WORST_CASE(Omega(n^1),O(n^3)) proof of input_hI2zAtxINH.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxWeightedTrs (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedTrs (13) CompletionProof [UPPER BOUND(ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 331 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 63 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 180 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 74 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 669 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 229 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 573 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 246 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 1049 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 20 ms] (52) CpxRNTS (53) FinalProof [FINISHED, 0 ms] (54) BOUNDS(1, n^3) (55) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (56) CdtProblem (57) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CpxRelTRS (59) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (60) CpxRelTRS (61) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (62) typed CpxTrs (63) OrderProof [LOWER BOUND(ID), 8 ms] (64) typed CpxTrs (65) RewriteLemmaProof [LOWER BOUND(ID), 372 ms] (66) BEST (67) proven lower bound (68) LowerBoundPropagationProof [FINISHED, 0 ms] (69) BOUNDS(n^1, INF) (70) typed CpxTrs (71) RewriteLemmaProof [LOWER BOUND(ID), 78 ms] (72) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(0, y) -> 0 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0 if_minus(false, s(x), y) -> s(minus(x, y)) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) if_mod(false, s(x), s(y)) -> s(x) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0, z0) -> 0 minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0 if_minus(false, s(z0), z1) -> s(minus(z0, z1)) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) Tuples: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0, z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 S tuples: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0, z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 K tuples:none Defined Rule Symbols: le_2, minus_2, if_minus_3, mod_2, if_mod_3 Defined Pair Symbols: LE_2, MINUS_2, IF_MINUS_3, MOD_2, IF_MOD_3 Compound Symbols: c, c1, c2_1, c3, c4_2, c5, c6_1, c7, c8, c9_2, c10_2, c11 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 7 trailing nodes: MINUS(0, z0) -> c3 LE(s(z0), 0) -> c1 MOD(s(z0), 0) -> c8 IF_MINUS(true, s(z0), z1) -> c5 LE(0, z0) -> c IF_MOD(false, s(z0), s(z1)) -> c11 MOD(0, z0) -> c7 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0, z0) -> 0 minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0 if_minus(false, s(z0), z1) -> s(minus(z0, z1)) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) S tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) K tuples:none Defined Rule Symbols: le_2, minus_2, if_minus_3, mod_2, if_mod_3 Defined Pair Symbols: LE_2, MINUS_2, IF_MINUS_3, MOD_2, IF_MOD_3 Compound Symbols: c2_1, c4_2, c6_1, c9_2, c10_2 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) le(0, z0) -> true minus(0, z0) -> 0 minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0 if_minus(false, s(z0), z1) -> s(minus(z0, z1)) Tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) S tuples: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) K tuples:none Defined Rule Symbols: le_2, minus_2, if_minus_3 Defined Pair Symbols: LE_2, MINUS_2, IF_MINUS_3, MOD_2, IF_MOD_3 Compound Symbols: c2_1, c4_2, c6_1, c9_2, c10_2 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) The (relative) TRS S consists of the following rules: le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) le(0, z0) -> true minus(0, z0) -> 0 minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0 if_minus(false, s(z0), z1) -> s(minus(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) [1] MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) [1] IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) [1] MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) [1] IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) [1] le(s(z0), 0) -> false [0] le(s(z0), s(z1)) -> le(z0, z1) [0] le(0, z0) -> true [0] minus(0, z0) -> 0 [0] minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) [0] if_minus(true, s(z0), z1) -> 0 [0] if_minus(false, s(z0), z1) -> s(minus(z0, z1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) [1] MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) [1] IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) [1] MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) [1] IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) [1] le(s(z0), 0) -> false [0] le(s(z0), s(z1)) -> le(z0, z1) [0] le(0, z0) -> true [0] minus(0, z0) -> 0 [0] minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) [0] if_minus(true, s(z0), z1) -> 0 [0] if_minus(false, s(z0), z1) -> s(minus(z0, z1)) [0] The TRS has the following type information: LE :: s:0 -> s:0 -> c2 s :: s:0 -> s:0 c2 :: c2 -> c2 MINUS :: s:0 -> s:0 -> c4 c4 :: c6 -> c2 -> c4 IF_MINUS :: false:true -> s:0 -> s:0 -> c6 le :: s:0 -> s:0 -> false:true false :: false:true c6 :: c4 -> c6 MOD :: s:0 -> s:0 -> c9 c9 :: c10 -> c2 -> c9 IF_MOD :: false:true -> s:0 -> s:0 -> c10 true :: false:true c10 :: c9 -> c4 -> c10 minus :: s:0 -> s:0 -> s:0 0 :: s:0 if_minus :: false:true -> s:0 -> s:0 -> s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (13) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: LE_2 MINUS_2 IF_MINUS_3 MOD_2 IF_MOD_3 (c) The following functions are completely defined: le_2 minus_2 if_minus_3 Due to the following rules being added: le(v0, v1) -> null_le [0] minus(v0, v1) -> 0 [0] if_minus(v0, v1, v2) -> 0 [0] And the following fresh constants: null_le, const, const1, const2, const3, const4 ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) [1] MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) [1] IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) [1] MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) [1] IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) [1] le(s(z0), 0) -> false [0] le(s(z0), s(z1)) -> le(z0, z1) [0] le(0, z0) -> true [0] minus(0, z0) -> 0 [0] minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) [0] if_minus(true, s(z0), z1) -> 0 [0] if_minus(false, s(z0), z1) -> s(minus(z0, z1)) [0] le(v0, v1) -> null_le [0] minus(v0, v1) -> 0 [0] if_minus(v0, v1, v2) -> 0 [0] The TRS has the following type information: LE :: s:0 -> s:0 -> c2 s :: s:0 -> s:0 c2 :: c2 -> c2 MINUS :: s:0 -> s:0 -> c4 c4 :: c6 -> c2 -> c4 IF_MINUS :: false:true:null_le -> s:0 -> s:0 -> c6 le :: s:0 -> s:0 -> false:true:null_le false :: false:true:null_le c6 :: c4 -> c6 MOD :: s:0 -> s:0 -> c9 c9 :: c10 -> c2 -> c9 IF_MOD :: false:true:null_le -> s:0 -> s:0 -> c10 true :: false:true:null_le c10 :: c9 -> c4 -> c10 minus :: s:0 -> s:0 -> s:0 0 :: s:0 if_minus :: false:true:null_le -> s:0 -> s:0 -> s:0 null_le :: false:true:null_le const :: c2 const1 :: c4 const2 :: c6 const3 :: c9 const4 :: c10 Rewrite Strategy: INNERMOST ---------------------------------------- (15) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LE(s(z0), s(z1)) -> c2(LE(z0, z1)) [1] MINUS(s(z0), 0) -> c4(IF_MINUS(false, s(z0), 0), LE(s(z0), 0)) [1] MINUS(s(z0), s(z1')) -> c4(IF_MINUS(le(z0, z1'), s(z0), s(z1')), LE(s(z0), s(z1'))) [1] MINUS(s(z0), z1) -> c4(IF_MINUS(null_le, s(z0), z1), LE(s(z0), z1)) [1] IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) [1] MOD(s(0), s(s(z0'))) -> c9(IF_MOD(false, s(0), s(s(z0'))), LE(s(z0'), 0)) [1] MOD(s(s(z1'')), s(s(z0''))) -> c9(IF_MOD(le(z0'', z1''), s(s(z1'')), s(s(z0''))), LE(s(z0''), s(z1''))) [1] MOD(s(z0), s(0)) -> c9(IF_MOD(true, s(z0), s(0)), LE(0, z0)) [1] MOD(s(z0), s(z1)) -> c9(IF_MOD(null_le, s(z0), s(z1)), LE(z1, z0)) [1] IF_MOD(true, s(0), s(z1)) -> c10(MOD(0, s(z1)), MINUS(0, z1)) [1] IF_MOD(true, s(s(z01)), s(z1)) -> c10(MOD(if_minus(le(s(z01), z1), s(z01), z1), s(z1)), MINUS(s(z01), z1)) [1] IF_MOD(true, s(z0), s(z1)) -> c10(MOD(0, s(z1)), MINUS(z0, z1)) [1] le(s(z0), 0) -> false [0] le(s(z0), s(z1)) -> le(z0, z1) [0] le(0, z0) -> true [0] minus(0, z0) -> 0 [0] minus(s(z0), 0) -> if_minus(false, s(z0), 0) [0] minus(s(z0), s(z11)) -> if_minus(le(z0, z11), s(z0), s(z11)) [0] minus(s(z0), z1) -> if_minus(null_le, s(z0), z1) [0] if_minus(true, s(z0), z1) -> 0 [0] if_minus(false, s(z0), z1) -> s(minus(z0, z1)) [0] le(v0, v1) -> null_le [0] minus(v0, v1) -> 0 [0] if_minus(v0, v1, v2) -> 0 [0] The TRS has the following type information: LE :: s:0 -> s:0 -> c2 s :: s:0 -> s:0 c2 :: c2 -> c2 MINUS :: s:0 -> s:0 -> c4 c4 :: c6 -> c2 -> c4 IF_MINUS :: false:true:null_le -> s:0 -> s:0 -> c6 le :: s:0 -> s:0 -> false:true:null_le false :: false:true:null_le c6 :: c4 -> c6 MOD :: s:0 -> s:0 -> c9 c9 :: c10 -> c2 -> c9 IF_MOD :: false:true:null_le -> s:0 -> s:0 -> c10 true :: false:true:null_le c10 :: c9 -> c4 -> c10 minus :: s:0 -> s:0 -> s:0 0 :: s:0 if_minus :: false:true:null_le -> s:0 -> s:0 -> s:0 null_le :: false:true:null_le const :: c2 const1 :: c4 const2 :: c6 const3 :: c9 const4 :: c10 Rewrite Strategy: INNERMOST ---------------------------------------- (17) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: false => 1 true => 2 0 => 0 null_le => 0 const => 0 const1 => 0 const2 => 0 const3 => 0 const4 => 0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z0, z1) :|: z1 >= 0, z = 1, z0 >= 0, z' = 1 + z0, z'' = z1 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(le(1 + z01, z1), 1 + z01, z1), 1 + z1) + MINUS(1 + z01, z1) :|: z = 2, z1 >= 0, z01 >= 0, z' = 1 + (1 + z01), z'' = 1 + z1 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + z1) + MINUS(z0, z1) :|: z = 2, z1 >= 0, z0 >= 0, z' = 1 + z0, z'' = 1 + z1 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + z1) + MINUS(0, z1) :|: z = 2, z1 >= 0, z' = 1 + 0, z'' = 1 + z1 LE(z, z') -{ 1 }-> 1 + LE(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(le(z0, z1'), 1 + z0, 1 + z1') + LE(1 + z0, 1 + z1') :|: z = 1 + z0, z' = 1 + z1', z1' >= 0, z0 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + z0, 0) + LE(1 + z0, 0) :|: z = 1 + z0, z0 >= 0, z' = 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(0, 1 + z0, z1) + LE(1 + z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(le(z0'', z1''), 1 + (1 + z1''), 1 + (1 + z0'')) + LE(1 + z0'', 1 + z1'') :|: z' = 1 + (1 + z0''), z = 1 + (1 + z1''), z0'' >= 0, z1'' >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(2, 1 + z0, 1 + 0) + LE(0, z0) :|: z = 1 + z0, z' = 1 + 0, z0 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + z0')) + LE(1 + z0', 0) :|: z' = 1 + (1 + z0'), z0' >= 0, z = 1 + 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(0, 1 + z0, 1 + z1) + LE(z1, z0) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z1 >= 0, z0 >= 0, z' = 1 + z0, z'' = z1 if_minus(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z0, z1) :|: z1 >= 0, z = 1, z0 >= 0, z' = 1 + z0, z'' = z1 le(z, z') -{ 0 }-> le(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 le(z, z') -{ 0 }-> 2 :|: z0 >= 0, z = 0, z' = z0 le(z, z') -{ 0 }-> 1 :|: z = 1 + z0, z0 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 minus(z, z') -{ 0 }-> if_minus(le(z0, z11), 1 + z0, 1 + z11) :|: z' = 1 + z11, z11 >= 0, z = 1 + z0, z0 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + z0, 0) :|: z = 1 + z0, z0 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 minus(z, z') -{ 0 }-> 0 :|: z0 >= 0, z = 0, z' = z0 minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (19) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(le(1 + (z' - 2), z'' - 1), 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ 1 }-> 1 + LE(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) + LE(1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + LE(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + LE(1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 1 + (z - 2)) :|: z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + LE(0, z - 1) :|: z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 0) :|: z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + LE(z' - 1, z - 1) :|: z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ---------------------------------------- (21) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { le } { LE } { minus, if_minus } { MINUS, IF_MINUS } { MOD, IF_MOD } ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(le(1 + (z' - 2), z'' - 1), 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ 1 }-> 1 + LE(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) + LE(1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + LE(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + LE(1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 1 + (z - 2)) :|: z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + LE(0, z - 1) :|: z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 0) :|: z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + LE(z' - 1, z - 1) :|: z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {le}, {LE}, {minus,if_minus}, {MINUS,IF_MINUS}, {MOD,IF_MOD} ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(le(1 + (z' - 2), z'' - 1), 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ 1 }-> 1 + LE(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) + LE(1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + LE(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + LE(1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 1 + (z - 2)) :|: z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + LE(0, z - 1) :|: z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 0) :|: z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + LE(z' - 1, z - 1) :|: z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {le}, {LE}, {minus,if_minus}, {MINUS,IF_MINUS}, {MOD,IF_MOD} ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(le(1 + (z' - 2), z'' - 1), 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ 1 }-> 1 + LE(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) + LE(1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + LE(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + LE(1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 1 + (z - 2)) :|: z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + LE(0, z - 1) :|: z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 0) :|: z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + LE(z' - 1, z - 1) :|: z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {le}, {LE}, {minus,if_minus}, {MINUS,IF_MINUS}, {MOD,IF_MOD} Previous analysis results are: le: runtime: ?, size: O(1) [2] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(le(1 + (z' - 2), z'' - 1), 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ 1 }-> 1 + LE(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) + LE(1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + LE(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + LE(1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 1 + (z - 2)) :|: z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + LE(0, z - 1) :|: z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 0) :|: z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + LE(z' - 1, z - 1) :|: z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {LE}, {minus,if_minus}, {MINUS,IF_MINUS}, {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(s'', 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ 1 }-> 1 + LE(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(s, 1 + (z - 1), 1 + (z' - 1)) + LE(1 + (z - 1), 1 + (z' - 1)) :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + LE(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + LE(1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 1 + (z - 2)) :|: s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + LE(0, z - 1) :|: z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 0) :|: z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + LE(z' - 1, z - 1) :|: z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(s2, 1 + (z - 1), 1 + (z' - 1)) :|: s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {LE}, {minus,if_minus}, {MINUS,IF_MINUS}, {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: LE after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(s'', 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ 1 }-> 1 + LE(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(s, 1 + (z - 1), 1 + (z' - 1)) + LE(1 + (z - 1), 1 + (z' - 1)) :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + LE(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + LE(1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 1 + (z - 2)) :|: s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + LE(0, z - 1) :|: z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 0) :|: z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + LE(z' - 1, z - 1) :|: z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(s2, 1 + (z - 1), 1 + (z' - 1)) :|: s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {LE}, {minus,if_minus}, {MINUS,IF_MINUS}, {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: ?, size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: LE after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(s'', 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ 1 }-> 1 + LE(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(s, 1 + (z - 1), 1 + (z' - 1)) + LE(1 + (z - 1), 1 + (z' - 1)) :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + LE(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + LE(1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 1 + (z - 2)) :|: s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + LE(0, z - 1) :|: z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + LE(1 + (z' - 2), 0) :|: z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + LE(z' - 1, z - 1) :|: z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(s2, 1 + (z - 1), 1 + (z' - 1)) :|: s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {minus,if_minus}, {MINUS,IF_MINUS}, {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: O(n^1) [z'], size: O(1) [0] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(s'', 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ z' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(s, 1 + (z - 1), 1 + (z' - 1)) + s5 :|: s5 >= 0, s5 <= 0, s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + s6 :|: s6 >= 0, s6 <= 0, z' >= 0, z - 1 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + s8 :|: s8 >= 0, s8 <= 0, s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + s9 :|: s9 >= 0, s9 <= 0, z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + s7 :|: s7 >= 0, s7 <= 0, z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ z }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + s10 :|: s10 >= 0, s10 <= 0, z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(s2, 1 + (z - 1), 1 + (z' - 1)) :|: s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {minus,if_minus}, {MINUS,IF_MINUS}, {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: O(n^1) [z'], size: O(1) [0] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z Computed SIZE bound using CoFloCo for: if_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(s'', 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ z' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(s, 1 + (z - 1), 1 + (z' - 1)) + s5 :|: s5 >= 0, s5 <= 0, s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + s6 :|: s6 >= 0, s6 <= 0, z' >= 0, z - 1 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + s8 :|: s8 >= 0, s8 <= 0, s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + s9 :|: s9 >= 0, s9 <= 0, z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + s7 :|: s7 >= 0, s7 <= 0, z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ z }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + s10 :|: s10 >= 0, s10 <= 0, z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(s2, 1 + (z - 1), 1 + (z' - 1)) :|: s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {minus,if_minus}, {MINUS,IF_MINUS}, {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: O(n^1) [z'], size: O(1) [0] minus: runtime: ?, size: O(n^1) [z] if_minus: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed RUNTIME bound using CoFloCo for: if_minus after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(if_minus(s'', 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ z' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(s, 1 + (z - 1), 1 + (z' - 1)) + s5 :|: s5 >= 0, s5 <= 0, s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + s6 :|: s6 >= 0, s6 <= 0, z' >= 0, z - 1 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + s8 :|: s8 >= 0, s8 <= 0, s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + s9 :|: s9 >= 0, s9 <= 0, z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + s7 :|: s7 >= 0, s7 <= 0, z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ z }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + s10 :|: s10 >= 0, s10 <= 0, z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> if_minus(s2, 1 + (z - 1), 1 + (z' - 1)) :|: s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> if_minus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> if_minus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {MINUS,IF_MINUS}, {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: O(n^1) [z'], size: O(1) [0] minus: runtime: O(1) [0], size: O(n^1) [z] if_minus: runtime: O(1) [0], size: O(n^1) [z'] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(s11, 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: s11 >= 0, s11 <= 1 + (z' - 2), s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ z' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(s, 1 + (z - 1), 1 + (z' - 1)) + s5 :|: s5 >= 0, s5 <= 0, s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + s6 :|: s6 >= 0, s6 <= 0, z' >= 0, z - 1 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + s8 :|: s8 >= 0, s8 <= 0, s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + s9 :|: s9 >= 0, s9 <= 0, z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + s7 :|: s7 >= 0, s7 <= 0, z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ z }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + s10 :|: s10 >= 0, s10 <= 0, z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + s15 :|: s15 >= 0, s15 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> s12 :|: s12 >= 0, s12 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> s13 :|: s13 >= 0, s13 <= 1 + (z - 1), s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> s14 :|: s14 >= 0, s14 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {MINUS,IF_MINUS}, {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: O(n^1) [z'], size: O(1) [0] minus: runtime: O(1) [0], size: O(n^1) [z] if_minus: runtime: O(1) [0], size: O(n^1) [z'] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: MINUS after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: IF_MINUS after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(s11, 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: s11 >= 0, s11 <= 1 + (z' - 2), s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ z' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(s, 1 + (z - 1), 1 + (z' - 1)) + s5 :|: s5 >= 0, s5 <= 0, s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + s6 :|: s6 >= 0, s6 <= 0, z' >= 0, z - 1 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + s8 :|: s8 >= 0, s8 <= 0, s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + s9 :|: s9 >= 0, s9 <= 0, z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + s7 :|: s7 >= 0, s7 <= 0, z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ z }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + s10 :|: s10 >= 0, s10 <= 0, z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + s15 :|: s15 >= 0, s15 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> s12 :|: s12 >= 0, s12 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> s13 :|: s13 >= 0, s13 <= 1 + (z - 1), s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> s14 :|: s14 >= 0, s14 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {MINUS,IF_MINUS}, {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: O(n^1) [z'], size: O(1) [0] minus: runtime: O(1) [0], size: O(n^1) [z] if_minus: runtime: O(1) [0], size: O(n^1) [z'] MINUS: runtime: ?, size: O(1) [0] IF_MINUS: runtime: ?, size: O(1) [1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: MINUS after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8*z + 4*z*z' Computed RUNTIME bound using KoAT for: IF_MINUS after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8*z' + 4*z'*z'' ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ 1 }-> 1 + MINUS(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(s11, 1 + (z'' - 1)) + MINUS(1 + (z' - 2), z'' - 1) :|: s11 >= 0, s11 <= 1 + (z' - 2), s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(0, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + MINUS(z' - 1, z'' - 1) :|: z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ z' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(s, 1 + (z - 1), 1 + (z' - 1)) + s5 :|: s5 >= 0, s5 <= 0, s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 }-> 1 + IF_MINUS(1, 1 + (z - 1), 0) + s4 :|: s4 >= 0, s4 <= 0, z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 + z' }-> 1 + IF_MINUS(0, 1 + (z - 1), z') + s6 :|: s6 >= 0, s6 <= 0, z' >= 0, z - 1 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + s8 :|: s8 >= 0, s8 <= 0, s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + s9 :|: s9 >= 0, s9 <= 0, z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + s7 :|: s7 >= 0, s7 <= 0, z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ z }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + s10 :|: s10 >= 0, s10 <= 0, z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + s15 :|: s15 >= 0, s15 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> s12 :|: s12 >= 0, s12 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> s13 :|: s13 >= 0, s13 <= 1 + (z - 1), s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> s14 :|: s14 >= 0, s14 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: O(n^1) [z'], size: O(1) [0] minus: runtime: O(1) [0], size: O(n^1) [z] if_minus: runtime: O(1) [0], size: O(n^1) [z'] MINUS: runtime: O(n^2) [8*z + 4*z*z'], size: O(1) [0] IF_MINUS: runtime: O(n^2) [8*z' + 4*z'*z''], size: O(1) [1] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ -7 + 8*z' + 4*z'*z'' + -4*z'' }-> 1 + s19 :|: s19 >= 0, s19 <= 0, z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ -3 + 4*z' + 4*z'*z'' + -4*z'' }-> 1 + MOD(s11, 1 + (z'' - 1)) + s21 :|: s21 >= 0, s21 <= 0, s11 >= 0, s11 <= 1 + (z' - 2), s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + s20 :|: s20 >= 0, s20 <= 0, z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ -3 + 4*z' + 4*z'*z'' + -4*z'' }-> 1 + MOD(0, 1 + (z'' - 1)) + s22 :|: s22 >= 0, s22 <= 0, z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ z' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + 8*z }-> 1 + s16 + s4 :|: s16 >= 0, s16 <= 1, s4 >= 0, s4 <= 0, z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 + 8*z + 4*z*z' + z' }-> 1 + s17 + s5 :|: s17 >= 0, s17 <= 1, s5 >= 0, s5 <= 0, s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + 8*z + 4*z*z' + z' }-> 1 + s18 + s6 :|: s18 >= 0, s18 <= 1, s6 >= 0, s6 <= 0, z' >= 0, z - 1 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + s8 :|: s8 >= 0, s8 <= 0, s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + s9 :|: s9 >= 0, s9 <= 0, z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + s7 :|: s7 >= 0, s7 <= 0, z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ z }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + s10 :|: s10 >= 0, s10 <= 0, z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + s15 :|: s15 >= 0, s15 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> s12 :|: s12 >= 0, s12 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> s13 :|: s13 >= 0, s13 <= 1 + (z - 1), s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> s14 :|: s14 >= 0, s14 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: O(n^1) [z'], size: O(1) [0] minus: runtime: O(1) [0], size: O(n^1) [z] if_minus: runtime: O(1) [0], size: O(n^1) [z'] MINUS: runtime: O(n^2) [8*z + 4*z*z'], size: O(1) [0] IF_MINUS: runtime: O(n^2) [8*z' + 4*z'*z''], size: O(1) [1] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: MOD after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: IF_MOD after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ -7 + 8*z' + 4*z'*z'' + -4*z'' }-> 1 + s19 :|: s19 >= 0, s19 <= 0, z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ -3 + 4*z' + 4*z'*z'' + -4*z'' }-> 1 + MOD(s11, 1 + (z'' - 1)) + s21 :|: s21 >= 0, s21 <= 0, s11 >= 0, s11 <= 1 + (z' - 2), s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + s20 :|: s20 >= 0, s20 <= 0, z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ -3 + 4*z' + 4*z'*z'' + -4*z'' }-> 1 + MOD(0, 1 + (z'' - 1)) + s22 :|: s22 >= 0, s22 <= 0, z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ z' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + 8*z }-> 1 + s16 + s4 :|: s16 >= 0, s16 <= 1, s4 >= 0, s4 <= 0, z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 + 8*z + 4*z*z' + z' }-> 1 + s17 + s5 :|: s17 >= 0, s17 <= 1, s5 >= 0, s5 <= 0, s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + 8*z + 4*z*z' + z' }-> 1 + s18 + s6 :|: s18 >= 0, s18 <= 1, s6 >= 0, s6 <= 0, z' >= 0, z - 1 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + s8 :|: s8 >= 0, s8 <= 0, s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + s9 :|: s9 >= 0, s9 <= 0, z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + s7 :|: s7 >= 0, s7 <= 0, z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ z }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + s10 :|: s10 >= 0, s10 <= 0, z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + s15 :|: s15 >= 0, s15 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> s12 :|: s12 >= 0, s12 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> s13 :|: s13 >= 0, s13 <= 1 + (z - 1), s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> s14 :|: s14 >= 0, s14 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {MOD,IF_MOD} Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: O(n^1) [z'], size: O(1) [0] minus: runtime: O(1) [0], size: O(n^1) [z] if_minus: runtime: O(1) [0], size: O(n^1) [z'] MINUS: runtime: O(n^2) [8*z + 4*z*z'], size: O(1) [0] IF_MINUS: runtime: O(n^2) [8*z' + 4*z'*z''], size: O(1) [1] MOD: runtime: ?, size: O(1) [0] IF_MOD: runtime: ?, size: O(1) [1] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: MOD after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 4*z + 38*z^2 + 16*z^2*z' Computed RUNTIME bound using KoAT for: IF_MOD after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 12*z' + 8*z'*z'' + 38*z'^2 + 16*z'^2*z'' ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: IF_MINUS(z, z', z'') -{ -7 + 8*z' + 4*z'*z'' + -4*z'' }-> 1 + s19 :|: s19 >= 0, s19 <= 0, z'' >= 0, z = 1, z' - 1 >= 0 IF_MOD(z, z', z'') -{ -3 + 4*z' + 4*z'*z'' + -4*z'' }-> 1 + MOD(s11, 1 + (z'' - 1)) + s21 :|: s21 >= 0, s21 <= 0, s11 >= 0, s11 <= 1 + (z' - 2), s'' >= 0, s'' <= 2, z = 2, z'' - 1 >= 0, z' - 2 >= 0 IF_MOD(z, z', z'') -{ 1 }-> 1 + MOD(0, 1 + (z'' - 1)) + s20 :|: s20 >= 0, s20 <= 0, z = 2, z'' - 1 >= 0, z' = 1 + 0 IF_MOD(z, z', z'') -{ -3 + 4*z' + 4*z'*z'' + -4*z'' }-> 1 + MOD(0, 1 + (z'' - 1)) + s22 :|: s22 >= 0, s22 <= 0, z = 2, z'' - 1 >= 0, z' - 1 >= 0 LE(z, z') -{ z' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + 8*z }-> 1 + s16 + s4 :|: s16 >= 0, s16 <= 1, s4 >= 0, s4 <= 0, z - 1 >= 0, z' = 0 MINUS(z, z') -{ 1 + 8*z + 4*z*z' + z' }-> 1 + s17 + s5 :|: s17 >= 0, s17 <= 1, s5 >= 0, s5 <= 0, s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 MINUS(z, z') -{ 1 + 8*z + 4*z*z' + z' }-> 1 + s18 + s6 :|: s18 >= 0, s18 <= 1, s6 >= 0, s6 <= 0, z' >= 0, z - 1 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(s', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) + s8 :|: s8 >= 0, s8 <= 0, s' >= 0, s' <= 2, z' - 2 >= 0, z - 2 >= 0 MOD(z, z') -{ z }-> 1 + IF_MOD(2, 1 + (z - 1), 1 + 0) + s9 :|: s9 >= 0, s9 <= 0, z' = 1 + 0, z - 1 >= 0 MOD(z, z') -{ 1 }-> 1 + IF_MOD(1, 1 + 0, 1 + (1 + (z' - 2))) + s7 :|: s7 >= 0, s7 <= 0, z' - 2 >= 0, z = 1 + 0 MOD(z, z') -{ z }-> 1 + IF_MOD(0, 1 + (z - 1), 1 + (z' - 1)) + s10 :|: s10 >= 0, s10 <= 0, z' - 1 >= 0, z - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 1 + s15 :|: s15 >= 0, s15 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 0 }-> s1 :|: s1 >= 0, s1 <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 0 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 0 }-> s12 :|: s12 >= 0, s12 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 0 }-> s13 :|: s13 >= 0, s13 <= 1 + (z - 1), s2 >= 0, s2 <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> s14 :|: s14 >= 0, s14 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: le: runtime: O(1) [0], size: O(1) [2] LE: runtime: O(n^1) [z'], size: O(1) [0] minus: runtime: O(1) [0], size: O(n^1) [z] if_minus: runtime: O(1) [0], size: O(n^1) [z'] MINUS: runtime: O(n^2) [8*z + 4*z*z'], size: O(1) [0] IF_MINUS: runtime: O(n^2) [8*z' + 4*z'*z''], size: O(1) [1] MOD: runtime: O(n^3) [4*z + 38*z^2 + 16*z^2*z'], size: O(1) [0] IF_MOD: runtime: O(n^3) [1 + 12*z' + 8*z'*z'' + 38*z'^2 + 16*z'^2*z''], size: O(1) [1] ---------------------------------------- (53) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (54) BOUNDS(1, n^3) ---------------------------------------- (55) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (56) Obligation: Complexity Dependency Tuples Problem Rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0, z0) -> 0 minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0 if_minus(false, s(z0), z1) -> s(minus(z0, z1)) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) Tuples: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0, z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 S tuples: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0, z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 K tuples:none Defined Rule Symbols: le_2, minus_2, if_minus_3, mod_2, if_mod_3 Defined Pair Symbols: LE_2, MINUS_2, IF_MINUS_3, MOD_2, IF_MOD_3 Compound Symbols: c, c1, c2_1, c3, c4_2, c5, c6_1, c7, c8, c9_2, c10_2, c11 ---------------------------------------- (57) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (58) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0, z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 The (relative) TRS S consists of the following rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0, z0) -> 0 minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0 if_minus(false, s(z0), z1) -> s(minus(z0, z1)) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (59) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (60) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LE(0', z0) -> c LE(s(z0), 0') -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0', z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 The (relative) TRS S consists of the following rules: le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0', z0) -> 0' minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0' if_minus(false, s(z0), z1) -> s(minus(z0, z1)) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (61) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (62) Obligation: Innermost TRS: Rules: LE(0', z0) -> c LE(s(z0), 0') -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0', z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0', z0) -> 0' minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0' if_minus(false, s(z0), z1) -> s(minus(z0, z1)) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) Types: LE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 MINUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c5:c6 -> c:c1:c2 -> c3:c4 IF_MINUS :: true:false -> 0':s -> 0':s -> c5:c6 le :: 0':s -> 0':s -> true:false true :: true:false c5 :: c5:c6 false :: true:false c6 :: c3:c4 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9 c7 :: c7:c8:c9 c8 :: c7:c8:c9 c9 :: c10:c11 -> c:c1:c2 -> c7:c8:c9 IF_MOD :: true:false -> 0':s -> 0':s -> c10:c11 c10 :: c7:c8:c9 -> c3:c4 -> c10:c11 minus :: 0':s -> 0':s -> 0':s c11 :: c10:c11 if_minus :: true:false -> 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_12 :: c:c1:c2 hole_0':s2_12 :: 0':s hole_c3:c43_12 :: c3:c4 hole_c5:c64_12 :: c5:c6 hole_true:false5_12 :: true:false hole_c7:c8:c96_12 :: c7:c8:c9 hole_c10:c117_12 :: c10:c11 gen_c:c1:c28_12 :: Nat -> c:c1:c2 gen_0':s9_12 :: Nat -> 0':s ---------------------------------------- (63) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: LE, MINUS, le, MOD, minus, mod They will be analysed ascendingly in the following order: LE < MINUS LE < MOD le < MINUS MINUS < MOD le < MOD le < minus le < mod minus < MOD minus < mod ---------------------------------------- (64) Obligation: Innermost TRS: Rules: LE(0', z0) -> c LE(s(z0), 0') -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0', z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0', z0) -> 0' minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0' if_minus(false, s(z0), z1) -> s(minus(z0, z1)) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) Types: LE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 MINUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c5:c6 -> c:c1:c2 -> c3:c4 IF_MINUS :: true:false -> 0':s -> 0':s -> c5:c6 le :: 0':s -> 0':s -> true:false true :: true:false c5 :: c5:c6 false :: true:false c6 :: c3:c4 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9 c7 :: c7:c8:c9 c8 :: c7:c8:c9 c9 :: c10:c11 -> c:c1:c2 -> c7:c8:c9 IF_MOD :: true:false -> 0':s -> 0':s -> c10:c11 c10 :: c7:c8:c9 -> c3:c4 -> c10:c11 minus :: 0':s -> 0':s -> 0':s c11 :: c10:c11 if_minus :: true:false -> 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_12 :: c:c1:c2 hole_0':s2_12 :: 0':s hole_c3:c43_12 :: c3:c4 hole_c5:c64_12 :: c5:c6 hole_true:false5_12 :: true:false hole_c7:c8:c96_12 :: c7:c8:c9 hole_c10:c117_12 :: c10:c11 gen_c:c1:c28_12 :: Nat -> c:c1:c2 gen_0':s9_12 :: Nat -> 0':s Generator Equations: gen_c:c1:c28_12(0) <=> c gen_c:c1:c28_12(+(x, 1)) <=> c2(gen_c:c1:c28_12(x)) gen_0':s9_12(0) <=> 0' gen_0':s9_12(+(x, 1)) <=> s(gen_0':s9_12(x)) The following defined symbols remain to be analysed: LE, MINUS, le, MOD, minus, mod They will be analysed ascendingly in the following order: LE < MINUS LE < MOD le < MINUS MINUS < MOD le < MOD le < minus le < mod minus < MOD minus < mod ---------------------------------------- (65) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LE(gen_0':s9_12(n11_12), gen_0':s9_12(n11_12)) -> gen_c:c1:c28_12(n11_12), rt in Omega(1 + n11_12) Induction Base: LE(gen_0':s9_12(0), gen_0':s9_12(0)) ->_R^Omega(1) c Induction Step: LE(gen_0':s9_12(+(n11_12, 1)), gen_0':s9_12(+(n11_12, 1))) ->_R^Omega(1) c2(LE(gen_0':s9_12(n11_12), gen_0':s9_12(n11_12))) ->_IH c2(gen_c:c1:c28_12(c12_12)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (66) Complex Obligation (BEST) ---------------------------------------- (67) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: LE(0', z0) -> c LE(s(z0), 0') -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0', z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0', z0) -> 0' minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0' if_minus(false, s(z0), z1) -> s(minus(z0, z1)) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) Types: LE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 MINUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c5:c6 -> c:c1:c2 -> c3:c4 IF_MINUS :: true:false -> 0':s -> 0':s -> c5:c6 le :: 0':s -> 0':s -> true:false true :: true:false c5 :: c5:c6 false :: true:false c6 :: c3:c4 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9 c7 :: c7:c8:c9 c8 :: c7:c8:c9 c9 :: c10:c11 -> c:c1:c2 -> c7:c8:c9 IF_MOD :: true:false -> 0':s -> 0':s -> c10:c11 c10 :: c7:c8:c9 -> c3:c4 -> c10:c11 minus :: 0':s -> 0':s -> 0':s c11 :: c10:c11 if_minus :: true:false -> 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_12 :: c:c1:c2 hole_0':s2_12 :: 0':s hole_c3:c43_12 :: c3:c4 hole_c5:c64_12 :: c5:c6 hole_true:false5_12 :: true:false hole_c7:c8:c96_12 :: c7:c8:c9 hole_c10:c117_12 :: c10:c11 gen_c:c1:c28_12 :: Nat -> c:c1:c2 gen_0':s9_12 :: Nat -> 0':s Generator Equations: gen_c:c1:c28_12(0) <=> c gen_c:c1:c28_12(+(x, 1)) <=> c2(gen_c:c1:c28_12(x)) gen_0':s9_12(0) <=> 0' gen_0':s9_12(+(x, 1)) <=> s(gen_0':s9_12(x)) The following defined symbols remain to be analysed: LE, MINUS, le, MOD, minus, mod They will be analysed ascendingly in the following order: LE < MINUS LE < MOD le < MINUS MINUS < MOD le < MOD le < minus le < mod minus < MOD minus < mod ---------------------------------------- (68) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (69) BOUNDS(n^1, INF) ---------------------------------------- (70) Obligation: Innermost TRS: Rules: LE(0', z0) -> c LE(s(z0), 0') -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0', z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0', z0) -> 0' minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0' if_minus(false, s(z0), z1) -> s(minus(z0, z1)) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) Types: LE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 MINUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c5:c6 -> c:c1:c2 -> c3:c4 IF_MINUS :: true:false -> 0':s -> 0':s -> c5:c6 le :: 0':s -> 0':s -> true:false true :: true:false c5 :: c5:c6 false :: true:false c6 :: c3:c4 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9 c7 :: c7:c8:c9 c8 :: c7:c8:c9 c9 :: c10:c11 -> c:c1:c2 -> c7:c8:c9 IF_MOD :: true:false -> 0':s -> 0':s -> c10:c11 c10 :: c7:c8:c9 -> c3:c4 -> c10:c11 minus :: 0':s -> 0':s -> 0':s c11 :: c10:c11 if_minus :: true:false -> 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_12 :: c:c1:c2 hole_0':s2_12 :: 0':s hole_c3:c43_12 :: c3:c4 hole_c5:c64_12 :: c5:c6 hole_true:false5_12 :: true:false hole_c7:c8:c96_12 :: c7:c8:c9 hole_c10:c117_12 :: c10:c11 gen_c:c1:c28_12 :: Nat -> c:c1:c2 gen_0':s9_12 :: Nat -> 0':s Lemmas: LE(gen_0':s9_12(n11_12), gen_0':s9_12(n11_12)) -> gen_c:c1:c28_12(n11_12), rt in Omega(1 + n11_12) Generator Equations: gen_c:c1:c28_12(0) <=> c gen_c:c1:c28_12(+(x, 1)) <=> c2(gen_c:c1:c28_12(x)) gen_0':s9_12(0) <=> 0' gen_0':s9_12(+(x, 1)) <=> s(gen_0':s9_12(x)) The following defined symbols remain to be analysed: le, MINUS, MOD, minus, mod They will be analysed ascendingly in the following order: le < MINUS MINUS < MOD le < MOD le < minus le < mod minus < MOD minus < mod ---------------------------------------- (71) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s9_12(n619_12), gen_0':s9_12(n619_12)) -> true, rt in Omega(0) Induction Base: le(gen_0':s9_12(0), gen_0':s9_12(0)) ->_R^Omega(0) true Induction Step: le(gen_0':s9_12(+(n619_12, 1)), gen_0':s9_12(+(n619_12, 1))) ->_R^Omega(0) le(gen_0':s9_12(n619_12), gen_0':s9_12(n619_12)) ->_IH true We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (72) Obligation: Innermost TRS: Rules: LE(0', z0) -> c LE(s(z0), 0') -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) MINUS(0', z0) -> c3 MINUS(s(z0), z1) -> c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1)) IF_MINUS(true, s(z0), z1) -> c5 IF_MINUS(false, s(z0), z1) -> c6(MINUS(z0, z1)) MOD(0', z0) -> c7 MOD(s(z0), 0') -> c8 MOD(s(z0), s(z1)) -> c9(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0)) IF_MOD(true, s(z0), s(z1)) -> c10(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1)) IF_MOD(false, s(z0), s(z1)) -> c11 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(0', z0) -> 0' minus(s(z0), z1) -> if_minus(le(s(z0), z1), s(z0), z1) if_minus(true, s(z0), z1) -> 0' if_minus(false, s(z0), z1) -> s(minus(z0, z1)) mod(0', z0) -> 0' mod(s(z0), 0') -> 0' mod(s(z0), s(z1)) -> if_mod(le(z1, z0), s(z0), s(z1)) if_mod(true, s(z0), s(z1)) -> mod(minus(z0, z1), s(z1)) if_mod(false, s(z0), s(z1)) -> s(z0) Types: LE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 MINUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c5:c6 -> c:c1:c2 -> c3:c4 IF_MINUS :: true:false -> 0':s -> 0':s -> c5:c6 le :: 0':s -> 0':s -> true:false true :: true:false c5 :: c5:c6 false :: true:false c6 :: c3:c4 -> c5:c6 MOD :: 0':s -> 0':s -> c7:c8:c9 c7 :: c7:c8:c9 c8 :: c7:c8:c9 c9 :: c10:c11 -> c:c1:c2 -> c7:c8:c9 IF_MOD :: true:false -> 0':s -> 0':s -> c10:c11 c10 :: c7:c8:c9 -> c3:c4 -> c10:c11 minus :: 0':s -> 0':s -> 0':s c11 :: c10:c11 if_minus :: true:false -> 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s if_mod :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_12 :: c:c1:c2 hole_0':s2_12 :: 0':s hole_c3:c43_12 :: c3:c4 hole_c5:c64_12 :: c5:c6 hole_true:false5_12 :: true:false hole_c7:c8:c96_12 :: c7:c8:c9 hole_c10:c117_12 :: c10:c11 gen_c:c1:c28_12 :: Nat -> c:c1:c2 gen_0':s9_12 :: Nat -> 0':s Lemmas: LE(gen_0':s9_12(n11_12), gen_0':s9_12(n11_12)) -> gen_c:c1:c28_12(n11_12), rt in Omega(1 + n11_12) le(gen_0':s9_12(n619_12), gen_0':s9_12(n619_12)) -> true, rt in Omega(0) Generator Equations: gen_c:c1:c28_12(0) <=> c gen_c:c1:c28_12(+(x, 1)) <=> c2(gen_c:c1:c28_12(x)) gen_0':s9_12(0) <=> 0' gen_0':s9_12(+(x, 1)) <=> s(gen_0':s9_12(x)) The following defined symbols remain to be analysed: MINUS, MOD, minus, mod They will be analysed ascendingly in the following order: MINUS < MOD minus < MOD minus < mod