WORST_CASE(Omega(n^3),O(n^3)) proof of input_5EZ5faZO0h.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^3, n^3). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 182 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 68 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 170 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 83 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 284 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 65 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 447 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 44 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 399 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) FinalProof [FINISHED, 0 ms] (46) BOUNDS(1, n^3) (47) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CdtProblem (49) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CpxRelTRS (51) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CpxRelTRS (53) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (54) typed CpxTrs (55) OrderProof [LOWER BOUND(ID), 19 ms] (56) typed CpxTrs (57) RewriteLemmaProof [LOWER BOUND(ID), 310 ms] (58) BEST (59) proven lower bound (60) LowerBoundPropagationProof [FINISHED, 0 ms] (61) BOUNDS(n^1, INF) (62) typed CpxTrs (63) RewriteLemmaProof [LOWER BOUND(ID), 83 ms] (64) typed CpxTrs (65) RewriteLemmaProof [LOWER BOUND(ID), 18 ms] (66) typed CpxTrs (67) RewriteLemmaProof [LOWER BOUND(ID), 97 ms] (68) typed CpxTrs (69) RewriteLemmaProof [LOWER BOUND(ID), 133 ms] (70) typed CpxTrs (71) RewriteLemmaProof [LOWER BOUND(ID), 542 ms] (72) proven lower bound (73) LowerBoundPropagationProof [FINISHED, 0 ms] (74) BOUNDS(n^3, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^3, n^3). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) [1] sqr(0) -> 0 [1] sqr(s(X)) -> s(add(sqr(X), dbl(X))) [1] dbl(0) -> 0 [1] dbl(s(X)) -> s(s(dbl(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(add(X, Y)) [1] first(0, X) -> nil [1] first(s(X), cons(Y)) -> cons(Y) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) [1] sqr(0) -> 0 [1] sqr(s(X)) -> s(add(sqr(X), dbl(X))) [1] dbl(0) -> 0 [1] dbl(s(X)) -> s(s(dbl(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(add(X, Y)) [1] first(0, X) -> nil [1] first(s(X), cons(Y)) -> cons(Y) [1] The TRS has the following type information: terms :: 0:s -> cons:nil cons :: recip -> cons:nil recip :: 0:s -> recip sqr :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s add :: 0:s -> 0:s -> 0:s dbl :: 0:s -> 0:s first :: 0:s -> cons:nil -> cons:nil nil :: cons:nil Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: terms_1 first_2 (c) The following functions are completely defined: sqr_1 dbl_1 add_2 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) [1] sqr(0) -> 0 [1] sqr(s(X)) -> s(add(sqr(X), dbl(X))) [1] dbl(0) -> 0 [1] dbl(s(X)) -> s(s(dbl(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(add(X, Y)) [1] first(0, X) -> nil [1] first(s(X), cons(Y)) -> cons(Y) [1] The TRS has the following type information: terms :: 0:s -> cons:nil cons :: recip -> cons:nil recip :: 0:s -> recip sqr :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s add :: 0:s -> 0:s -> 0:s dbl :: 0:s -> 0:s first :: 0:s -> cons:nil -> cons:nil nil :: cons:nil const :: recip Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) [1] sqr(0) -> 0 [1] sqr(s(0)) -> s(add(0, 0)) [3] sqr(s(s(X'))) -> s(add(s(add(sqr(X'), dbl(X'))), s(s(dbl(X'))))) [3] dbl(0) -> 0 [1] dbl(s(X)) -> s(s(dbl(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(add(X, Y)) [1] first(0, X) -> nil [1] first(s(X), cons(Y)) -> cons(Y) [1] The TRS has the following type information: terms :: 0:s -> cons:nil cons :: recip -> cons:nil recip :: 0:s -> recip sqr :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s add :: 0:s -> 0:s -> 0:s dbl :: 0:s -> 0:s first :: 0:s -> cons:nil -> cons:nil nil :: cons:nil const :: recip Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 nil => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> X :|: z' = X, X >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(X, Y) :|: z = 1 + X, z' = Y, Y >= 0, X >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(X)) :|: z = 1 + X, X >= 0 first(z, z') -{ 1 }-> 0 :|: z' = X, X >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(X'), dbl(X')), 1 + (1 + dbl(X'))) :|: X' >= 0, z = 1 + (1 + X') terms(z) -{ 1 }-> 1 + (1 + sqr(N)) :|: z = N, N >= 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { first } { dbl } { add } { sqr } { terms } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {first}, {dbl}, {add}, {sqr}, {terms} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {first}, {dbl}, {add}, {sqr}, {terms} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: first after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {first}, {dbl}, {add}, {sqr}, {terms} Previous analysis results are: first: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: first after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: dbl after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: dbl after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: add after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: add after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 4*z + 4*z^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: ?, size: O(n^2) [1 + 4*z + 4*z^2] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 5 + 22*z + 8*z^3 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ -99 + s4 + s5 + 120*z + -48*z^2 + 8*z^3 }-> 1 + s6 :|: s4 >= 0, s4 <= 4 * ((z - 2) * (z - 2)) + 4 * (z - 2) + 1, s5 >= 0, s5 <= s4 + s, s6 >= 0, s6 <= 1 + s5 + (1 + (1 + s')), s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 6 + 22*z + 8*z^3 }-> 1 + (1 + s3) :|: s3 >= 0, s3 <= 4 * (z * z) + 4 * z + 1, z >= 0 Function symbols to be analyzed: {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: terms after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 3 + 4*z + 4*z^2 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ -99 + s4 + s5 + 120*z + -48*z^2 + 8*z^3 }-> 1 + s6 :|: s4 >= 0, s4 <= 4 * ((z - 2) * (z - 2)) + 4 * (z - 2) + 1, s5 >= 0, s5 <= s4 + s, s6 >= 0, s6 <= 1 + s5 + (1 + (1 + s')), s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 6 + 22*z + 8*z^3 }-> 1 + (1 + s3) :|: s3 >= 0, s3 <= 4 * (z * z) + 4 * z + 1, z >= 0 Function symbols to be analyzed: {terms} Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] terms: runtime: ?, size: O(n^2) [3 + 4*z + 4*z^2] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: terms after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 6 + 22*z + 8*z^3 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ -99 + s4 + s5 + 120*z + -48*z^2 + 8*z^3 }-> 1 + s6 :|: s4 >= 0, s4 <= 4 * ((z - 2) * (z - 2)) + 4 * (z - 2) + 1, s5 >= 0, s5 <= s4 + s, s6 >= 0, s6 <= 1 + s5 + (1 + (1 + s')), s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 6 + 22*z + 8*z^3 }-> 1 + (1 + s3) :|: s3 >= 0, s3 <= 4 * (z * z) + 4 * z + 1, z >= 0 Function symbols to be analyzed: Previous analysis results are: first: runtime: O(1) [1], size: O(n^1) [z'] dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] terms: runtime: O(n^3) [6 + 22*z + 8*z^3], size: O(n^2) [3 + 4*z + 4*z^2] ---------------------------------------- (45) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (46) BOUNDS(1, n^3) ---------------------------------------- (47) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (48) Obligation: Complexity Dependency Tuples Problem Rules: terms(z0) -> cons(recip(sqr(z0))) sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0, z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Tuples: TERMS(z0) -> c(SQR(z0)) SQR(0) -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0) -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0, z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0, z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 S tuples: TERMS(z0) -> c(SQR(z0)) SQR(0) -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0) -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0, z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0, z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 K tuples:none Defined Rule Symbols: terms_1, sqr_1, dbl_1, add_2, first_2 Defined Pair Symbols: TERMS_1, SQR_1, DBL_1, ADD_2, FIRST_2 Compound Symbols: c_1, c1, c2_2, c3_2, c4, c5_1, c6, c7_1, c8, c9 ---------------------------------------- (49) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (50) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) SQR(0) -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0) -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0, z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0, z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 The (relative) TRS S consists of the following rules: terms(z0) -> cons(recip(sqr(z0))) sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0, z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Rewrite Strategy: INNERMOST ---------------------------------------- (51) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (52) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 The (relative) TRS S consists of the following rules: terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Rewrite Strategy: INNERMOST ---------------------------------------- (53) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (54) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 ---------------------------------------- (55) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: SQR, ADD, sqr, dbl, DBL, add They will be analysed ascendingly in the following order: ADD < SQR sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (56) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: ADD, SQR, sqr, dbl, DBL, add They will be analysed ascendingly in the following order: ADD < SQR sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (57) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) Induction Base: ADD(gen_0':s9_10(0), gen_0':s9_10(b)) ->_R^Omega(1) c6 Induction Step: ADD(gen_0':s9_10(+(n14_10, 1)), gen_0':s9_10(b)) ->_R^Omega(1) c7(ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b))) ->_IH c7(gen_c6:c711_10(c15_10)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (58) Complex Obligation (BEST) ---------------------------------------- (59) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: ADD, SQR, sqr, dbl, DBL, add They will be analysed ascendingly in the following order: ADD < SQR sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (60) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (61) BOUNDS(n^1, INF) ---------------------------------------- (62) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: dbl, SQR, sqr, DBL, add They will be analysed ascendingly in the following order: sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (63) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) Induction Base: dbl(gen_0':s9_10(0)) ->_R^Omega(0) 0' Induction Step: dbl(gen_0':s9_10(+(n602_10, 1))) ->_R^Omega(0) s(s(dbl(gen_0':s9_10(n602_10)))) ->_IH s(s(gen_0':s9_10(*(2, c603_10)))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (64) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: DBL, SQR, sqr, add They will be analysed ascendingly in the following order: sqr < SQR DBL < SQR add < sqr ---------------------------------------- (65) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: DBL(gen_0':s9_10(n934_10)) -> gen_c4:c512_10(n934_10), rt in Omega(1 + n934_10) Induction Base: DBL(gen_0':s9_10(0)) ->_R^Omega(1) c4 Induction Step: DBL(gen_0':s9_10(+(n934_10, 1))) ->_R^Omega(1) c5(DBL(gen_0':s9_10(n934_10))) ->_IH c5(gen_c4:c512_10(c935_10)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (66) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) DBL(gen_0':s9_10(n934_10)) -> gen_c4:c512_10(n934_10), rt in Omega(1 + n934_10) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: add, SQR, sqr They will be analysed ascendingly in the following order: sqr < SQR add < sqr ---------------------------------------- (67) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add(gen_0':s9_10(n1310_10), gen_0':s9_10(b)) -> gen_0':s9_10(+(n1310_10, b)), rt in Omega(0) Induction Base: add(gen_0':s9_10(0), gen_0':s9_10(b)) ->_R^Omega(0) gen_0':s9_10(b) Induction Step: add(gen_0':s9_10(+(n1310_10, 1)), gen_0':s9_10(b)) ->_R^Omega(0) s(add(gen_0':s9_10(n1310_10), gen_0':s9_10(b))) ->_IH s(gen_0':s9_10(+(b, c1311_10))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (68) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) DBL(gen_0':s9_10(n934_10)) -> gen_c4:c512_10(n934_10), rt in Omega(1 + n934_10) add(gen_0':s9_10(n1310_10), gen_0':s9_10(b)) -> gen_0':s9_10(+(n1310_10, b)), rt in Omega(0) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: sqr, SQR They will be analysed ascendingly in the following order: sqr < SQR ---------------------------------------- (69) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sqr(gen_0':s9_10(n2387_10)) -> gen_0':s9_10(*(n2387_10, n2387_10)), rt in Omega(0) Induction Base: sqr(gen_0':s9_10(0)) ->_R^Omega(0) 0' Induction Step: sqr(gen_0':s9_10(+(n2387_10, 1))) ->_R^Omega(0) s(add(sqr(gen_0':s9_10(n2387_10)), dbl(gen_0':s9_10(n2387_10)))) ->_IH s(add(gen_0':s9_10(*(c2388_10, c2388_10)), dbl(gen_0':s9_10(n2387_10)))) ->_L^Omega(0) s(add(gen_0':s9_10(*(n2387_10, n2387_10)), gen_0':s9_10(*(2, n2387_10)))) ->_L^Omega(0) s(gen_0':s9_10(+(*(n2387_10, n2387_10), *(2, n2387_10)))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (70) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) DBL(gen_0':s9_10(n934_10)) -> gen_c4:c512_10(n934_10), rt in Omega(1 + n934_10) add(gen_0':s9_10(n1310_10), gen_0':s9_10(b)) -> gen_0':s9_10(+(n1310_10, b)), rt in Omega(0) sqr(gen_0':s9_10(n2387_10)) -> gen_0':s9_10(*(n2387_10, n2387_10)), rt in Omega(0) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: SQR ---------------------------------------- (71) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: SQR(gen_0':s9_10(n2856_10)) -> *13_10, rt in Omega(n2856_10 + n2856_10^3) Induction Base: SQR(gen_0':s9_10(0)) Induction Step: SQR(gen_0':s9_10(+(n2856_10, 1))) ->_R^Omega(1) c2(ADD(sqr(gen_0':s9_10(n2856_10)), dbl(gen_0':s9_10(n2856_10))), SQR(gen_0':s9_10(n2856_10))) ->_L^Omega(0) c2(ADD(gen_0':s9_10(*(n2856_10, n2856_10)), dbl(gen_0':s9_10(n2856_10))), SQR(gen_0':s9_10(n2856_10))) ->_L^Omega(0) c2(ADD(gen_0':s9_10(*(n2856_10, n2856_10)), gen_0':s9_10(*(2, n2856_10))), SQR(gen_0':s9_10(n2856_10))) ->_L^Omega(1 + n2856_10^2) c2(gen_c6:c711_10(*(n2856_10, n2856_10)), SQR(gen_0':s9_10(n2856_10))) ->_IH c2(gen_c6:c711_10(*(n2856_10, n2856_10)), *13_10) We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (72) Obligation: Proved the lower bound n^3 for the following obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) DBL(gen_0':s9_10(n934_10)) -> gen_c4:c512_10(n934_10), rt in Omega(1 + n934_10) add(gen_0':s9_10(n1310_10), gen_0':s9_10(b)) -> gen_0':s9_10(+(n1310_10, b)), rt in Omega(0) sqr(gen_0':s9_10(n2387_10)) -> gen_0':s9_10(*(n2387_10, n2387_10)), rt in Omega(0) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: SQR ---------------------------------------- (73) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (74) BOUNDS(n^3, INF)