WORST_CASE(?,O(n^3)) proof of input_tSnVUcEQ6m.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 553 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 151 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 251 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) FinalProof [FINISHED, 0 ms] (28) BOUNDS(1, n^3) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(x, 0) -> x plus(0, x) -> x plus(x, s(y)) -> s(plus(x, y)) plus(s(x), y) -> s(plus(x, y)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: times(x, 0) -> 0 [1] times(x, s(y)) -> plus(times(x, y), x) [1] plus(x, 0) -> x [1] plus(0, x) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] plus(s(x), y) -> s(plus(x, y)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: times(x, 0) -> 0 [1] times(x, s(y)) -> plus(times(x, y), x) [1] plus(x, 0) -> x [1] plus(0, x) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] plus(s(x), y) -> s(plus(x, y)) [1] The TRS has the following type information: times :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: times_2 plus_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: times(x, 0) -> 0 [1] times(x, s(y)) -> plus(times(x, y), x) [1] plus(x, 0) -> x [1] plus(0, x) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] plus(s(x), y) -> s(plus(x, y)) [1] The TRS has the following type information: times :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: times(x, 0) -> 0 [1] times(x, s(0)) -> plus(0, x) [2] times(x, s(s(y'))) -> plus(plus(times(x, y'), x), x) [2] plus(x, 0) -> x [1] plus(0, x) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] plus(s(x), y) -> s(plus(x, y)) [1] The TRS has the following type information: times :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 plus(z, z') -{ 1 }-> x :|: z' = x, x >= 0, z = 0 plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y times(z, z') -{ 2 }-> plus(plus(times(x, y'), x), x) :|: z' = 1 + (1 + y'), x >= 0, y' >= 0, z = x times(z, z') -{ 2 }-> plus(0, x) :|: x >= 0, z' = 1 + 0, z = x times(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 2 }-> plus(0, z) :|: z >= 0, z' = 1 + 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { plus } { times } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 2 }-> plus(0, z) :|: z >= 0, z' = 1 + 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 2 }-> plus(0, z) :|: z >= 0, z' = 1 + 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 2 }-> plus(0, z) :|: z >= 0, z' = 1 + 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times} Previous analysis results are: plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 2 }-> plus(0, z) :|: z >= 0, z' = 1 + 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {times} Previous analysis results are: plus: runtime: O(n^1) [1 + z + z'], size: O(n^1) [z + z'] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 + z + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 + z + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1 + z', z - 1 >= 0, z' >= 0 times(z, z') -{ 3 + z }-> s :|: s >= 0, s <= 0 + z, z >= 0, z' = 1 + 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {times} Previous analysis results are: plus: runtime: O(n^1) [1 + z + z'], size: O(n^1) [z + z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: times after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + 2*z*z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 + z + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 + z + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1 + z', z - 1 >= 0, z' >= 0 times(z, z') -{ 3 + z }-> s :|: s >= 0, s <= 0 + z, z >= 0, z' = 1 + 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {times} Previous analysis results are: plus: runtime: O(n^1) [1 + z + z'], size: O(n^1) [z + z'] times: runtime: ?, size: O(n^2) [z + 2*z*z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: times after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 4 + z + 4*z*z'^2 + 4*z' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 + z + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 + z + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1 + z', z - 1 >= 0, z' >= 0 times(z, z') -{ 3 + z }-> s :|: s >= 0, s <= 0 + z, z >= 0, z' = 1 + 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: Previous analysis results are: plus: runtime: O(n^1) [1 + z + z'], size: O(n^1) [z + z'] times: runtime: O(n^3) [4 + z + 4*z*z'^2 + 4*z'], size: O(n^2) [z + 2*z*z'] ---------------------------------------- (27) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (28) BOUNDS(1, n^3)