WORST_CASE(?,O(n^1)) proof of input_q4pkXIsEzS.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTRS (11) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (12) CpxTRS (13) CpxTrsMatchBoundsTAProof [FINISHED, 5 ms] (14) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__f(b, X, c) -> a__f(X, a__c, X) a__c -> b mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) mark(c) -> a__c mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: a__f(b, z0, c) -> a__f(z0, a__c, z0) a__f(z0, z1, z2) -> f(z0, z1, z2) a__c -> b a__c -> c mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(c) -> a__c mark(b) -> b Tuples: A__F(b, z0, c) -> c1(A__F(z0, a__c, z0), A__C) A__F(z0, z1, z2) -> c2 A__C -> c3 A__C -> c4 MARK(f(z0, z1, z2)) -> c5(A__F(z0, mark(z1), z2), MARK(z1)) MARK(c) -> c6(A__C) MARK(b) -> c7 S tuples: A__F(b, z0, c) -> c1(A__F(z0, a__c, z0), A__C) A__F(z0, z1, z2) -> c2 A__C -> c3 A__C -> c4 MARK(f(z0, z1, z2)) -> c5(A__F(z0, mark(z1), z2), MARK(z1)) MARK(c) -> c6(A__C) MARK(b) -> c7 K tuples:none Defined Rule Symbols: a__f_3, a__c, mark_1 Defined Pair Symbols: A__F_3, A__C, MARK_1 Compound Symbols: c1_2, c2, c3, c4, c5_2, c6_1, c7 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 6 trailing nodes: MARK(b) -> c7 MARK(c) -> c6(A__C) A__C -> c4 A__F(z0, z1, z2) -> c2 A__F(b, z0, c) -> c1(A__F(z0, a__c, z0), A__C) A__C -> c3 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: a__f(b, z0, c) -> a__f(z0, a__c, z0) a__f(z0, z1, z2) -> f(z0, z1, z2) a__c -> b a__c -> c mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(c) -> a__c mark(b) -> b Tuples: MARK(f(z0, z1, z2)) -> c5(A__F(z0, mark(z1), z2), MARK(z1)) S tuples: MARK(f(z0, z1, z2)) -> c5(A__F(z0, mark(z1), z2), MARK(z1)) K tuples:none Defined Rule Symbols: a__f_3, a__c, mark_1 Defined Pair Symbols: MARK_1 Compound Symbols: c5_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: a__f(b, z0, c) -> a__f(z0, a__c, z0) a__f(z0, z1, z2) -> f(z0, z1, z2) a__c -> b a__c -> c mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(c) -> a__c mark(b) -> b Tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) S tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) K tuples:none Defined Rule Symbols: a__f_3, a__c, mark_1 Defined Pair Symbols: MARK_1 Compound Symbols: c5_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: a__f(b, z0, c) -> a__f(z0, a__c, z0) a__f(z0, z1, z2) -> f(z0, z1, z2) a__c -> b a__c -> c mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(c) -> a__c mark(b) -> b ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) S tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: MARK_1 Compound Symbols: c5_1 ---------------------------------------- (9) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (11) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1] transitions: f0(0, 0, 0) -> 0 c50(0) -> 0 MARK0(0) -> 1 MARK1(0) -> 2 c51(2) -> 1 c51(2) -> 2 ---------------------------------------- (14) BOUNDS(1, n^1)