WORST_CASE(Omega(n^1),O(n^2)) proof of input_q0tsI1r30D.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 140 ms] (6) CdtProblem (7) CdtKnowledgeProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 103 ms] (10) CdtProblem (11) CdtKnowledgeProof [FINISHED, 0 ms] (12) BOUNDS(1, 1) (13) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRelTRS (19) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (20) typed CpxTrs (21) OrderProof [LOWER BOUND(ID), 21 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 246 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 438 ms] (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 1429 ms] (28) BEST (29) proven lower bound (30) LowerBoundPropagationProof [FINISHED, 0 ms] (31) BOUNDS(n^1, INF) (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 504 ms] (34) typed CpxTrs (35) RewriteLemmaProof [LOWER BOUND(ID), 427 ms] (36) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: append(@l1, @l2) -> append#1(@l1, @l2) append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) append#1(nil, @l2) -> @l2 subtrees(@t) -> subtrees#1(@t) subtrees#1(leaf) -> nil subtrees#1(node(@x, @t1, @t2)) -> subtrees#2(subtrees(@t1), @t1, @t2, @x) subtrees#2(@l1, @t1, @t2, @x) -> subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x) subtrees#3(@l2, @l1, @t1, @t2, @x) -> ::(node(@x, @t1, @t2), append(@l1, @l2)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) S tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) K tuples:none Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 Compound Symbols: c_1, c1_1, c2, c3_1, c4, c5_2, c6_2, c7_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: APPEND#1(nil, z0) -> c2 SUBTREES#1(leaf) -> c4 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) S tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) K tuples:none Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 Compound Symbols: c_1, c1_1, c3_1, c5_2, c6_2, c7_1 ---------------------------------------- (5) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) We considered the (Usable) Rules:none And the Tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(::(x_1, x_2)) = [2] POL(APPEND(x_1, x_2)) = 0 POL(APPEND#1(x_1, x_2)) = 0 POL(SUBTREES(x_1)) = [2]x_1 POL(SUBTREES#1(x_1)) = [2]x_1 POL(SUBTREES#2(x_1, x_2, x_3, x_4)) = [2]x_3 + [2]x_4 POL(SUBTREES#3(x_1, x_2, x_3, x_4, x_5)) = [2]x_5 POL(append(x_1, x_2)) = [3]x_1 + [3]x_2 POL(append#1(x_1, x_2)) = [2]x_1 + [3]x_2 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(leaf) = [3] POL(nil) = [3] POL(node(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(subtrees(x_1)) = 0 POL(subtrees#1(x_1)) = [3] + [3]x_1 POL(subtrees#2(x_1, x_2, x_3, x_4)) = [3] + [3]x_1 + [3]x_2 + [3]x_3 + [3]x_4 POL(subtrees#3(x_1, x_2, x_3, x_4, x_5)) = [3] + [3]x_1 + [3]x_2 + [3]x_3 + [3]x_4 + [3]x_5 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) S tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) K tuples: SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 Compound Symbols: c_1, c1_1, c3_1, c5_2, c6_2, c7_1 ---------------------------------------- (7) CdtKnowledgeProof (BOTH BOUNDS(ID, ID)) The following tuples could be moved from S to K by knowledge propagation: SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) S tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) K tuples: SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 Compound Symbols: c_1, c1_1, c3_1, c5_2, c6_2, c7_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) We considered the (Usable) Rules: subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) append(z0, z1) -> append#1(z0, z1) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#1(leaf) -> nil append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) And the Tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(::(x_1, x_2)) = [2] + x_2 POL(APPEND(x_1, x_2)) = [2]x_1 POL(APPEND#1(x_1, x_2)) = [2]x_1 POL(SUBTREES(x_1)) = x_1^2 POL(SUBTREES#1(x_1)) = x_1^2 POL(SUBTREES#2(x_1, x_2, x_3, x_4)) = [2]x_1 + x_3^2 + [2]x_2*x_3 POL(SUBTREES#3(x_1, x_2, x_3, x_4, x_5)) = [2]x_2 + x_3*x_4 POL(append(x_1, x_2)) = x_1 + x_2 POL(append#1(x_1, x_2)) = x_1 + x_2 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(leaf) = 0 POL(nil) = 0 POL(node(x_1, x_2, x_3)) = [2] + x_2 + x_3 POL(subtrees(x_1)) = [2]x_1 POL(subtrees#1(x_1)) = [2]x_1 POL(subtrees#2(x_1, x_2, x_3, x_4)) = [2] + x_1 + [2]x_3 POL(subtrees#3(x_1, x_2, x_3, x_4, x_5)) = [2] + x_1 + x_2 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) S tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) K tuples: SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) SUBTREES(z0) -> c3(SUBTREES#1(z0)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 Compound Symbols: c_1, c1_1, c3_1, c5_2, c6_2, c7_1 ---------------------------------------- (11) CdtKnowledgeProof (FINISHED) The following tuples could be moved from S to K by knowledge propagation: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) Now S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) S tuples: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) K tuples:none Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 Compound Symbols: c_1, c1_1, c2, c3_1, c4, c5_2, c6_2, c7_1 ---------------------------------------- (15) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) The (relative) TRS S consists of the following rules: append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (17) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (18) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) The (relative) TRS S consists of the following rules: append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (19) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (20) Obligation: Innermost TRS: Rules: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Types: APPEND :: :::nil -> :::nil -> c c :: c1:c2 -> c APPEND#1 :: :::nil -> :::nil -> c1:c2 :: :: leaf:node -> :::nil -> :::nil c1 :: c -> c1:c2 nil :: :::nil c2 :: c1:c2 SUBTREES :: leaf:node -> c3 c3 :: c4:c5 -> c3 SUBTREES#1 :: leaf:node -> c4:c5 leaf :: leaf:node c4 :: c4:c5 node :: a -> leaf:node -> leaf:node -> leaf:node c5 :: c6 -> c3 -> c4:c5 SUBTREES#2 :: :::nil -> leaf:node -> leaf:node -> a -> c6 subtrees :: leaf:node -> :::nil c6 :: c7 -> c3 -> c6 SUBTREES#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> c7 c7 :: c -> c7 append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil subtrees#1 :: leaf:node -> :::nil subtrees#2 :: :::nil -> leaf:node -> leaf:node -> a -> :::nil subtrees#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> :::nil hole_c1_8 :: c hole_:::nil2_8 :: :::nil hole_c1:c23_8 :: c1:c2 hole_leaf:node4_8 :: leaf:node hole_c35_8 :: c3 hole_c4:c56_8 :: c4:c5 hole_a7_8 :: a hole_c68_8 :: c6 hole_c79_8 :: c7 gen_:::nil10_8 :: Nat -> :::nil gen_leaf:node11_8 :: Nat -> leaf:node ---------------------------------------- (21) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: APPEND, APPEND#1, SUBTREES, SUBTREES#1, subtrees, append, append#1, subtrees#1 They will be analysed ascendingly in the following order: APPEND = APPEND#1 SUBTREES = SUBTREES#1 subtrees < SUBTREES#1 subtrees = subtrees#1 append = append#1 ---------------------------------------- (22) Obligation: Innermost TRS: Rules: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Types: APPEND :: :::nil -> :::nil -> c c :: c1:c2 -> c APPEND#1 :: :::nil -> :::nil -> c1:c2 :: :: leaf:node -> :::nil -> :::nil c1 :: c -> c1:c2 nil :: :::nil c2 :: c1:c2 SUBTREES :: leaf:node -> c3 c3 :: c4:c5 -> c3 SUBTREES#1 :: leaf:node -> c4:c5 leaf :: leaf:node c4 :: c4:c5 node :: a -> leaf:node -> leaf:node -> leaf:node c5 :: c6 -> c3 -> c4:c5 SUBTREES#2 :: :::nil -> leaf:node -> leaf:node -> a -> c6 subtrees :: leaf:node -> :::nil c6 :: c7 -> c3 -> c6 SUBTREES#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> c7 c7 :: c -> c7 append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil subtrees#1 :: leaf:node -> :::nil subtrees#2 :: :::nil -> leaf:node -> leaf:node -> a -> :::nil subtrees#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> :::nil hole_c1_8 :: c hole_:::nil2_8 :: :::nil hole_c1:c23_8 :: c1:c2 hole_leaf:node4_8 :: leaf:node hole_c35_8 :: c3 hole_c4:c56_8 :: c4:c5 hole_a7_8 :: a hole_c68_8 :: c6 hole_c79_8 :: c7 gen_:::nil10_8 :: Nat -> :::nil gen_leaf:node11_8 :: Nat -> leaf:node Generator Equations: gen_:::nil10_8(0) <=> nil gen_:::nil10_8(+(x, 1)) <=> ::(leaf, gen_:::nil10_8(x)) gen_leaf:node11_8(0) <=> leaf gen_leaf:node11_8(+(x, 1)) <=> node(hole_a7_8, leaf, gen_leaf:node11_8(x)) The following defined symbols remain to be analysed: append#1, APPEND, APPEND#1, SUBTREES, SUBTREES#1, subtrees, append, subtrees#1 They will be analysed ascendingly in the following order: APPEND = APPEND#1 SUBTREES = SUBTREES#1 subtrees < SUBTREES#1 subtrees = subtrees#1 append = append#1 ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: append#1(gen_:::nil10_8(n13_8), gen_:::nil10_8(b)) -> gen_:::nil10_8(+(n13_8, b)), rt in Omega(0) Induction Base: append#1(gen_:::nil10_8(0), gen_:::nil10_8(b)) ->_R^Omega(0) gen_:::nil10_8(b) Induction Step: append#1(gen_:::nil10_8(+(n13_8, 1)), gen_:::nil10_8(b)) ->_R^Omega(0) ::(leaf, append(gen_:::nil10_8(n13_8), gen_:::nil10_8(b))) ->_R^Omega(0) ::(leaf, append#1(gen_:::nil10_8(n13_8), gen_:::nil10_8(b))) ->_IH ::(leaf, gen_:::nil10_8(+(b, c14_8))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (24) Obligation: Innermost TRS: Rules: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Types: APPEND :: :::nil -> :::nil -> c c :: c1:c2 -> c APPEND#1 :: :::nil -> :::nil -> c1:c2 :: :: leaf:node -> :::nil -> :::nil c1 :: c -> c1:c2 nil :: :::nil c2 :: c1:c2 SUBTREES :: leaf:node -> c3 c3 :: c4:c5 -> c3 SUBTREES#1 :: leaf:node -> c4:c5 leaf :: leaf:node c4 :: c4:c5 node :: a -> leaf:node -> leaf:node -> leaf:node c5 :: c6 -> c3 -> c4:c5 SUBTREES#2 :: :::nil -> leaf:node -> leaf:node -> a -> c6 subtrees :: leaf:node -> :::nil c6 :: c7 -> c3 -> c6 SUBTREES#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> c7 c7 :: c -> c7 append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil subtrees#1 :: leaf:node -> :::nil subtrees#2 :: :::nil -> leaf:node -> leaf:node -> a -> :::nil subtrees#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> :::nil hole_c1_8 :: c hole_:::nil2_8 :: :::nil hole_c1:c23_8 :: c1:c2 hole_leaf:node4_8 :: leaf:node hole_c35_8 :: c3 hole_c4:c56_8 :: c4:c5 hole_a7_8 :: a hole_c68_8 :: c6 hole_c79_8 :: c7 gen_:::nil10_8 :: Nat -> :::nil gen_leaf:node11_8 :: Nat -> leaf:node Lemmas: append#1(gen_:::nil10_8(n13_8), gen_:::nil10_8(b)) -> gen_:::nil10_8(+(n13_8, b)), rt in Omega(0) Generator Equations: gen_:::nil10_8(0) <=> nil gen_:::nil10_8(+(x, 1)) <=> ::(leaf, gen_:::nil10_8(x)) gen_leaf:node11_8(0) <=> leaf gen_leaf:node11_8(+(x, 1)) <=> node(hole_a7_8, leaf, gen_leaf:node11_8(x)) The following defined symbols remain to be analysed: append, APPEND, APPEND#1, SUBTREES, SUBTREES#1, subtrees, subtrees#1 They will be analysed ascendingly in the following order: APPEND = APPEND#1 SUBTREES = SUBTREES#1 subtrees < SUBTREES#1 subtrees = subtrees#1 append = append#1 ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: subtrees#1(gen_leaf:node11_8(n804_8)) -> *12_8, rt in Omega(0) Induction Base: subtrees#1(gen_leaf:node11_8(0)) Induction Step: subtrees#1(gen_leaf:node11_8(+(n804_8, 1))) ->_R^Omega(0) subtrees#2(subtrees(leaf), leaf, gen_leaf:node11_8(n804_8), hole_a7_8) ->_R^Omega(0) subtrees#2(subtrees#1(leaf), leaf, gen_leaf:node11_8(n804_8), hole_a7_8) ->_R^Omega(0) subtrees#2(nil, leaf, gen_leaf:node11_8(n804_8), hole_a7_8) ->_R^Omega(0) subtrees#3(subtrees(gen_leaf:node11_8(n804_8)), nil, leaf, gen_leaf:node11_8(n804_8), hole_a7_8) ->_R^Omega(0) subtrees#3(subtrees#1(gen_leaf:node11_8(n804_8)), nil, leaf, gen_leaf:node11_8(n804_8), hole_a7_8) ->_IH subtrees#3(*12_8, nil, leaf, gen_leaf:node11_8(n804_8), hole_a7_8) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (26) Obligation: Innermost TRS: Rules: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Types: APPEND :: :::nil -> :::nil -> c c :: c1:c2 -> c APPEND#1 :: :::nil -> :::nil -> c1:c2 :: :: leaf:node -> :::nil -> :::nil c1 :: c -> c1:c2 nil :: :::nil c2 :: c1:c2 SUBTREES :: leaf:node -> c3 c3 :: c4:c5 -> c3 SUBTREES#1 :: leaf:node -> c4:c5 leaf :: leaf:node c4 :: c4:c5 node :: a -> leaf:node -> leaf:node -> leaf:node c5 :: c6 -> c3 -> c4:c5 SUBTREES#2 :: :::nil -> leaf:node -> leaf:node -> a -> c6 subtrees :: leaf:node -> :::nil c6 :: c7 -> c3 -> c6 SUBTREES#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> c7 c7 :: c -> c7 append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil subtrees#1 :: leaf:node -> :::nil subtrees#2 :: :::nil -> leaf:node -> leaf:node -> a -> :::nil subtrees#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> :::nil hole_c1_8 :: c hole_:::nil2_8 :: :::nil hole_c1:c23_8 :: c1:c2 hole_leaf:node4_8 :: leaf:node hole_c35_8 :: c3 hole_c4:c56_8 :: c4:c5 hole_a7_8 :: a hole_c68_8 :: c6 hole_c79_8 :: c7 gen_:::nil10_8 :: Nat -> :::nil gen_leaf:node11_8 :: Nat -> leaf:node Lemmas: append#1(gen_:::nil10_8(n13_8), gen_:::nil10_8(b)) -> gen_:::nil10_8(+(n13_8, b)), rt in Omega(0) subtrees#1(gen_leaf:node11_8(n804_8)) -> *12_8, rt in Omega(0) Generator Equations: gen_:::nil10_8(0) <=> nil gen_:::nil10_8(+(x, 1)) <=> ::(leaf, gen_:::nil10_8(x)) gen_leaf:node11_8(0) <=> leaf gen_leaf:node11_8(+(x, 1)) <=> node(hole_a7_8, leaf, gen_leaf:node11_8(x)) The following defined symbols remain to be analysed: subtrees, APPEND, APPEND#1, SUBTREES, SUBTREES#1 They will be analysed ascendingly in the following order: APPEND = APPEND#1 SUBTREES = SUBTREES#1 subtrees < SUBTREES#1 subtrees = subtrees#1 ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: APPEND#1(gen_:::nil10_8(+(1, n13082_8)), gen_:::nil10_8(b)) -> *12_8, rt in Omega(n13082_8) Induction Base: APPEND#1(gen_:::nil10_8(+(1, 0)), gen_:::nil10_8(b)) Induction Step: APPEND#1(gen_:::nil10_8(+(1, +(n13082_8, 1))), gen_:::nil10_8(b)) ->_R^Omega(1) c1(APPEND(gen_:::nil10_8(+(1, n13082_8)), gen_:::nil10_8(b))) ->_R^Omega(1) c1(c(APPEND#1(gen_:::nil10_8(+(1, n13082_8)), gen_:::nil10_8(b)))) ->_IH c1(c(*12_8)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Complex Obligation (BEST) ---------------------------------------- (29) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Types: APPEND :: :::nil -> :::nil -> c c :: c1:c2 -> c APPEND#1 :: :::nil -> :::nil -> c1:c2 :: :: leaf:node -> :::nil -> :::nil c1 :: c -> c1:c2 nil :: :::nil c2 :: c1:c2 SUBTREES :: leaf:node -> c3 c3 :: c4:c5 -> c3 SUBTREES#1 :: leaf:node -> c4:c5 leaf :: leaf:node c4 :: c4:c5 node :: a -> leaf:node -> leaf:node -> leaf:node c5 :: c6 -> c3 -> c4:c5 SUBTREES#2 :: :::nil -> leaf:node -> leaf:node -> a -> c6 subtrees :: leaf:node -> :::nil c6 :: c7 -> c3 -> c6 SUBTREES#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> c7 c7 :: c -> c7 append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil subtrees#1 :: leaf:node -> :::nil subtrees#2 :: :::nil -> leaf:node -> leaf:node -> a -> :::nil subtrees#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> :::nil hole_c1_8 :: c hole_:::nil2_8 :: :::nil hole_c1:c23_8 :: c1:c2 hole_leaf:node4_8 :: leaf:node hole_c35_8 :: c3 hole_c4:c56_8 :: c4:c5 hole_a7_8 :: a hole_c68_8 :: c6 hole_c79_8 :: c7 gen_:::nil10_8 :: Nat -> :::nil gen_leaf:node11_8 :: Nat -> leaf:node Lemmas: append#1(gen_:::nil10_8(n13_8), gen_:::nil10_8(b)) -> gen_:::nil10_8(+(n13_8, b)), rt in Omega(0) subtrees#1(gen_leaf:node11_8(n804_8)) -> *12_8, rt in Omega(0) Generator Equations: gen_:::nil10_8(0) <=> nil gen_:::nil10_8(+(x, 1)) <=> ::(leaf, gen_:::nil10_8(x)) gen_leaf:node11_8(0) <=> leaf gen_leaf:node11_8(+(x, 1)) <=> node(hole_a7_8, leaf, gen_leaf:node11_8(x)) The following defined symbols remain to be analysed: APPEND#1, APPEND They will be analysed ascendingly in the following order: APPEND = APPEND#1 ---------------------------------------- (30) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (31) BOUNDS(n^1, INF) ---------------------------------------- (32) Obligation: Innermost TRS: Rules: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Types: APPEND :: :::nil -> :::nil -> c c :: c1:c2 -> c APPEND#1 :: :::nil -> :::nil -> c1:c2 :: :: leaf:node -> :::nil -> :::nil c1 :: c -> c1:c2 nil :: :::nil c2 :: c1:c2 SUBTREES :: leaf:node -> c3 c3 :: c4:c5 -> c3 SUBTREES#1 :: leaf:node -> c4:c5 leaf :: leaf:node c4 :: c4:c5 node :: a -> leaf:node -> leaf:node -> leaf:node c5 :: c6 -> c3 -> c4:c5 SUBTREES#2 :: :::nil -> leaf:node -> leaf:node -> a -> c6 subtrees :: leaf:node -> :::nil c6 :: c7 -> c3 -> c6 SUBTREES#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> c7 c7 :: c -> c7 append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil subtrees#1 :: leaf:node -> :::nil subtrees#2 :: :::nil -> leaf:node -> leaf:node -> a -> :::nil subtrees#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> :::nil hole_c1_8 :: c hole_:::nil2_8 :: :::nil hole_c1:c23_8 :: c1:c2 hole_leaf:node4_8 :: leaf:node hole_c35_8 :: c3 hole_c4:c56_8 :: c4:c5 hole_a7_8 :: a hole_c68_8 :: c6 hole_c79_8 :: c7 gen_:::nil10_8 :: Nat -> :::nil gen_leaf:node11_8 :: Nat -> leaf:node Lemmas: append#1(gen_:::nil10_8(n13_8), gen_:::nil10_8(b)) -> gen_:::nil10_8(+(n13_8, b)), rt in Omega(0) subtrees#1(gen_leaf:node11_8(n804_8)) -> *12_8, rt in Omega(0) APPEND#1(gen_:::nil10_8(+(1, n13082_8)), gen_:::nil10_8(b)) -> *12_8, rt in Omega(n13082_8) Generator Equations: gen_:::nil10_8(0) <=> nil gen_:::nil10_8(+(x, 1)) <=> ::(leaf, gen_:::nil10_8(x)) gen_leaf:node11_8(0) <=> leaf gen_leaf:node11_8(+(x, 1)) <=> node(hole_a7_8, leaf, gen_leaf:node11_8(x)) The following defined symbols remain to be analysed: APPEND They will be analysed ascendingly in the following order: APPEND = APPEND#1 ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: APPEND(gen_:::nil10_8(n14715_8), gen_:::nil10_8(b)) -> *12_8, rt in Omega(n14715_8) Induction Base: APPEND(gen_:::nil10_8(0), gen_:::nil10_8(b)) Induction Step: APPEND(gen_:::nil10_8(+(n14715_8, 1)), gen_:::nil10_8(b)) ->_R^Omega(1) c(APPEND#1(gen_:::nil10_8(+(n14715_8, 1)), gen_:::nil10_8(b))) ->_R^Omega(1) c(c1(APPEND(gen_:::nil10_8(n14715_8), gen_:::nil10_8(b)))) ->_IH c(c1(*12_8)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (34) Obligation: Innermost TRS: Rules: APPEND(z0, z1) -> c(APPEND#1(z0, z1)) APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) APPEND#1(nil, z0) -> c2 SUBTREES(z0) -> c3(SUBTREES#1(z0)) SUBTREES#1(leaf) -> c4 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) append(z0, z1) -> append#1(z0, z1) append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) append#1(nil, z0) -> z0 subtrees(z0) -> subtrees#1(z0) subtrees#1(leaf) -> nil subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) Types: APPEND :: :::nil -> :::nil -> c c :: c1:c2 -> c APPEND#1 :: :::nil -> :::nil -> c1:c2 :: :: leaf:node -> :::nil -> :::nil c1 :: c -> c1:c2 nil :: :::nil c2 :: c1:c2 SUBTREES :: leaf:node -> c3 c3 :: c4:c5 -> c3 SUBTREES#1 :: leaf:node -> c4:c5 leaf :: leaf:node c4 :: c4:c5 node :: a -> leaf:node -> leaf:node -> leaf:node c5 :: c6 -> c3 -> c4:c5 SUBTREES#2 :: :::nil -> leaf:node -> leaf:node -> a -> c6 subtrees :: leaf:node -> :::nil c6 :: c7 -> c3 -> c6 SUBTREES#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> c7 c7 :: c -> c7 append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil subtrees#1 :: leaf:node -> :::nil subtrees#2 :: :::nil -> leaf:node -> leaf:node -> a -> :::nil subtrees#3 :: :::nil -> :::nil -> leaf:node -> leaf:node -> a -> :::nil hole_c1_8 :: c hole_:::nil2_8 :: :::nil hole_c1:c23_8 :: c1:c2 hole_leaf:node4_8 :: leaf:node hole_c35_8 :: c3 hole_c4:c56_8 :: c4:c5 hole_a7_8 :: a hole_c68_8 :: c6 hole_c79_8 :: c7 gen_:::nil10_8 :: Nat -> :::nil gen_leaf:node11_8 :: Nat -> leaf:node Lemmas: append#1(gen_:::nil10_8(n13_8), gen_:::nil10_8(b)) -> gen_:::nil10_8(+(n13_8, b)), rt in Omega(0) subtrees#1(gen_leaf:node11_8(n804_8)) -> *12_8, rt in Omega(0) APPEND#1(gen_:::nil10_8(+(1, n13082_8)), gen_:::nil10_8(b)) -> *12_8, rt in Omega(n13082_8) APPEND(gen_:::nil10_8(n14715_8), gen_:::nil10_8(b)) -> *12_8, rt in Omega(n14715_8) Generator Equations: gen_:::nil10_8(0) <=> nil gen_:::nil10_8(+(x, 1)) <=> ::(leaf, gen_:::nil10_8(x)) gen_leaf:node11_8(0) <=> leaf gen_leaf:node11_8(+(x, 1)) <=> node(hole_a7_8, leaf, gen_leaf:node11_8(x)) The following defined symbols remain to be analysed: APPEND#1 They will be analysed ascendingly in the following order: APPEND = APPEND#1 ---------------------------------------- (35) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: APPEND#1(gen_:::nil10_8(+(1, n17765_8)), gen_:::nil10_8(b)) -> *12_8, rt in Omega(n17765_8) Induction Base: APPEND#1(gen_:::nil10_8(+(1, 0)), gen_:::nil10_8(b)) Induction Step: APPEND#1(gen_:::nil10_8(+(1, +(n17765_8, 1))), gen_:::nil10_8(b)) ->_R^Omega(1) c1(APPEND(gen_:::nil10_8(+(1, n17765_8)), gen_:::nil10_8(b))) ->_R^Omega(1) c1(c(APPEND#1(gen_:::nil10_8(+(1, n17765_8)), gen_:::nil10_8(b)))) ->_IH c1(c(*12_8)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (36) BOUNDS(1, INF)