [1 + z], size: O(1) [1] G_2: runtime: O(n^1) [2 + z + z'], size: O(n^1) [1 + z] F_2: runtime: O(n^1) [3 + 2*z], size: O(n^1) [2 + z] G_3: runtime: O(n^1) [4 + z + 2*z'], size: O(n^1) [2 + z + z'] F_3: runtime: O(n^1) [5 + 3*z], size: O(n^1) [3 + 2*z] G_4: runtime: O(n^1) [6 + z + 3*z'], size: O(n^1) [3 + z + 2*z'] F_4: runtime: O(n^1) [7 + 4*z], size: O(n^1) [4 + 3*z] G_5: runtime: O(n^1) [8 + z + 4*z'], size: O(n^1) [4 + z + 3*z'] F_5: runtime: O(n^1) [9 + 5*z], size: O(n^1) [5 + 4*z] G_6: runtime: O(n^1) [10 + z + 5*z'], size: O(n^1) [5 + z + 4*z'] F_6: runtime: O(n^1) [11 + 6*z], size: O(n^1) [6 + 5*z] G_7: runtime: O(n^1) [12 + z + 6*z'], size: O(n^1) [6 + z + 5*z'] F_7: runtime: O(n^1) [13 + 7*z], size: O(n^1) [7 + 6*z] G_8: runtime: O(n^1) [14 + z + 7*z'], size: O(n^1) [7 + z + 6*z'] F_8: runtime: O(n^1) [15 + 8*z], size: O(n^1) [8 + 7*z] G_9: runtime: O(n^1) [16 + z + 8*z'], size: O(n^1) [8 + z + 7*z'] F_9: runtime: O(n^1) [17 + 9*z], size: O(n^1) [9 + 8*z] G_10: runtime: O(n^1) [18 + z + 9*z'], size: O(n^1) [9 + z + 8*z'] ---------------------------------------- (137) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (138) BOUNDS(1, n^1) ---------------------------------------- (139) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (140) Obligation: Complexity Dependency Tuples Problem Rules: f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Tuples: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) S tuples: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) K tuples:none Defined Rule Symbols: f_0_1, f_1_1, g_1_2, f_2_1, g_2_2, f_3_1, g_3_2, f_4_1, g_4_2, f_5_1, g_5_2, f_6_1, g_6_2, f_7_1, g_7_2, f_8_1, g_8_2, f_9_1, g_9_2, f_10_1, g_10_2 Defined Pair Symbols: F_0_1, F_1_1, G_1_2, F_2_1, G_2_2, F_3_1, G_3_2, F_4_1, G_4_2, F_5_1, G_5_2, F_6_1, G_6_2, F_7_1, G_7_2, F_8_1, G_8_2, F_9_1, G_9_2, F_10_1, G_10_2 Compound Symbols: c, c1_1, c2_1, c3_1, c4_1, c5_1, c6_1, c7_1, c8_1, c9_1, c10_1, c11_1, c12_1, c13_1, c14_1, c15_1, c16_1, c17_1, c18_1, c19_1, c20_1, c21_1, c22_1, c23_1, c24_1, c25_1, c26_1, c27_1, c28_1, c29_1, c30_1 ---------------------------------------- (141) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (142) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) The (relative) TRS S consists of the following rules: f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (143) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (144) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) The (relative) TRS S consists of the following rules: f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (145) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (146) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b ---------------------------------------- (147) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: G_1, G_2, G_3, G_4, G_5, G_6, G_7, G_8, G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (148) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_1, G_2, G_3, G_4, G_5, G_6, G_7, G_8, G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (149) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) Induction Base: G_1(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: G_1(gen_s24_31(+(1, +(n37_31, 1))), gen_s24_31(b)) ->_R^Omega(1) c3(G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b))) ->_IH c3(*36_31) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (150) Complex Obligation (BEST) ---------------------------------------- (151) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_1, G_2, G_3, G_4, G_5, G_6, G_7, G_8, G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (152) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (153) BOUNDS(n^1, INF) ---------------------------------------- (154) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_2, G_3, G_4, G_5, G_6, G_7, G_8, G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (155) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) Induction Base: G_2(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: G_2(gen_s24_31(+(1, +(n1593_31, 1))), gen_s24_31(b)) ->_R^Omega(1) c6(G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b))) ->_IH c6(*36_31) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (156) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_3, G_4, G_5, G_6, G_7, G_8, G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (157) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n4005_31) Induction Base: G_3(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: G_3(gen_s24_31(+(1, +(n4005_31, 1))), gen_s24_31(b)) ->_R^Omega(1) c9(G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b))) ->_IH c9(*36_31) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (158) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n4005_31) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_4, G_5, G_6, G_7, G_8, G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (159) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G_4(gen_s24_31(+(1, n6737_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n6737_31) Induction Base: G_4(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: G_4(gen_s24_31(+(1, +(n6737_31, 1))), gen_s24_31(b)) ->_R^Omega(1) c12(G_4(gen_s24_31(+(1, n6737_31)), gen_s24_31(b))) ->_IH c12(*36_31) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (160) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n4005_31) G_4(gen_s24_31(+(1, n6737_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n6737_31) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_5, G_6, G_7, G_8, G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (161) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G_5(gen_s24_31(+(1, n9789_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n9789_31) Induction Base: G_5(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: G_5(gen_s24_31(+(1, +(n9789_31, 1))), gen_s24_31(b)) ->_R^Omega(1) c15(G_5(gen_s24_31(+(1, n9789_31)), gen_s24_31(b))) ->_IH c15(*36_31) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (162) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n4005_31) G_4(gen_s24_31(+(1, n6737_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n6737_31) G_5(gen_s24_31(+(1, n9789_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n9789_31) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_6, G_7, G_8, G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (163) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G_6(gen_s24_31(+(1, n13161_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n13161_31) Induction Base: G_6(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: G_6(gen_s24_31(+(1, +(n13161_31, 1))), gen_s24_31(b)) ->_R^Omega(1) c18(G_6(gen_s24_31(+(1, n13161_31)), gen_s24_31(b))) ->_IH c18(*36_31) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (164) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n4005_31) G_4(gen_s24_31(+(1, n6737_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n6737_31) G_5(gen_s24_31(+(1, n9789_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n9789_31) G_6(gen_s24_31(+(1, n13161_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n13161_31) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_7, G_8, G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (165) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G_7(gen_s24_31(+(1, n16853_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n16853_31) Induction Base: G_7(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: G_7(gen_s24_31(+(1, +(n16853_31, 1))), gen_s24_31(b)) ->_R^Omega(1) c21(G_7(gen_s24_31(+(1, n16853_31)), gen_s24_31(b))) ->_IH c21(*36_31) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (166) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n4005_31) G_4(gen_s24_31(+(1, n6737_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n6737_31) G_5(gen_s24_31(+(1, n9789_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n9789_31) G_6(gen_s24_31(+(1, n13161_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n13161_31) G_7(gen_s24_31(+(1, n16853_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n16853_31) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_8, G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (167) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G_8(gen_s24_31(+(1, n20865_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n20865_31) Induction Base: G_8(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: G_8(gen_s24_31(+(1, +(n20865_31, 1))), gen_s24_31(b)) ->_R^Omega(1) c24(G_8(gen_s24_31(+(1, n20865_31)), gen_s24_31(b))) ->_IH c24(*36_31) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (168) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n4005_31) G_4(gen_s24_31(+(1, n6737_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n6737_31) G_5(gen_s24_31(+(1, n9789_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n9789_31) G_6(gen_s24_31(+(1, n13161_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n13161_31) G_7(gen_s24_31(+(1, n16853_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n16853_31) G_8(gen_s24_31(+(1, n20865_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n20865_31) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_9, G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (169) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G_9(gen_s24_31(+(1, n25197_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n25197_31) Induction Base: G_9(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: G_9(gen_s24_31(+(1, +(n25197_31, 1))), gen_s24_31(b)) ->_R^Omega(1) c27(G_9(gen_s24_31(+(1, n25197_31)), gen_s24_31(b))) ->_IH c27(*36_31) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (170) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n4005_31) G_4(gen_s24_31(+(1, n6737_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n6737_31) G_5(gen_s24_31(+(1, n9789_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n9789_31) G_6(gen_s24_31(+(1, n13161_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n13161_31) G_7(gen_s24_31(+(1, n16853_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n16853_31) G_8(gen_s24_31(+(1, n20865_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n20865_31) G_9(gen_s24_31(+(1, n25197_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n25197_31) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: G_10, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (171) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G_10(gen_s24_31(+(1, n29849_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n29849_31) Induction Base: G_10(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: G_10(gen_s24_31(+(1, +(n29849_31, 1))), gen_s24_31(b)) ->_R^Omega(1) c30(G_10(gen_s24_31(+(1, n29849_31)), gen_s24_31(b))) ->_IH c30(*36_31) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (172) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n4005_31) G_4(gen_s24_31(+(1, n6737_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n6737_31) G_5(gen_s24_31(+(1, n9789_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n9789_31) G_6(gen_s24_31(+(1, n13161_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n13161_31) G_7(gen_s24_31(+(1, n16853_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n16853_31) G_8(gen_s24_31(+(1, n20865_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n20865_31) G_9(gen_s24_31(+(1, n25197_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n25197_31) G_10(gen_s24_31(+(1, n29849_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n29849_31) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10 ---------------------------------------- (173) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g_1(gen_s24_31(+(1, n34821_31)), gen_s24_31(b)) -> *36_31, rt in Omega(0) Induction Base: g_1(gen_s24_31(+(1, 0)), gen_s24_31(b)) Induction Step: g_1(gen_s24_31(+(1, +(n34821_31, 1))), gen_s24_31(b)) ->_R^Omega(0) b(f_0(gen_s24_31(b)), g_1(gen_s24_31(+(1, n34821_31)), gen_s24_31(b))) ->_R^Omega(0) b(a, g_1(gen_s24_31(+(1, n34821_31)), gen_s24_31(b))) ->_IH b(a, *36_31) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (174) Obligation: Innermost TRS: Rules: F_0(z0) -> c F_1(z0) -> c1(G_1(z0, z0)) G_1(s(z0), z1) -> c2(F_0(z1)) G_1(s(z0), z1) -> c3(G_1(z0, z1)) F_2(z0) -> c4(G_2(z0, z0)) G_2(s(z0), z1) -> c5(F_1(z1)) G_2(s(z0), z1) -> c6(G_2(z0, z1)) F_3(z0) -> c7(G_3(z0, z0)) G_3(s(z0), z1) -> c8(F_2(z1)) G_3(s(z0), z1) -> c9(G_3(z0, z1)) F_4(z0) -> c10(G_4(z0, z0)) G_4(s(z0), z1) -> c11(F_3(z1)) G_4(s(z0), z1) -> c12(G_4(z0, z1)) F_5(z0) -> c13(G_5(z0, z0)) G_5(s(z0), z1) -> c14(F_4(z1)) G_5(s(z0), z1) -> c15(G_5(z0, z1)) F_6(z0) -> c16(G_6(z0, z0)) G_6(s(z0), z1) -> c17(F_5(z1)) G_6(s(z0), z1) -> c18(G_6(z0, z1)) F_7(z0) -> c19(G_7(z0, z0)) G_7(s(z0), z1) -> c20(F_6(z1)) G_7(s(z0), z1) -> c21(G_7(z0, z1)) F_8(z0) -> c22(G_8(z0, z0)) G_8(s(z0), z1) -> c23(F_7(z1)) G_8(s(z0), z1) -> c24(G_8(z0, z1)) F_9(z0) -> c25(G_9(z0, z0)) G_9(s(z0), z1) -> c26(F_8(z1)) G_9(s(z0), z1) -> c27(G_9(z0, z1)) F_10(z0) -> c28(G_10(z0, z0)) G_10(s(z0), z1) -> c29(F_9(z1)) G_10(s(z0), z1) -> c30(G_10(z0, z1)) f_0(z0) -> a f_1(z0) -> g_1(z0, z0) g_1(s(z0), z1) -> b(f_0(z1), g_1(z0, z1)) f_2(z0) -> g_2(z0, z0) g_2(s(z0), z1) -> b(f_1(z1), g_2(z0, z1)) f_3(z0) -> g_3(z0, z0) g_3(s(z0), z1) -> b(f_2(z1), g_3(z0, z1)) f_4(z0) -> g_4(z0, z0) g_4(s(z0), z1) -> b(f_3(z1), g_4(z0, z1)) f_5(z0) -> g_5(z0, z0) g_5(s(z0), z1) -> b(f_4(z1), g_5(z0, z1)) f_6(z0) -> g_6(z0, z0) g_6(s(z0), z1) -> b(f_5(z1), g_6(z0, z1)) f_7(z0) -> g_7(z0, z0) g_7(s(z0), z1) -> b(f_6(z1), g_7(z0, z1)) f_8(z0) -> g_8(z0, z0) g_8(s(z0), z1) -> b(f_7(z1), g_8(z0, z1)) f_9(z0) -> g_9(z0, z0) g_9(s(z0), z1) -> b(f_8(z1), g_9(z0, z1)) f_10(z0) -> g_10(z0, z0) g_10(s(z0), z1) -> b(f_9(z1), g_10(z0, z1)) Types: F_0 :: s -> c c :: c F_1 :: s -> c1 c1 :: c2:c3 -> c1 G_1 :: s -> s -> c2:c3 s :: s -> s c2 :: c -> c2:c3 c3 :: c2:c3 -> c2:c3 F_2 :: s -> c4 c4 :: c5:c6 -> c4 G_2 :: s -> s -> c5:c6 c5 :: c1 -> c5:c6 c6 :: c5:c6 -> c5:c6 F_3 :: s -> c7 c7 :: c8:c9 -> c7 G_3 :: s -> s -> c8:c9 c8 :: c4 -> c8:c9 c9 :: c8:c9 -> c8:c9 F_4 :: s -> c10 c10 :: c11:c12 -> c10 G_4 :: s -> s -> c11:c12 c11 :: c7 -> c11:c12 c12 :: c11:c12 -> c11:c12 F_5 :: s -> c13 c13 :: c14:c15 -> c13 G_5 :: s -> s -> c14:c15 c14 :: c10 -> c14:c15 c15 :: c14:c15 -> c14:c15 F_6 :: s -> c16 c16 :: c17:c18 -> c16 G_6 :: s -> s -> c17:c18 c17 :: c13 -> c17:c18 c18 :: c17:c18 -> c17:c18 F_7 :: s -> c19 c19 :: c20:c21 -> c19 G_7 :: s -> s -> c20:c21 c20 :: c16 -> c20:c21 c21 :: c20:c21 -> c20:c21 F_8 :: s -> c22 c22 :: c23:c24 -> c22 G_8 :: s -> s -> c23:c24 c23 :: c19 -> c23:c24 c24 :: c23:c24 -> c23:c24 F_9 :: s -> c25 c25 :: c26:c27 -> c25 G_9 :: s -> s -> c26:c27 c26 :: c22 -> c26:c27 c27 :: c26:c27 -> c26:c27 F_10 :: s -> c28 c28 :: c29:c30 -> c28 G_10 :: s -> s -> c29:c30 c29 :: c25 -> c29:c30 c30 :: c29:c30 -> c29:c30 f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b f_6 :: s -> a:b g_6 :: s -> s -> a:b f_7 :: s -> a:b g_7 :: s -> s -> a:b f_8 :: s -> a:b g_8 :: s -> s -> a:b f_9 :: s -> a:b g_9 :: s -> s -> a:b f_10 :: s -> a:b g_10 :: s -> s -> a:b hole_c1_31 :: c hole_s2_31 :: s hole_c13_31 :: c1 hole_c2:c34_31 :: c2:c3 hole_c45_31 :: c4 hole_c5:c66_31 :: c5:c6 hole_c77_31 :: c7 hole_c8:c98_31 :: c8:c9 hole_c109_31 :: c10 hole_c11:c1210_31 :: c11:c12 hole_c1311_31 :: c13 hole_c14:c1512_31 :: c14:c15 hole_c1613_31 :: c16 hole_c17:c1814_31 :: c17:c18 hole_c1915_31 :: c19 hole_c20:c2116_31 :: c20:c21 hole_c2217_31 :: c22 hole_c23:c2418_31 :: c23:c24 hole_c2519_31 :: c25 hole_c26:c2720_31 :: c26:c27 hole_c2821_31 :: c28 hole_c29:c3022_31 :: c29:c30 hole_a:b23_31 :: a:b gen_s24_31 :: Nat -> s gen_c2:c325_31 :: Nat -> c2:c3 gen_c5:c626_31 :: Nat -> c5:c6 gen_c8:c927_31 :: Nat -> c8:c9 gen_c11:c1228_31 :: Nat -> c11:c12 gen_c14:c1529_31 :: Nat -> c14:c15 gen_c17:c1830_31 :: Nat -> c17:c18 gen_c20:c2131_31 :: Nat -> c20:c21 gen_c23:c2432_31 :: Nat -> c23:c24 gen_c26:c2733_31 :: Nat -> c26:c27 gen_c29:c3034_31 :: Nat -> c29:c30 gen_a:b35_31 :: Nat -> a:b Lemmas: G_1(gen_s24_31(+(1, n37_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n37_31) G_2(gen_s24_31(+(1, n1593_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n1593_31) G_3(gen_s24_31(+(1, n4005_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n4005_31) G_4(gen_s24_31(+(1, n6737_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n6737_31) G_5(gen_s24_31(+(1, n9789_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n9789_31) G_6(gen_s24_31(+(1, n13161_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n13161_31) G_7(gen_s24_31(+(1, n16853_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n16853_31) G_8(gen_s24_31(+(1, n20865_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n20865_31) G_9(gen_s24_31(+(1, n25197_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n25197_31) G_10(gen_s24_31(+(1, n29849_31)), gen_s24_31(b)) -> *36_31, rt in Omega(n29849_31) g_1(gen_s24_31(+(1, n34821_31)), gen_s24_31(b)) -> *36_31, rt in Omega(0) Generator Equations: gen_s24_31(0) <=> hole_s2_31 gen_s24_31(+(x, 1)) <=> s(gen_s24_31(x)) gen_c2:c325_31(0) <=> c2(c) gen_c2:c325_31(+(x, 1)) <=> c3(gen_c2:c325_31(x)) gen_c5:c626_31(0) <=> c5(c1(c2(c))) gen_c5:c626_31(+(x, 1)) <=> c6(gen_c5:c626_31(x)) gen_c8:c927_31(0) <=> c8(c4(c5(c1(c2(c))))) gen_c8:c927_31(+(x, 1)) <=> c9(gen_c8:c927_31(x)) gen_c11:c1228_31(0) <=> c11(c7(c8(c4(c5(c1(c2(c))))))) gen_c11:c1228_31(+(x, 1)) <=> c12(gen_c11:c1228_31(x)) gen_c14:c1529_31(0) <=> c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))) gen_c14:c1529_31(+(x, 1)) <=> c15(gen_c14:c1529_31(x)) gen_c17:c1830_31(0) <=> c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))) gen_c17:c1830_31(+(x, 1)) <=> c18(gen_c17:c1830_31(x)) gen_c20:c2131_31(0) <=> c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))) gen_c20:c2131_31(+(x, 1)) <=> c21(gen_c20:c2131_31(x)) gen_c23:c2432_31(0) <=> c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))) gen_c23:c2432_31(+(x, 1)) <=> c24(gen_c23:c2432_31(x)) gen_c26:c2733_31(0) <=> c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))) gen_c26:c2733_31(+(x, 1)) <=> c27(gen_c26:c2733_31(x)) gen_c29:c3034_31(0) <=> c29(c25(c26(c22(c23(c19(c20(c16(c17(c13(c14(c10(c11(c7(c8(c4(c5(c1(c2(c))))))))))))))))))) gen_c29:c3034_31(+(x, 1)) <=> c30(gen_c29:c3034_31(x)) gen_a:b35_31(0) <=> a gen_a:b35_31(+(x, 1)) <=> b(a, gen_a:b35_31(x)) The following defined symbols remain to be analysed: g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10