WORST_CASE(Omega(n^1),O(n^1)) proof of input_zRdJwv6qXO.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsProof [FINISHED, 8 ms] (4) BOUNDS(1, n^1) (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 6 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 500 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 91 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) f(g(x)) -> g(g(g(x))) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) f(g(x)) -> g(g(g(x))) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1. The certificate found is represented by the following graph. "[3, 4, 5, 6, 7, 8] {(3,4,[f_1|0]), (3,5,[g_1|1]), (3,7,[g_1|1]), (4,4,[g_1|0]), (5,6,[g_1|1]), (6,4,[f_1|1]), (6,5,[g_1|1]), (6,7,[g_1|1]), (7,8,[g_1|1]), (8,4,[g_1|1])}" ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(g(z0)) -> g(g(f(z0))) f(g(z0)) -> g(g(g(z0))) Tuples: F(g(z0)) -> c(F(z0)) F(g(z0)) -> c1 S tuples: F(g(z0)) -> c(F(z0)) F(g(z0)) -> c1 K tuples:none Defined Rule Symbols: f_1 Defined Pair Symbols: F_1 Compound Symbols: c_1, c1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(g(z0)) -> c(F(z0)) F(g(z0)) -> c1 The (relative) TRS S consists of the following rules: f(g(z0)) -> g(g(f(z0))) f(g(z0)) -> g(g(g(z0))) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(g(z0)) -> c(F(z0)) F(g(z0)) -> c1 The (relative) TRS S consists of the following rules: f(g(z0)) -> g(g(f(z0))) f(g(z0)) -> g(g(g(z0))) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: F(g(z0)) -> c(F(z0)) F(g(z0)) -> c1 f(g(z0)) -> g(g(f(z0))) f(g(z0)) -> g(g(g(z0))) Types: F :: g -> c:c1 g :: g -> g c :: c:c1 -> c:c1 c1 :: c:c1 f :: g -> g hole_c:c11_2 :: c:c1 hole_g2_2 :: g gen_c:c13_2 :: Nat -> c:c1 gen_g4_2 :: Nat -> g ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: F, f ---------------------------------------- (14) Obligation: Innermost TRS: Rules: F(g(z0)) -> c(F(z0)) F(g(z0)) -> c1 f(g(z0)) -> g(g(f(z0))) f(g(z0)) -> g(g(g(z0))) Types: F :: g -> c:c1 g :: g -> g c :: c:c1 -> c:c1 c1 :: c:c1 f :: g -> g hole_c:c11_2 :: c:c1 hole_g2_2 :: g gen_c:c13_2 :: Nat -> c:c1 gen_g4_2 :: Nat -> g Generator Equations: gen_c:c13_2(0) <=> c1 gen_c:c13_2(+(x, 1)) <=> c(gen_c:c13_2(x)) gen_g4_2(0) <=> hole_g2_2 gen_g4_2(+(x, 1)) <=> g(gen_g4_2(x)) The following defined symbols remain to be analysed: F, f ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: F(gen_g4_2(+(1, n6_2))) -> *5_2, rt in Omega(n6_2) Induction Base: F(gen_g4_2(+(1, 0))) Induction Step: F(gen_g4_2(+(1, +(n6_2, 1)))) ->_R^Omega(1) c(F(gen_g4_2(+(1, n6_2)))) ->_IH c(*5_2) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: F(g(z0)) -> c(F(z0)) F(g(z0)) -> c1 f(g(z0)) -> g(g(f(z0))) f(g(z0)) -> g(g(g(z0))) Types: F :: g -> c:c1 g :: g -> g c :: c:c1 -> c:c1 c1 :: c:c1 f :: g -> g hole_c:c11_2 :: c:c1 hole_g2_2 :: g gen_c:c13_2 :: Nat -> c:c1 gen_g4_2 :: Nat -> g Generator Equations: gen_c:c13_2(0) <=> c1 gen_c:c13_2(+(x, 1)) <=> c(gen_c:c13_2(x)) gen_g4_2(0) <=> hole_g2_2 gen_g4_2(+(x, 1)) <=> g(gen_g4_2(x)) The following defined symbols remain to be analysed: F, f ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Innermost TRS: Rules: F(g(z0)) -> c(F(z0)) F(g(z0)) -> c1 f(g(z0)) -> g(g(f(z0))) f(g(z0)) -> g(g(g(z0))) Types: F :: g -> c:c1 g :: g -> g c :: c:c1 -> c:c1 c1 :: c:c1 f :: g -> g hole_c:c11_2 :: c:c1 hole_g2_2 :: g gen_c:c13_2 :: Nat -> c:c1 gen_g4_2 :: Nat -> g Lemmas: F(gen_g4_2(+(1, n6_2))) -> *5_2, rt in Omega(n6_2) Generator Equations: gen_c:c13_2(0) <=> c1 gen_c:c13_2(+(x, 1)) <=> c(gen_c:c13_2(x)) gen_g4_2(0) <=> hole_g2_2 gen_g4_2(+(x, 1)) <=> g(gen_g4_2(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_g4_2(+(1, n205_2))) -> *5_2, rt in Omega(0) Induction Base: f(gen_g4_2(+(1, 0))) Induction Step: f(gen_g4_2(+(1, +(n205_2, 1)))) ->_R^Omega(0) g(g(f(gen_g4_2(+(1, n205_2))))) ->_IH g(g(*5_2)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) BOUNDS(1, INF)