WORST_CASE(?,O(n^1)) proof of input_nAJofCd8sM.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (8) CpxTRS (9) CpxTrsMatchBoundsTAProof [FINISHED, 16 ms] (10) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: *(x, +(y, z)) -> +(*(x, y), *(x, z)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: *(z0, +(z1, z2)) -> +(*(z0, z1), *(z0, z2)) Tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1)) *'(z0, +(z1, z2)) -> c1(*'(z0, z2)) S tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1)) *'(z0, +(z1, z2)) -> c1(*'(z0, z2)) K tuples:none Defined Rule Symbols: *_2 Defined Pair Symbols: *'_2 Compound Symbols: c_1, c1_1 ---------------------------------------- (3) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: *(z0, +(z1, z2)) -> +(*(z0, z1), *(z0, z2)) ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1)) *'(z0, +(z1, z2)) -> c1(*'(z0, z2)) S tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1)) *'(z0, +(z1, z2)) -> c1(*'(z0, z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: *'_2 Compound Symbols: c_1, c1_1 ---------------------------------------- (5) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: *'(z0, +(z1, z2)) -> c(*'(z0, z1)) *'(z0, +(z1, z2)) -> c1(*'(z0, z2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: *'(z0, +(z1, z2)) -> c(*'(z0, z1)) *'(z0, +(z1, z2)) -> c1(*'(z0, z2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1] transitions: +0(0, 0) -> 0 c0(0) -> 0 c10(0) -> 0 *'0(0, 0) -> 1 *'1(0, 0) -> 2 c1(2) -> 1 *'1(0, 0) -> 3 c11(3) -> 1 c1(2) -> 2 c1(2) -> 3 c11(3) -> 2 c11(3) -> 3 ---------------------------------------- (10) BOUNDS(1, n^1)