WORST_CASE(?,O(n^1)) proof of input_BcGXo4aero.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 89 ms] (4) CdtProblem (5) CdtInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 7 ms] (12) CdtProblem (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (14) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, c(y)) -> f(x, s(f(y, y))) f(s(x), y) -> f(x, s(c(y))) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, c(z1)) -> f(z0, s(f(z1, z1))) f(s(z0), z1) -> f(z0, s(c(z1))) Tuples: F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) F(s(z0), z1) -> c2(F(z0, s(c(z1)))) S tuples: F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) F(s(z0), z1) -> c2(F(z0, s(c(z1)))) K tuples:none Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c1_2, c2_1 ---------------------------------------- (3) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) We considered the (Usable) Rules:none And the Tuples: F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) F(s(z0), z1) -> c2(F(z0, s(c(z1)))) The order we found is given by the following interpretation: Polynomial interpretation : POL(F(x_1, x_2)) = x_2 POL(c(x_1)) = [1] + x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(f(x_1, x_2)) = [1] + x_2 POL(s(x_1)) = 0 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, c(z1)) -> f(z0, s(f(z1, z1))) f(s(z0), z1) -> f(z0, s(c(z1))) Tuples: F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) F(s(z0), z1) -> c2(F(z0, s(c(z1)))) S tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) K tuples: F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c1_2, c2_1 ---------------------------------------- (5) CdtInstantiationProof (BOTH BOUNDS(ID, ID)) Use instantiation to replace F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) by F(c(z1), c(z1)) -> c1(F(c(z1), s(f(z1, z1))), F(z1, z1)) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, c(z1)) -> f(z0, s(f(z1, z1))) f(s(z0), z1) -> f(z0, s(c(z1))) Tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) F(c(z1), c(z1)) -> c1(F(c(z1), s(f(z1, z1))), F(z1, z1)) S tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) K tuples: F(c(z1), c(z1)) -> c1(F(c(z1), s(f(z1, z1))), F(z1, z1)) Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c2_1, c1_2 ---------------------------------------- (7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, c(z1)) -> f(z0, s(f(z1, z1))) f(s(z0), z1) -> f(z0, s(c(z1))) Tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) F(c(z1), c(z1)) -> c1(F(z1, z1)) S tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) K tuples: F(c(z1), c(z1)) -> c1(F(z1, z1)) Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c2_1, c1_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: f(z0, c(z1)) -> f(z0, s(f(z1, z1))) f(s(z0), z1) -> f(z0, s(c(z1))) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) F(c(z1), c(z1)) -> c1(F(z1, z1)) S tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) K tuples: F(c(z1), c(z1)) -> c1(F(z1, z1)) Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c2_1, c1_1 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(s(z0), z1) -> c2(F(z0, s(c(z1)))) We considered the (Usable) Rules:none And the Tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) F(c(z1), c(z1)) -> c1(F(z1, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(F(x_1, x_2)) = x_1 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) F(c(z1), c(z1)) -> c1(F(z1, z1)) S tuples:none K tuples: F(c(z1), c(z1)) -> c1(F(z1, z1)) F(s(z0), z1) -> c2(F(z0, s(c(z1)))) Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c2_1, c1_1 ---------------------------------------- (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (14) BOUNDS(1, 1)