WORST_CASE(Omega(n^1),O(n^1)) proof of input_mUTgU207FC.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxWeightedTrs (13) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxWeightedTrs (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTypedWeightedTrs (17) CompletionProof [UPPER BOUND(ID), 0 ms] (18) CpxTypedWeightedCompleteTrs (19) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) CompleteCoflocoProof [FINISHED, 326 ms] (22) BOUNDS(1, n^1) (23) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CdtProblem (25) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxRelTRS (27) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxRelTRS (29) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (30) typed CpxTrs (31) OrderProof [LOWER BOUND(ID), 7 ms] (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 360 ms] (34) BEST (35) proven lower bound (36) LowerBoundPropagationProof [FINISHED, 0 ms] (37) BOUNDS(n^1, INF) (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 93 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 71 ms] (42) typed CpxTrs (43) RewriteLemmaProof [LOWER BOUND(ID), 70 ms] (44) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: leq(0, z0) -> true leq(s(z0), 0) -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Tuples: LEQ(0, z0) -> c LEQ(s(z0), 0) -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0) -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(0, z0) -> c LEQ(s(z0), 0) -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0) -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) K tuples:none Defined Rule Symbols: leq_2, if_3, -_2, mod_2 Defined Pair Symbols: LEQ_2, IF_3, -'_2, MOD_2 Compound Symbols: c, c1, c2_1, c3, c4, c5, c6_1, c7, c8, c9_2, c10_3 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 7 trailing nodes: -'(z0, 0) -> c5 IF(false, z0, z1) -> c4 LEQ(s(z0), 0) -> c1 LEQ(0, z0) -> c IF(true, z0, z1) -> c3 MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: leq(0, z0) -> true leq(s(z0), 0) -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) K tuples:none Defined Rule Symbols: leq_2, if_3, -_2, mod_2 Defined Pair Symbols: LEQ_2, -'_2, MOD_2 Compound Symbols: c2_1, c6_1, c9_2, c10_3 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: leq(0, z0) -> true leq(s(z0), 0) -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) K tuples:none Defined Rule Symbols: leq_2, if_3, -_2, mod_2 Defined Pair Symbols: LEQ_2, -'_2, MOD_2 Compound Symbols: c2_1, c6_1, c9_1, c10_2 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: leq(0, z0) -> true leq(s(z0), 0) -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: -(s(z0), s(z1)) -> -(z0, z1) -(z0, 0) -> z0 Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) K tuples:none Defined Rule Symbols: -_2 Defined Pair Symbols: LEQ_2, -'_2, MOD_2 Compound Symbols: c2_1, c6_1, c9_1, c10_2 ---------------------------------------- (9) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) The (relative) TRS S consists of the following rules: -(s(z0), s(z1)) -> -(z0, z1) -(z0, 0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (11) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) [1] -'(s(z0), s(z1)) -> c6(-'(z0, z1)) [1] MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0)) [1] MOD(s(z0), s(z1)) -> c10(MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) [1] -(s(z0), s(z1)) -> -(z0, z1) [0] -(z0, 0) -> z0 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: - => minus ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) [1] -'(s(z0), s(z1)) -> c6(-'(z0, z1)) [1] MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0)) [1] MOD(s(z0), s(z1)) -> c10(MOD(minus(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) [1] minus(s(z0), s(z1)) -> minus(z0, z1) [0] minus(z0, 0) -> z0 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) [1] -'(s(z0), s(z1)) -> c6(-'(z0, z1)) [1] MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0)) [1] MOD(s(z0), s(z1)) -> c10(MOD(minus(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) [1] minus(s(z0), s(z1)) -> minus(z0, z1) [0] minus(z0, 0) -> z0 [0] The TRS has the following type information: LEQ :: s:0 -> s:0 -> c2 s :: s:0 -> s:0 c2 :: c2 -> c2 -' :: s:0 -> s:0 -> c6 c6 :: c6 -> c6 MOD :: s:0 -> s:0 -> c9:c10 c9 :: c2 -> c9:c10 c10 :: c9:c10 -> c6 -> c9:c10 minus :: s:0 -> s:0 -> s:0 0 :: s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (17) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: minus(v0, v1) -> null_minus [0] LEQ(v0, v1) -> null_LEQ [0] -'(v0, v1) -> null_-' [0] MOD(v0, v1) -> null_MOD [0] And the following fresh constants: null_minus, null_LEQ, null_-', null_MOD ---------------------------------------- (18) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) [1] -'(s(z0), s(z1)) -> c6(-'(z0, z1)) [1] MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0)) [1] MOD(s(z0), s(z1)) -> c10(MOD(minus(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) [1] minus(s(z0), s(z1)) -> minus(z0, z1) [0] minus(z0, 0) -> z0 [0] minus(v0, v1) -> null_minus [0] LEQ(v0, v1) -> null_LEQ [0] -'(v0, v1) -> null_-' [0] MOD(v0, v1) -> null_MOD [0] The TRS has the following type information: LEQ :: s:0:null_minus -> s:0:null_minus -> c2:null_LEQ s :: s:0:null_minus -> s:0:null_minus c2 :: c2:null_LEQ -> c2:null_LEQ -' :: s:0:null_minus -> s:0:null_minus -> c6:null_-' c6 :: c6:null_-' -> c6:null_-' MOD :: s:0:null_minus -> s:0:null_minus -> c9:c10:null_MOD c9 :: c2:null_LEQ -> c9:c10:null_MOD c10 :: c9:c10:null_MOD -> c6:null_-' -> c9:c10:null_MOD minus :: s:0:null_minus -> s:0:null_minus -> s:0:null_minus 0 :: s:0:null_minus null_minus :: s:0:null_minus null_LEQ :: c2:null_LEQ null_-' :: c6:null_-' null_MOD :: c9:c10:null_MOD Rewrite Strategy: INNERMOST ---------------------------------------- (19) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 null_minus => 0 null_LEQ => 0 null_-' => 0 null_MOD => 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: -'(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 -'(z, z') -{ 1 }-> 1 + -'(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 LEQ(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 LEQ(z, z') -{ 1 }-> 1 + LEQ(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 MOD(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 MOD(z, z') -{ 1 }-> 1 + LEQ(z1, z0) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 MOD(z, z') -{ 1 }-> 1 + MOD(minus(1 + z0, 1 + z1), 1 + z1) + -'(1 + z0, 1 + z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 minus(z, z') -{ 0 }-> z0 :|: z = z0, z0 >= 0, z' = 0 minus(z, z') -{ 0 }-> minus(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (21) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V),0,[fun(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[fun1(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[fun2(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[minus(V1, V, Out)],[V1 >= 0,V >= 0]). eq(fun(V1, V, Out),1,[fun(V3, V2, Ret1)],[Out = 1 + Ret1,V2 >= 0,V1 = 1 + V3,V3 >= 0,V = 1 + V2]). eq(fun1(V1, V, Out),1,[fun1(V5, V4, Ret11)],[Out = 1 + Ret11,V4 >= 0,V1 = 1 + V5,V5 >= 0,V = 1 + V4]). eq(fun2(V1, V, Out),1,[fun(V6, V7, Ret12)],[Out = 1 + Ret12,V6 >= 0,V1 = 1 + V7,V7 >= 0,V = 1 + V6]). eq(fun2(V1, V, Out),1,[minus(1 + V8, 1 + V9, Ret010),fun2(Ret010, 1 + V9, Ret01),fun1(1 + V8, 1 + V9, Ret13)],[Out = 1 + Ret01 + Ret13,V9 >= 0,V1 = 1 + V8,V8 >= 0,V = 1 + V9]). eq(minus(V1, V, Out),0,[minus(V11, V10, Ret)],[Out = Ret,V10 >= 0,V1 = 1 + V11,V11 >= 0,V = 1 + V10]). eq(minus(V1, V, Out),0,[],[Out = V12,V1 = V12,V12 >= 0,V = 0]). eq(minus(V1, V, Out),0,[],[Out = 0,V14 >= 0,V13 >= 0,V1 = V14,V = V13]). eq(fun(V1, V, Out),0,[],[Out = 0,V16 >= 0,V15 >= 0,V1 = V16,V = V15]). eq(fun1(V1, V, Out),0,[],[Out = 0,V18 >= 0,V17 >= 0,V1 = V18,V = V17]). eq(fun2(V1, V, Out),0,[],[Out = 0,V19 >= 0,V20 >= 0,V1 = V19,V = V20]). input_output_vars(fun(V1,V,Out),[V1,V],[Out]). input_output_vars(fun1(V1,V,Out),[V1,V],[Out]). input_output_vars(fun2(V1,V,Out),[V1,V],[Out]). input_output_vars(minus(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [fun/3] 1. recursive : [fun1/3] 2. recursive : [minus/3] 3. recursive [non_tail] : [fun2/3] 4. non_recursive : [start/2] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into fun/3 1. SCC is partially evaluated into fun1/3 2. SCC is partially evaluated into minus/3 3. SCC is partially evaluated into fun2/3 4. SCC is partially evaluated into start/2 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations fun/3 * CE 6 is refined into CE [15] * CE 5 is refined into CE [16] ### Cost equations --> "Loop" of fun/3 * CEs [16] --> Loop 12 * CEs [15] --> Loop 13 ### Ranking functions of CR fun(V1,V,Out) * RF of phase [12]: [V,V1] #### Partial ranking functions of CR fun(V1,V,Out) * Partial RF of phase [12]: - RF of loop [12:1]: V V1 ### Specialization of cost equations fun1/3 * CE 8 is refined into CE [17] * CE 7 is refined into CE [18] ### Cost equations --> "Loop" of fun1/3 * CEs [18] --> Loop 14 * CEs [17] --> Loop 15 ### Ranking functions of CR fun1(V1,V,Out) * RF of phase [14]: [V,V1] #### Partial ranking functions of CR fun1(V1,V,Out) * Partial RF of phase [14]: - RF of loop [14:1]: V V1 ### Specialization of cost equations minus/3 * CE 14 is refined into CE [19] * CE 13 is refined into CE [20] * CE 12 is refined into CE [21] ### Cost equations --> "Loop" of minus/3 * CEs [21] --> Loop 16 * CEs [19] --> Loop 17 * CEs [20] --> Loop 18 ### Ranking functions of CR minus(V1,V,Out) * RF of phase [16]: [V,V1] #### Partial ranking functions of CR minus(V1,V,Out) * Partial RF of phase [16]: - RF of loop [16:1]: V V1 ### Specialization of cost equations fun2/3 * CE 9 is refined into CE [22,23] * CE 11 is refined into CE [24] * CE 10 is refined into CE [25,26,27,28] ### Cost equations --> "Loop" of fun2/3 * CEs [28] --> Loop 19 * CEs [27] --> Loop 20 * CEs [26] --> Loop 21 * CEs [25] --> Loop 22 * CEs [23] --> Loop 23 * CEs [22] --> Loop 24 * CEs [24] --> Loop 25 ### Ranking functions of CR fun2(V1,V,Out) * RF of phase [19,20]: [V1,V1-V+1] #### Partial ranking functions of CR fun2(V1,V,Out) * Partial RF of phase [19,20]: - RF of loop [19:1,20:1]: V1 V1-V+1 ### Specialization of cost equations start/2 * CE 1 is refined into CE [29,30] * CE 2 is refined into CE [31,32] * CE 3 is refined into CE [33,34,35,36] * CE 4 is refined into CE [37,38,39] ### Cost equations --> "Loop" of start/2 * CEs [29,30,31,32,33,34,35,36,37,38,39] --> Loop 26 ### Ranking functions of CR start(V1,V) #### Partial ranking functions of CR start(V1,V) Computing Bounds ===================================== #### Cost of chains of fun(V1,V,Out): * Chain [[12],13]: 1*it(12)+0 Such that:it(12) =< Out with precondition: [Out>=1,V1>=Out,V>=Out] * Chain [13]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun1(V1,V,Out): * Chain [[14],15]: 1*it(14)+0 Such that:it(14) =< Out with precondition: [Out>=1,V1>=Out,V>=Out] * Chain [15]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of minus(V1,V,Out): * Chain [[16],18]: 0 with precondition: [V1=Out+V,V>=1,V1>=V] * Chain [[16],17]: 0 with precondition: [Out=0,V1>=1,V>=1] * Chain [18]: 0 with precondition: [V=0,V1=Out,V1>=0] * Chain [17]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun2(V1,V,Out): * Chain [[19,20],25]: 2*it(19)+1*s(3)+0 Such that:aux(2) =< V1-V+1 aux(5) =< V1 it(19) =< aux(5) s(3) =< aux(5) it(19) =< aux(2) with precondition: [V>=1,Out>=1,V1>=V,2*V1+1>=Out+V] * Chain [[19,20],24]: 2*it(19)+1*s(3)+1 Such that:aux(2) =< V1-V+1 aux(6) =< V1 it(19) =< aux(6) s(3) =< aux(6) it(19) =< aux(2) with precondition: [V>=1,Out>=2,V1>=V+1,2*V1>=Out+V] * Chain [[19,20],23]: 2*it(19)+1*s(3)+1*s(4)+1 Such that:aux(2) =< V1-V+1 s(4) =< V aux(7) =< V1 it(19) =< aux(7) s(3) =< aux(7) it(19) =< aux(2) with precondition: [V>=2,Out>=3,V1>=V+2,3*V1>=2*Out+V] * Chain [[19,20],22,25]: 2*it(19)+1*s(3)+1 Such that:aux(2) =< V1-V+1 aux(8) =< V1 it(19) =< aux(8) s(3) =< aux(8) it(19) =< aux(2) with precondition: [V>=1,Out>=2,V1>=V+1,2*V1>=Out+V] * Chain [[19,20],21,25]: 2*it(19)+2*s(3)+1 Such that:aux(2) =< V1-V+1 aux(9) =< V1 s(3) =< aux(9) it(19) =< aux(9) it(19) =< aux(2) with precondition: [V>=1,Out>=3,V1>=V+1,2*V1+1>=Out+V] * Chain [25]: 0 with precondition: [Out=0,V1>=0,V>=0] * Chain [24]: 1 with precondition: [Out=1,V1>=1,V>=1] * Chain [23]: 1*s(4)+1 Such that:s(4) =< V with precondition: [Out>=2,V1>=Out,V>=Out] * Chain [22,25]: 1 with precondition: [Out=1,V1>=1,V>=1] * Chain [21,25]: 1*s(5)+1 Such that:s(5) =< V1 with precondition: [Out>=2,V1+1>=Out,V+1>=Out] #### Cost of chains of start(V1,V): * Chain [26]: 4*s(29)+7*s(34)+10*s(35)+1 Such that:s(33) =< V1-V+1 aux(12) =< V1 aux(13) =< V s(34) =< aux(12) s(29) =< aux(13) s(35) =< aux(12) s(35) =< s(33) with precondition: [V1>=0,V>=0] Closed-form bounds of start(V1,V): ------------------------------------- * Chain [26] with precondition: [V1>=0,V>=0] - Upper bound: 17*V1+4*V+1 - Complexity: n ### Maximum cost of start(V1,V): 17*V1+4*V+1 Asymptotic class: n * Total analysis performed in 287 ms. ---------------------------------------- (22) BOUNDS(1, n^1) ---------------------------------------- (23) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: leq(0, z0) -> true leq(s(z0), 0) -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Tuples: LEQ(0, z0) -> c LEQ(s(z0), 0) -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0) -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(0, z0) -> c LEQ(s(z0), 0) -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0) -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) K tuples:none Defined Rule Symbols: leq_2, if_3, -_2, mod_2 Defined Pair Symbols: LEQ_2, IF_3, -'_2, MOD_2 Compound Symbols: c, c1, c2_1, c3, c4, c5, c6_1, c7, c8, c9_2, c10_3 ---------------------------------------- (25) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LEQ(0, z0) -> c LEQ(s(z0), 0) -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0) -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) The (relative) TRS S consists of the following rules: leq(0, z0) -> true leq(s(z0), 0) -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (27) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (28) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LEQ(0', z0) -> c LEQ(s(z0), 0') -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0') -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) The (relative) TRS S consists of the following rules: leq(0', z0) -> true leq(s(z0), 0') -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0') -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (29) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (30) Obligation: Innermost TRS: Rules: LEQ(0', z0) -> c LEQ(s(z0), 0') -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0') -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) leq(0', z0) -> true leq(s(z0), 0') -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0') -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Types: LEQ :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 IF :: true:false -> 0':s -> 0':s -> c3:c4 true :: true:false c3 :: c3:c4 false :: true:false c4 :: c3:c4 -' :: 0':s -> 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9:c10 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 c9 :: c3:c4 -> c:c1:c2 -> c7:c8:c9:c10 leq :: 0':s -> 0':s -> true:false mod :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s c10 :: c3:c4 -> c7:c8:c9:c10 -> c5:c6 -> c7:c8:c9:c10 if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_11 :: c:c1:c2 hole_0':s2_11 :: 0':s hole_c3:c43_11 :: c3:c4 hole_true:false4_11 :: true:false hole_c5:c65_11 :: c5:c6 hole_c7:c8:c9:c106_11 :: c7:c8:c9:c10 gen_c:c1:c27_11 :: Nat -> c:c1:c2 gen_0':s8_11 :: Nat -> 0':s gen_c5:c69_11 :: Nat -> c5:c6 gen_c7:c8:c9:c1010_11 :: Nat -> c7:c8:c9:c10 ---------------------------------------- (31) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: LEQ, -', MOD, leq, mod, - They will be analysed ascendingly in the following order: LEQ < MOD -' < MOD leq < MOD mod < MOD - < MOD leq < mod - < mod ---------------------------------------- (32) Obligation: Innermost TRS: Rules: LEQ(0', z0) -> c LEQ(s(z0), 0') -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0') -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) leq(0', z0) -> true leq(s(z0), 0') -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0') -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Types: LEQ :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 IF :: true:false -> 0':s -> 0':s -> c3:c4 true :: true:false c3 :: c3:c4 false :: true:false c4 :: c3:c4 -' :: 0':s -> 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9:c10 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 c9 :: c3:c4 -> c:c1:c2 -> c7:c8:c9:c10 leq :: 0':s -> 0':s -> true:false mod :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s c10 :: c3:c4 -> c7:c8:c9:c10 -> c5:c6 -> c7:c8:c9:c10 if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_11 :: c:c1:c2 hole_0':s2_11 :: 0':s hole_c3:c43_11 :: c3:c4 hole_true:false4_11 :: true:false hole_c5:c65_11 :: c5:c6 hole_c7:c8:c9:c106_11 :: c7:c8:c9:c10 gen_c:c1:c27_11 :: Nat -> c:c1:c2 gen_0':s8_11 :: Nat -> 0':s gen_c5:c69_11 :: Nat -> c5:c6 gen_c7:c8:c9:c1010_11 :: Nat -> c7:c8:c9:c10 Generator Equations: gen_c:c1:c27_11(0) <=> c gen_c:c1:c27_11(+(x, 1)) <=> c2(gen_c:c1:c27_11(x)) gen_0':s8_11(0) <=> 0' gen_0':s8_11(+(x, 1)) <=> s(gen_0':s8_11(x)) gen_c5:c69_11(0) <=> c5 gen_c5:c69_11(+(x, 1)) <=> c6(gen_c5:c69_11(x)) gen_c7:c8:c9:c1010_11(0) <=> c7 gen_c7:c8:c9:c1010_11(+(x, 1)) <=> c10(c3, gen_c7:c8:c9:c1010_11(x), c5) The following defined symbols remain to be analysed: LEQ, -', MOD, leq, mod, - They will be analysed ascendingly in the following order: LEQ < MOD -' < MOD leq < MOD mod < MOD - < MOD leq < mod - < mod ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LEQ(gen_0':s8_11(n12_11), gen_0':s8_11(n12_11)) -> gen_c:c1:c27_11(n12_11), rt in Omega(1 + n12_11) Induction Base: LEQ(gen_0':s8_11(0), gen_0':s8_11(0)) ->_R^Omega(1) c Induction Step: LEQ(gen_0':s8_11(+(n12_11, 1)), gen_0':s8_11(+(n12_11, 1))) ->_R^Omega(1) c2(LEQ(gen_0':s8_11(n12_11), gen_0':s8_11(n12_11))) ->_IH c2(gen_c:c1:c27_11(c13_11)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (34) Complex Obligation (BEST) ---------------------------------------- (35) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: LEQ(0', z0) -> c LEQ(s(z0), 0') -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0') -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) leq(0', z0) -> true leq(s(z0), 0') -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0') -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Types: LEQ :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 IF :: true:false -> 0':s -> 0':s -> c3:c4 true :: true:false c3 :: c3:c4 false :: true:false c4 :: c3:c4 -' :: 0':s -> 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9:c10 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 c9 :: c3:c4 -> c:c1:c2 -> c7:c8:c9:c10 leq :: 0':s -> 0':s -> true:false mod :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s c10 :: c3:c4 -> c7:c8:c9:c10 -> c5:c6 -> c7:c8:c9:c10 if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_11 :: c:c1:c2 hole_0':s2_11 :: 0':s hole_c3:c43_11 :: c3:c4 hole_true:false4_11 :: true:false hole_c5:c65_11 :: c5:c6 hole_c7:c8:c9:c106_11 :: c7:c8:c9:c10 gen_c:c1:c27_11 :: Nat -> c:c1:c2 gen_0':s8_11 :: Nat -> 0':s gen_c5:c69_11 :: Nat -> c5:c6 gen_c7:c8:c9:c1010_11 :: Nat -> c7:c8:c9:c10 Generator Equations: gen_c:c1:c27_11(0) <=> c gen_c:c1:c27_11(+(x, 1)) <=> c2(gen_c:c1:c27_11(x)) gen_0':s8_11(0) <=> 0' gen_0':s8_11(+(x, 1)) <=> s(gen_0':s8_11(x)) gen_c5:c69_11(0) <=> c5 gen_c5:c69_11(+(x, 1)) <=> c6(gen_c5:c69_11(x)) gen_c7:c8:c9:c1010_11(0) <=> c7 gen_c7:c8:c9:c1010_11(+(x, 1)) <=> c10(c3, gen_c7:c8:c9:c1010_11(x), c5) The following defined symbols remain to be analysed: LEQ, -', MOD, leq, mod, - They will be analysed ascendingly in the following order: LEQ < MOD -' < MOD leq < MOD mod < MOD - < MOD leq < mod - < mod ---------------------------------------- (36) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (37) BOUNDS(n^1, INF) ---------------------------------------- (38) Obligation: Innermost TRS: Rules: LEQ(0', z0) -> c LEQ(s(z0), 0') -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0') -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) leq(0', z0) -> true leq(s(z0), 0') -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0') -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Types: LEQ :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 IF :: true:false -> 0':s -> 0':s -> c3:c4 true :: true:false c3 :: c3:c4 false :: true:false c4 :: c3:c4 -' :: 0':s -> 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9:c10 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 c9 :: c3:c4 -> c:c1:c2 -> c7:c8:c9:c10 leq :: 0':s -> 0':s -> true:false mod :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s c10 :: c3:c4 -> c7:c8:c9:c10 -> c5:c6 -> c7:c8:c9:c10 if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_11 :: c:c1:c2 hole_0':s2_11 :: 0':s hole_c3:c43_11 :: c3:c4 hole_true:false4_11 :: true:false hole_c5:c65_11 :: c5:c6 hole_c7:c8:c9:c106_11 :: c7:c8:c9:c10 gen_c:c1:c27_11 :: Nat -> c:c1:c2 gen_0':s8_11 :: Nat -> 0':s gen_c5:c69_11 :: Nat -> c5:c6 gen_c7:c8:c9:c1010_11 :: Nat -> c7:c8:c9:c10 Lemmas: LEQ(gen_0':s8_11(n12_11), gen_0':s8_11(n12_11)) -> gen_c:c1:c27_11(n12_11), rt in Omega(1 + n12_11) Generator Equations: gen_c:c1:c27_11(0) <=> c gen_c:c1:c27_11(+(x, 1)) <=> c2(gen_c:c1:c27_11(x)) gen_0':s8_11(0) <=> 0' gen_0':s8_11(+(x, 1)) <=> s(gen_0':s8_11(x)) gen_c5:c69_11(0) <=> c5 gen_c5:c69_11(+(x, 1)) <=> c6(gen_c5:c69_11(x)) gen_c7:c8:c9:c1010_11(0) <=> c7 gen_c7:c8:c9:c1010_11(+(x, 1)) <=> c10(c3, gen_c7:c8:c9:c1010_11(x), c5) The following defined symbols remain to be analysed: -', MOD, leq, mod, - They will be analysed ascendingly in the following order: -' < MOD leq < MOD mod < MOD - < MOD leq < mod - < mod ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -'(gen_0':s8_11(n607_11), gen_0':s8_11(n607_11)) -> gen_c5:c69_11(n607_11), rt in Omega(1 + n607_11) Induction Base: -'(gen_0':s8_11(0), gen_0':s8_11(0)) ->_R^Omega(1) c5 Induction Step: -'(gen_0':s8_11(+(n607_11, 1)), gen_0':s8_11(+(n607_11, 1))) ->_R^Omega(1) c6(-'(gen_0':s8_11(n607_11), gen_0':s8_11(n607_11))) ->_IH c6(gen_c5:c69_11(c608_11)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (40) Obligation: Innermost TRS: Rules: LEQ(0', z0) -> c LEQ(s(z0), 0') -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0') -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) leq(0', z0) -> true leq(s(z0), 0') -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0') -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Types: LEQ :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 IF :: true:false -> 0':s -> 0':s -> c3:c4 true :: true:false c3 :: c3:c4 false :: true:false c4 :: c3:c4 -' :: 0':s -> 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9:c10 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 c9 :: c3:c4 -> c:c1:c2 -> c7:c8:c9:c10 leq :: 0':s -> 0':s -> true:false mod :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s c10 :: c3:c4 -> c7:c8:c9:c10 -> c5:c6 -> c7:c8:c9:c10 if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_11 :: c:c1:c2 hole_0':s2_11 :: 0':s hole_c3:c43_11 :: c3:c4 hole_true:false4_11 :: true:false hole_c5:c65_11 :: c5:c6 hole_c7:c8:c9:c106_11 :: c7:c8:c9:c10 gen_c:c1:c27_11 :: Nat -> c:c1:c2 gen_0':s8_11 :: Nat -> 0':s gen_c5:c69_11 :: Nat -> c5:c6 gen_c7:c8:c9:c1010_11 :: Nat -> c7:c8:c9:c10 Lemmas: LEQ(gen_0':s8_11(n12_11), gen_0':s8_11(n12_11)) -> gen_c:c1:c27_11(n12_11), rt in Omega(1 + n12_11) -'(gen_0':s8_11(n607_11), gen_0':s8_11(n607_11)) -> gen_c5:c69_11(n607_11), rt in Omega(1 + n607_11) Generator Equations: gen_c:c1:c27_11(0) <=> c gen_c:c1:c27_11(+(x, 1)) <=> c2(gen_c:c1:c27_11(x)) gen_0':s8_11(0) <=> 0' gen_0':s8_11(+(x, 1)) <=> s(gen_0':s8_11(x)) gen_c5:c69_11(0) <=> c5 gen_c5:c69_11(+(x, 1)) <=> c6(gen_c5:c69_11(x)) gen_c7:c8:c9:c1010_11(0) <=> c7 gen_c7:c8:c9:c1010_11(+(x, 1)) <=> c10(c3, gen_c7:c8:c9:c1010_11(x), c5) The following defined symbols remain to be analysed: leq, MOD, mod, - They will be analysed ascendingly in the following order: leq < MOD mod < MOD - < MOD leq < mod - < mod ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: leq(gen_0':s8_11(n1092_11), gen_0':s8_11(n1092_11)) -> true, rt in Omega(0) Induction Base: leq(gen_0':s8_11(0), gen_0':s8_11(0)) ->_R^Omega(0) true Induction Step: leq(gen_0':s8_11(+(n1092_11, 1)), gen_0':s8_11(+(n1092_11, 1))) ->_R^Omega(0) leq(gen_0':s8_11(n1092_11), gen_0':s8_11(n1092_11)) ->_IH true We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (42) Obligation: Innermost TRS: Rules: LEQ(0', z0) -> c LEQ(s(z0), 0') -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0') -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) leq(0', z0) -> true leq(s(z0), 0') -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0') -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Types: LEQ :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 IF :: true:false -> 0':s -> 0':s -> c3:c4 true :: true:false c3 :: c3:c4 false :: true:false c4 :: c3:c4 -' :: 0':s -> 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9:c10 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 c9 :: c3:c4 -> c:c1:c2 -> c7:c8:c9:c10 leq :: 0':s -> 0':s -> true:false mod :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s c10 :: c3:c4 -> c7:c8:c9:c10 -> c5:c6 -> c7:c8:c9:c10 if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_11 :: c:c1:c2 hole_0':s2_11 :: 0':s hole_c3:c43_11 :: c3:c4 hole_true:false4_11 :: true:false hole_c5:c65_11 :: c5:c6 hole_c7:c8:c9:c106_11 :: c7:c8:c9:c10 gen_c:c1:c27_11 :: Nat -> c:c1:c2 gen_0':s8_11 :: Nat -> 0':s gen_c5:c69_11 :: Nat -> c5:c6 gen_c7:c8:c9:c1010_11 :: Nat -> c7:c8:c9:c10 Lemmas: LEQ(gen_0':s8_11(n12_11), gen_0':s8_11(n12_11)) -> gen_c:c1:c27_11(n12_11), rt in Omega(1 + n12_11) -'(gen_0':s8_11(n607_11), gen_0':s8_11(n607_11)) -> gen_c5:c69_11(n607_11), rt in Omega(1 + n607_11) leq(gen_0':s8_11(n1092_11), gen_0':s8_11(n1092_11)) -> true, rt in Omega(0) Generator Equations: gen_c:c1:c27_11(0) <=> c gen_c:c1:c27_11(+(x, 1)) <=> c2(gen_c:c1:c27_11(x)) gen_0':s8_11(0) <=> 0' gen_0':s8_11(+(x, 1)) <=> s(gen_0':s8_11(x)) gen_c5:c69_11(0) <=> c5 gen_c5:c69_11(+(x, 1)) <=> c6(gen_c5:c69_11(x)) gen_c7:c8:c9:c1010_11(0) <=> c7 gen_c7:c8:c9:c1010_11(+(x, 1)) <=> c10(c3, gen_c7:c8:c9:c1010_11(x), c5) The following defined symbols remain to be analysed: -, MOD, mod They will be analysed ascendingly in the following order: mod < MOD - < MOD - < mod ---------------------------------------- (43) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s8_11(n1471_11), gen_0':s8_11(n1471_11)) -> gen_0':s8_11(0), rt in Omega(0) Induction Base: -(gen_0':s8_11(0), gen_0':s8_11(0)) ->_R^Omega(0) gen_0':s8_11(0) Induction Step: -(gen_0':s8_11(+(n1471_11, 1)), gen_0':s8_11(+(n1471_11, 1))) ->_R^Omega(0) -(gen_0':s8_11(n1471_11), gen_0':s8_11(n1471_11)) ->_IH gen_0':s8_11(0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (44) Obligation: Innermost TRS: Rules: LEQ(0', z0) -> c LEQ(s(z0), 0') -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0') -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0)) MOD(s(z0), s(z1)) -> c10(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) leq(0', z0) -> true leq(s(z0), 0') -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0') -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Types: LEQ :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 IF :: true:false -> 0':s -> 0':s -> c3:c4 true :: true:false c3 :: c3:c4 false :: true:false c4 :: c3:c4 -' :: 0':s -> 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9:c10 c7 :: c7:c8:c9:c10 c8 :: c7:c8:c9:c10 c9 :: c3:c4 -> c:c1:c2 -> c7:c8:c9:c10 leq :: 0':s -> 0':s -> true:false mod :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s c10 :: c3:c4 -> c7:c8:c9:c10 -> c5:c6 -> c7:c8:c9:c10 if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_11 :: c:c1:c2 hole_0':s2_11 :: 0':s hole_c3:c43_11 :: c3:c4 hole_true:false4_11 :: true:false hole_c5:c65_11 :: c5:c6 hole_c7:c8:c9:c106_11 :: c7:c8:c9:c10 gen_c:c1:c27_11 :: Nat -> c:c1:c2 gen_0':s8_11 :: Nat -> 0':s gen_c5:c69_11 :: Nat -> c5:c6 gen_c7:c8:c9:c1010_11 :: Nat -> c7:c8:c9:c10 Lemmas: LEQ(gen_0':s8_11(n12_11), gen_0':s8_11(n12_11)) -> gen_c:c1:c27_11(n12_11), rt in Omega(1 + n12_11) -'(gen_0':s8_11(n607_11), gen_0':s8_11(n607_11)) -> gen_c5:c69_11(n607_11), rt in Omega(1 + n607_11) leq(gen_0':s8_11(n1092_11), gen_0':s8_11(n1092_11)) -> true, rt in Omega(0) -(gen_0':s8_11(n1471_11), gen_0':s8_11(n1471_11)) -> gen_0':s8_11(0), rt in Omega(0) Generator Equations: gen_c:c1:c27_11(0) <=> c gen_c:c1:c27_11(+(x, 1)) <=> c2(gen_c:c1:c27_11(x)) gen_0':s8_11(0) <=> 0' gen_0':s8_11(+(x, 1)) <=> s(gen_0':s8_11(x)) gen_c5:c69_11(0) <=> c5 gen_c5:c69_11(+(x, 1)) <=> c6(gen_c5:c69_11(x)) gen_c7:c8:c9:c1010_11(0) <=> c7 gen_c7:c8:c9:c1010_11(+(x, 1)) <=> c10(c3, gen_c7:c8:c9:c1010_11(x), c5) The following defined symbols remain to be analysed: mod, MOD They will be analysed ascendingly in the following order: mod < MOD