WORST_CASE(Omega(n^1),?) proof of input_MviL8TbvVO.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CdtProblem (3) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 3 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 309 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 56 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 1572 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 2299 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 2692 ms] (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) f(0) -> s(0) f(s(x)) -> minus(s(x), g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x), f(g(x))) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: minus(z0, 0) -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0) -> s(0) f(s(z0)) -> minus(s(z0), g(f(z0))) g(0) -> 0 g(s(z0)) -> minus(s(z0), f(g(z0))) Tuples: MINUS(z0, 0) -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0) -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0) -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) S tuples: MINUS(z0, 0) -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0) -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0) -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) K tuples:none Defined Rule Symbols: minus_2, f_1, g_1 Defined Pair Symbols: MINUS_2, F_1, G_1 Compound Symbols: c, c1_1, c2, c3_3, c4, c5_3 ---------------------------------------- (3) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: MINUS(z0, 0) -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0) -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0) -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) The (relative) TRS S consists of the following rules: minus(z0, 0) -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0) -> s(0) f(s(z0)) -> minus(s(z0), g(f(z0))) g(0) -> 0 g(s(z0)) -> minus(s(z0), f(g(z0))) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: MINUS(z0, 0') -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0') -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0') -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) The (relative) TRS S consists of the following rules: minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0') -> s(0') f(s(z0)) -> minus(s(z0), g(f(z0))) g(0') -> 0' g(s(z0)) -> minus(s(z0), f(g(z0))) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: MINUS(z0, 0') -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0') -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0') -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0') -> s(0') f(s(z0)) -> minus(s(z0), g(f(z0))) g(0') -> 0' g(s(z0)) -> minus(s(z0), f(g(z0))) Types: MINUS :: 0':s -> 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 -> c:c1 F :: 0':s -> c2:c3 c2 :: c2:c3 c3 :: c:c1 -> c4:c5 -> c2:c3 -> c2:c3 g :: 0':s -> 0':s f :: 0':s -> 0':s G :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c:c1 -> c2:c3 -> c4:c5 -> c4:c5 minus :: 0':s -> 0':s -> 0':s hole_c:c11_6 :: c:c1 hole_0':s2_6 :: 0':s hole_c2:c33_6 :: c2:c3 hole_c4:c54_6 :: c4:c5 gen_c:c15_6 :: Nat -> c:c1 gen_0':s6_6 :: Nat -> 0':s gen_c2:c37_6 :: Nat -> c2:c3 gen_c4:c58_6 :: Nat -> c4:c5 ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: MINUS, F, g, f, G, minus They will be analysed ascendingly in the following order: MINUS < F MINUS < G g < F f < F F = G g = f g < G minus < g f < G minus < f ---------------------------------------- (10) Obligation: Innermost TRS: Rules: MINUS(z0, 0') -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0') -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0') -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0') -> s(0') f(s(z0)) -> minus(s(z0), g(f(z0))) g(0') -> 0' g(s(z0)) -> minus(s(z0), f(g(z0))) Types: MINUS :: 0':s -> 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 -> c:c1 F :: 0':s -> c2:c3 c2 :: c2:c3 c3 :: c:c1 -> c4:c5 -> c2:c3 -> c2:c3 g :: 0':s -> 0':s f :: 0':s -> 0':s G :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c:c1 -> c2:c3 -> c4:c5 -> c4:c5 minus :: 0':s -> 0':s -> 0':s hole_c:c11_6 :: c:c1 hole_0':s2_6 :: 0':s hole_c2:c33_6 :: c2:c3 hole_c4:c54_6 :: c4:c5 gen_c:c15_6 :: Nat -> c:c1 gen_0':s6_6 :: Nat -> 0':s gen_c2:c37_6 :: Nat -> c2:c3 gen_c4:c58_6 :: Nat -> c4:c5 Generator Equations: gen_c:c15_6(0) <=> c gen_c:c15_6(+(x, 1)) <=> c1(gen_c:c15_6(x)) gen_0':s6_6(0) <=> 0' gen_0':s6_6(+(x, 1)) <=> s(gen_0':s6_6(x)) gen_c2:c37_6(0) <=> c2 gen_c2:c37_6(+(x, 1)) <=> c3(c, c4, gen_c2:c37_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(c, c2, gen_c4:c58_6(x)) The following defined symbols remain to be analysed: MINUS, F, g, f, G, minus They will be analysed ascendingly in the following order: MINUS < F MINUS < G g < F f < F F = G g = f g < G minus < g f < G minus < f ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: MINUS(gen_0':s6_6(n10_6), gen_0':s6_6(n10_6)) -> gen_c:c15_6(n10_6), rt in Omega(1 + n10_6) Induction Base: MINUS(gen_0':s6_6(0), gen_0':s6_6(0)) ->_R^Omega(1) c Induction Step: MINUS(gen_0':s6_6(+(n10_6, 1)), gen_0':s6_6(+(n10_6, 1))) ->_R^Omega(1) c1(MINUS(gen_0':s6_6(n10_6), gen_0':s6_6(n10_6))) ->_IH c1(gen_c:c15_6(c11_6)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: MINUS(z0, 0') -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0') -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0') -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0') -> s(0') f(s(z0)) -> minus(s(z0), g(f(z0))) g(0') -> 0' g(s(z0)) -> minus(s(z0), f(g(z0))) Types: MINUS :: 0':s -> 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 -> c:c1 F :: 0':s -> c2:c3 c2 :: c2:c3 c3 :: c:c1 -> c4:c5 -> c2:c3 -> c2:c3 g :: 0':s -> 0':s f :: 0':s -> 0':s G :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c:c1 -> c2:c3 -> c4:c5 -> c4:c5 minus :: 0':s -> 0':s -> 0':s hole_c:c11_6 :: c:c1 hole_0':s2_6 :: 0':s hole_c2:c33_6 :: c2:c3 hole_c4:c54_6 :: c4:c5 gen_c:c15_6 :: Nat -> c:c1 gen_0':s6_6 :: Nat -> 0':s gen_c2:c37_6 :: Nat -> c2:c3 gen_c4:c58_6 :: Nat -> c4:c5 Generator Equations: gen_c:c15_6(0) <=> c gen_c:c15_6(+(x, 1)) <=> c1(gen_c:c15_6(x)) gen_0':s6_6(0) <=> 0' gen_0':s6_6(+(x, 1)) <=> s(gen_0':s6_6(x)) gen_c2:c37_6(0) <=> c2 gen_c2:c37_6(+(x, 1)) <=> c3(c, c4, gen_c2:c37_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(c, c2, gen_c4:c58_6(x)) The following defined symbols remain to be analysed: MINUS, F, g, f, G, minus They will be analysed ascendingly in the following order: MINUS < F MINUS < G g < F f < F F = G g = f g < G minus < g f < G minus < f ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: MINUS(z0, 0') -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0') -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0') -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0') -> s(0') f(s(z0)) -> minus(s(z0), g(f(z0))) g(0') -> 0' g(s(z0)) -> minus(s(z0), f(g(z0))) Types: MINUS :: 0':s -> 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 -> c:c1 F :: 0':s -> c2:c3 c2 :: c2:c3 c3 :: c:c1 -> c4:c5 -> c2:c3 -> c2:c3 g :: 0':s -> 0':s f :: 0':s -> 0':s G :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c:c1 -> c2:c3 -> c4:c5 -> c4:c5 minus :: 0':s -> 0':s -> 0':s hole_c:c11_6 :: c:c1 hole_0':s2_6 :: 0':s hole_c2:c33_6 :: c2:c3 hole_c4:c54_6 :: c4:c5 gen_c:c15_6 :: Nat -> c:c1 gen_0':s6_6 :: Nat -> 0':s gen_c2:c37_6 :: Nat -> c2:c3 gen_c4:c58_6 :: Nat -> c4:c5 Lemmas: MINUS(gen_0':s6_6(n10_6), gen_0':s6_6(n10_6)) -> gen_c:c15_6(n10_6), rt in Omega(1 + n10_6) Generator Equations: gen_c:c15_6(0) <=> c gen_c:c15_6(+(x, 1)) <=> c1(gen_c:c15_6(x)) gen_0':s6_6(0) <=> 0' gen_0':s6_6(+(x, 1)) <=> s(gen_0':s6_6(x)) gen_c2:c37_6(0) <=> c2 gen_c2:c37_6(+(x, 1)) <=> c3(c, c4, gen_c2:c37_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(c, c2, gen_c4:c58_6(x)) The following defined symbols remain to be analysed: minus, F, g, f, G They will be analysed ascendingly in the following order: g < F f < F F = G g = f g < G minus < g f < G minus < f ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s6_6(n351_6), gen_0':s6_6(n351_6)) -> gen_0':s6_6(0), rt in Omega(0) Induction Base: minus(gen_0':s6_6(0), gen_0':s6_6(0)) ->_R^Omega(0) gen_0':s6_6(0) Induction Step: minus(gen_0':s6_6(+(n351_6, 1)), gen_0':s6_6(+(n351_6, 1))) ->_R^Omega(0) minus(gen_0':s6_6(n351_6), gen_0':s6_6(n351_6)) ->_IH gen_0':s6_6(0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) Obligation: Innermost TRS: Rules: MINUS(z0, 0') -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0') -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0') -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0') -> s(0') f(s(z0)) -> minus(s(z0), g(f(z0))) g(0') -> 0' g(s(z0)) -> minus(s(z0), f(g(z0))) Types: MINUS :: 0':s -> 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 -> c:c1 F :: 0':s -> c2:c3 c2 :: c2:c3 c3 :: c:c1 -> c4:c5 -> c2:c3 -> c2:c3 g :: 0':s -> 0':s f :: 0':s -> 0':s G :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c:c1 -> c2:c3 -> c4:c5 -> c4:c5 minus :: 0':s -> 0':s -> 0':s hole_c:c11_6 :: c:c1 hole_0':s2_6 :: 0':s hole_c2:c33_6 :: c2:c3 hole_c4:c54_6 :: c4:c5 gen_c:c15_6 :: Nat -> c:c1 gen_0':s6_6 :: Nat -> 0':s gen_c2:c37_6 :: Nat -> c2:c3 gen_c4:c58_6 :: Nat -> c4:c5 Lemmas: MINUS(gen_0':s6_6(n10_6), gen_0':s6_6(n10_6)) -> gen_c:c15_6(n10_6), rt in Omega(1 + n10_6) minus(gen_0':s6_6(n351_6), gen_0':s6_6(n351_6)) -> gen_0':s6_6(0), rt in Omega(0) Generator Equations: gen_c:c15_6(0) <=> c gen_c:c15_6(+(x, 1)) <=> c1(gen_c:c15_6(x)) gen_0':s6_6(0) <=> 0' gen_0':s6_6(+(x, 1)) <=> s(gen_0':s6_6(x)) gen_c2:c37_6(0) <=> c2 gen_c2:c37_6(+(x, 1)) <=> c3(c, c4, gen_c2:c37_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(c, c2, gen_c4:c58_6(x)) The following defined symbols remain to be analysed: f, F, g, G They will be analysed ascendingly in the following order: g < F f < F F = G g = f g < G f < G ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_0':s6_6(+(1, n895_6))) -> *9_6, rt in Omega(0) Induction Base: f(gen_0':s6_6(+(1, 0))) Induction Step: f(gen_0':s6_6(+(1, +(n895_6, 1)))) ->_R^Omega(0) minus(s(gen_0':s6_6(+(1, n895_6))), g(f(gen_0':s6_6(+(1, n895_6))))) ->_IH minus(s(gen_0':s6_6(+(1, n895_6))), g(*9_6)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: MINUS(z0, 0') -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0') -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0') -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0') -> s(0') f(s(z0)) -> minus(s(z0), g(f(z0))) g(0') -> 0' g(s(z0)) -> minus(s(z0), f(g(z0))) Types: MINUS :: 0':s -> 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 -> c:c1 F :: 0':s -> c2:c3 c2 :: c2:c3 c3 :: c:c1 -> c4:c5 -> c2:c3 -> c2:c3 g :: 0':s -> 0':s f :: 0':s -> 0':s G :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c:c1 -> c2:c3 -> c4:c5 -> c4:c5 minus :: 0':s -> 0':s -> 0':s hole_c:c11_6 :: c:c1 hole_0':s2_6 :: 0':s hole_c2:c33_6 :: c2:c3 hole_c4:c54_6 :: c4:c5 gen_c:c15_6 :: Nat -> c:c1 gen_0':s6_6 :: Nat -> 0':s gen_c2:c37_6 :: Nat -> c2:c3 gen_c4:c58_6 :: Nat -> c4:c5 Lemmas: MINUS(gen_0':s6_6(n10_6), gen_0':s6_6(n10_6)) -> gen_c:c15_6(n10_6), rt in Omega(1 + n10_6) minus(gen_0':s6_6(n351_6), gen_0':s6_6(n351_6)) -> gen_0':s6_6(0), rt in Omega(0) f(gen_0':s6_6(+(1, n895_6))) -> *9_6, rt in Omega(0) Generator Equations: gen_c:c15_6(0) <=> c gen_c:c15_6(+(x, 1)) <=> c1(gen_c:c15_6(x)) gen_0':s6_6(0) <=> 0' gen_0':s6_6(+(x, 1)) <=> s(gen_0':s6_6(x)) gen_c2:c37_6(0) <=> c2 gen_c2:c37_6(+(x, 1)) <=> c3(c, c4, gen_c2:c37_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(c, c2, gen_c4:c58_6(x)) The following defined symbols remain to be analysed: g, F, G They will be analysed ascendingly in the following order: g < F f < F F = G g = f g < G f < G ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':s6_6(+(1, n4671_6))) -> *9_6, rt in Omega(0) Induction Base: g(gen_0':s6_6(+(1, 0))) Induction Step: g(gen_0':s6_6(+(1, +(n4671_6, 1)))) ->_R^Omega(0) minus(s(gen_0':s6_6(+(1, n4671_6))), f(g(gen_0':s6_6(+(1, n4671_6))))) ->_IH minus(s(gen_0':s6_6(+(1, n4671_6))), f(*9_6)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) Obligation: Innermost TRS: Rules: MINUS(z0, 0') -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0') -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0') -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0') -> s(0') f(s(z0)) -> minus(s(z0), g(f(z0))) g(0') -> 0' g(s(z0)) -> minus(s(z0), f(g(z0))) Types: MINUS :: 0':s -> 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 -> c:c1 F :: 0':s -> c2:c3 c2 :: c2:c3 c3 :: c:c1 -> c4:c5 -> c2:c3 -> c2:c3 g :: 0':s -> 0':s f :: 0':s -> 0':s G :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c:c1 -> c2:c3 -> c4:c5 -> c4:c5 minus :: 0':s -> 0':s -> 0':s hole_c:c11_6 :: c:c1 hole_0':s2_6 :: 0':s hole_c2:c33_6 :: c2:c3 hole_c4:c54_6 :: c4:c5 gen_c:c15_6 :: Nat -> c:c1 gen_0':s6_6 :: Nat -> 0':s gen_c2:c37_6 :: Nat -> c2:c3 gen_c4:c58_6 :: Nat -> c4:c5 Lemmas: MINUS(gen_0':s6_6(n10_6), gen_0':s6_6(n10_6)) -> gen_c:c15_6(n10_6), rt in Omega(1 + n10_6) minus(gen_0':s6_6(n351_6), gen_0':s6_6(n351_6)) -> gen_0':s6_6(0), rt in Omega(0) f(gen_0':s6_6(+(1, n895_6))) -> *9_6, rt in Omega(0) g(gen_0':s6_6(+(1, n4671_6))) -> *9_6, rt in Omega(0) Generator Equations: gen_c:c15_6(0) <=> c gen_c:c15_6(+(x, 1)) <=> c1(gen_c:c15_6(x)) gen_0':s6_6(0) <=> 0' gen_0':s6_6(+(x, 1)) <=> s(gen_0':s6_6(x)) gen_c2:c37_6(0) <=> c2 gen_c2:c37_6(+(x, 1)) <=> c3(c, c4, gen_c2:c37_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(c, c2, gen_c4:c58_6(x)) The following defined symbols remain to be analysed: f, F, G They will be analysed ascendingly in the following order: g < F f < F F = G g = f g < G f < G ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_0':s6_6(+(1, n63269_6))) -> *9_6, rt in Omega(0) Induction Base: f(gen_0':s6_6(+(1, 0))) Induction Step: f(gen_0':s6_6(+(1, +(n63269_6, 1)))) ->_R^Omega(0) minus(s(gen_0':s6_6(+(1, n63269_6))), g(f(gen_0':s6_6(+(1, n63269_6))))) ->_IH minus(s(gen_0':s6_6(+(1, n63269_6))), g(*9_6)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (24) Obligation: Innermost TRS: Rules: MINUS(z0, 0') -> c MINUS(s(z0), s(z1)) -> c1(MINUS(z0, z1)) F(0') -> c2 F(s(z0)) -> c3(MINUS(s(z0), g(f(z0))), G(f(z0)), F(z0)) G(0') -> c4 G(s(z0)) -> c5(MINUS(s(z0), f(g(z0))), F(g(z0)), G(z0)) minus(z0, 0') -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) f(0') -> s(0') f(s(z0)) -> minus(s(z0), g(f(z0))) g(0') -> 0' g(s(z0)) -> minus(s(z0), f(g(z0))) Types: MINUS :: 0':s -> 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 -> c:c1 F :: 0':s -> c2:c3 c2 :: c2:c3 c3 :: c:c1 -> c4:c5 -> c2:c3 -> c2:c3 g :: 0':s -> 0':s f :: 0':s -> 0':s G :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c:c1 -> c2:c3 -> c4:c5 -> c4:c5 minus :: 0':s -> 0':s -> 0':s hole_c:c11_6 :: c:c1 hole_0':s2_6 :: 0':s hole_c2:c33_6 :: c2:c3 hole_c4:c54_6 :: c4:c5 gen_c:c15_6 :: Nat -> c:c1 gen_0':s6_6 :: Nat -> 0':s gen_c2:c37_6 :: Nat -> c2:c3 gen_c4:c58_6 :: Nat -> c4:c5 Lemmas: MINUS(gen_0':s6_6(n10_6), gen_0':s6_6(n10_6)) -> gen_c:c15_6(n10_6), rt in Omega(1 + n10_6) minus(gen_0':s6_6(n351_6), gen_0':s6_6(n351_6)) -> gen_0':s6_6(0), rt in Omega(0) f(gen_0':s6_6(+(1, n63269_6))) -> *9_6, rt in Omega(0) g(gen_0':s6_6(+(1, n4671_6))) -> *9_6, rt in Omega(0) Generator Equations: gen_c:c15_6(0) <=> c gen_c:c15_6(+(x, 1)) <=> c1(gen_c:c15_6(x)) gen_0':s6_6(0) <=> 0' gen_0':s6_6(+(x, 1)) <=> s(gen_0':s6_6(x)) gen_c2:c37_6(0) <=> c2 gen_c2:c37_6(+(x, 1)) <=> c3(c, c4, gen_c2:c37_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(c, c2, gen_c4:c58_6(x)) The following defined symbols remain to be analysed: G, F They will be analysed ascendingly in the following order: F = G