WORST_CASE(?,O(n^1)) proof of input_fz2nioVhTV.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (10) CpxTRS (11) CpxTrsMatchBoundsTAProof [FINISHED, 12 ms] (12) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: FIRST(0, z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) FIRST(z0, z1) -> c2 FROM(z0) -> c3 FROM(z0) -> c4 ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) ACTIVATE(n__from(z0)) -> c6(FROM(z0)) ACTIVATE(z0) -> c7 S tuples: FIRST(0, z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) FIRST(z0, z1) -> c2 FROM(z0) -> c3 FROM(z0) -> c4 ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) ACTIVATE(n__from(z0)) -> c6(FROM(z0)) ACTIVATE(z0) -> c7 K tuples:none Defined Rule Symbols: first_2, from_1, activate_1 Defined Pair Symbols: FIRST_2, FROM_1, ACTIVATE_1 Compound Symbols: c, c1_1, c2, c3, c4, c5_1, c6_1, c7 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 6 trailing nodes: ACTIVATE(z0) -> c7 FROM(z0) -> c3 FIRST(0, z0) -> c FROM(z0) -> c4 FIRST(z0, z1) -> c2 ACTIVATE(n__from(z0)) -> c6(FROM(z0)) ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) S tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) K tuples:none Defined Rule Symbols: first_2, from_1, activate_1 Defined Pair Symbols: FIRST_2, ACTIVATE_1 Compound Symbols: c1_1, c5_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) S tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: FIRST_2, ACTIVATE_1 Compound Symbols: c1_1, c5_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2] transitions: s0(0) -> 0 cons0(0, 0) -> 0 c10(0) -> 0 n__first0(0, 0) -> 0 c50(0) -> 0 FIRST0(0, 0) -> 1 ACTIVATE0(0) -> 2 ACTIVATE1(0) -> 3 c11(3) -> 1 FIRST1(0, 0) -> 4 c51(4) -> 2 c11(3) -> 4 c51(4) -> 3 ---------------------------------------- (12) BOUNDS(1, n^1)