WORST_CASE(?,O(n^1)) proof of input_ixvOy1j2sN.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 107 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 25 ms] (10) CdtProblem (11) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (12) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: qsort(nil) -> nil qsort(.(x, y)) -> ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y)))) lowers(x, nil) -> nil lowers(x, .(y, z)) -> if(<=(y, x), .(y, lowers(x, z)), lowers(x, z)) greaters(x, nil) -> nil greaters(x, .(y, z)) -> if(<=(y, x), greaters(x, z), .(y, greaters(x, z))) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: qsort(nil) -> nil qsort(.(z0, z1)) -> ++(qsort(lowers(z0, z1)), .(z0, qsort(greaters(z0, z1)))) lowers(z0, nil) -> nil lowers(z0, .(z1, z2)) -> if(<=(z1, z0), .(z1, lowers(z0, z2)), lowers(z0, z2)) greaters(z0, nil) -> nil greaters(z0, .(z1, z2)) -> if(<=(z1, z0), greaters(z0, z2), .(z1, greaters(z0, z2))) Tuples: QSORT(nil) -> c QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, nil) -> c3 LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, nil) -> c6 GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) S tuples: QSORT(nil) -> c QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, nil) -> c3 LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, nil) -> c6 GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) K tuples:none Defined Rule Symbols: qsort_1, lowers_2, greaters_2 Defined Pair Symbols: QSORT_1, LOWERS_2, GREATERS_2 Compound Symbols: c, c1_2, c2_2, c3, c4_1, c5_1, c6, c7_1, c8_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing nodes: GREATERS(z0, nil) -> c6 LOWERS(z0, nil) -> c3 QSORT(nil) -> c ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: qsort(nil) -> nil qsort(.(z0, z1)) -> ++(qsort(lowers(z0, z1)), .(z0, qsort(greaters(z0, z1)))) lowers(z0, nil) -> nil lowers(z0, .(z1, z2)) -> if(<=(z1, z0), .(z1, lowers(z0, z2)), lowers(z0, z2)) greaters(z0, nil) -> nil greaters(z0, .(z1, z2)) -> if(<=(z1, z0), greaters(z0, z2), .(z1, greaters(z0, z2))) Tuples: QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) S tuples: QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) K tuples:none Defined Rule Symbols: qsort_1, lowers_2, greaters_2 Defined Pair Symbols: QSORT_1, LOWERS_2, GREATERS_2 Compound Symbols: c1_2, c2_2, c4_1, c5_1, c7_1, c8_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: qsort(nil) -> nil qsort(.(z0, z1)) -> ++(qsort(lowers(z0, z1)), .(z0, qsort(greaters(z0, z1)))) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: lowers(z0, nil) -> nil lowers(z0, .(z1, z2)) -> if(<=(z1, z0), .(z1, lowers(z0, z2)), lowers(z0, z2)) greaters(z0, nil) -> nil greaters(z0, .(z1, z2)) -> if(<=(z1, z0), greaters(z0, z2), .(z1, greaters(z0, z2))) Tuples: QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) S tuples: QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) K tuples:none Defined Rule Symbols: lowers_2, greaters_2 Defined Pair Symbols: QSORT_1, LOWERS_2, GREATERS_2 Compound Symbols: c1_2, c2_2, c4_1, c5_1, c7_1, c8_1 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) We considered the (Usable) Rules: greaters(z0, nil) -> nil lowers(z0, .(z1, z2)) -> if(<=(z1, z0), .(z1, lowers(z0, z2)), lowers(z0, z2)) greaters(z0, .(z1, z2)) -> if(<=(z1, z0), greaters(z0, z2), .(z1, greaters(z0, z2))) lowers(z0, nil) -> nil And the Tuples: QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(.(x_1, x_2)) = [1] + x_1 POL(<=(x_1, x_2)) = x_2 POL(GREATERS(x_1, x_2)) = 0 POL(LOWERS(x_1, x_2)) = 0 POL(QSORT(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(c8(x_1)) = x_1 POL(greaters(x_1, x_2)) = x_1 POL(if(x_1, x_2, x_3)) = x_1 POL(lowers(x_1, x_2)) = x_1 POL(nil) = 0 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: lowers(z0, nil) -> nil lowers(z0, .(z1, z2)) -> if(<=(z1, z0), .(z1, lowers(z0, z2)), lowers(z0, z2)) greaters(z0, nil) -> nil greaters(z0, .(z1, z2)) -> if(<=(z1, z0), greaters(z0, z2), .(z1, greaters(z0, z2))) Tuples: QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) S tuples: LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) K tuples: QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) Defined Rule Symbols: lowers_2, greaters_2 Defined Pair Symbols: QSORT_1, LOWERS_2, GREATERS_2 Compound Symbols: c1_2, c2_2, c4_1, c5_1, c7_1, c8_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) We considered the (Usable) Rules: greaters(z0, nil) -> nil lowers(z0, .(z1, z2)) -> if(<=(z1, z0), .(z1, lowers(z0, z2)), lowers(z0, z2)) greaters(z0, .(z1, z2)) -> if(<=(z1, z0), greaters(z0, z2), .(z1, greaters(z0, z2))) lowers(z0, nil) -> nil And the Tuples: QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(.(x_1, x_2)) = [1] + x_1 + x_2 POL(<=(x_1, x_2)) = x_2 POL(GREATERS(x_1, x_2)) = [1] + x_2 POL(LOWERS(x_1, x_2)) = [1] + x_2 POL(QSORT(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(c8(x_1)) = x_1 POL(greaters(x_1, x_2)) = x_1 POL(if(x_1, x_2, x_3)) = x_1 POL(lowers(x_1, x_2)) = x_1 POL(nil) = 0 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: lowers(z0, nil) -> nil lowers(z0, .(z1, z2)) -> if(<=(z1, z0), .(z1, lowers(z0, z2)), lowers(z0, z2)) greaters(z0, nil) -> nil greaters(z0, .(z1, z2)) -> if(<=(z1, z0), greaters(z0, z2), .(z1, greaters(z0, z2))) Tuples: QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) S tuples:none K tuples: QSORT(.(z0, z1)) -> c1(QSORT(lowers(z0, z1)), LOWERS(z0, z1)) QSORT(.(z0, z1)) -> c2(QSORT(greaters(z0, z1)), GREATERS(z0, z1)) LOWERS(z0, .(z1, z2)) -> c4(LOWERS(z0, z2)) LOWERS(z0, .(z1, z2)) -> c5(LOWERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c7(GREATERS(z0, z2)) GREATERS(z0, .(z1, z2)) -> c8(GREATERS(z0, z2)) Defined Rule Symbols: lowers_2, greaters_2 Defined Pair Symbols: QSORT_1, LOWERS_2, GREATERS_2 Compound Symbols: c1_2, c2_2, c4_1, c5_1, c7_1, c8_1 ---------------------------------------- (11) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (12) BOUNDS(1, 1)