WORST_CASE(?,O(n^1)) proof of input_g0IfeJWQ7m.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTRS (13) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (14) CpxTRS (15) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (16) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: 2nd(cons1(X, cons(Y, Z))) -> Y 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(n__s(z0))) from(z0) -> n__from(z0) s(z0) -> n__s(z0) activate(n__from(z0)) -> from(activate(z0)) activate(n__s(z0)) -> s(activate(z0)) activate(z0) -> z0 Tuples: 2ND(cons1(z0, cons(z1, z2))) -> c 2ND(cons(z0, z1)) -> c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) FROM(z0) -> c2 FROM(z0) -> c3 S(z0) -> c4 ACTIVATE(n__from(z0)) -> c5(FROM(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(S(activate(z0)), ACTIVATE(z0)) ACTIVATE(z0) -> c7 S tuples: 2ND(cons1(z0, cons(z1, z2))) -> c 2ND(cons(z0, z1)) -> c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) FROM(z0) -> c2 FROM(z0) -> c3 S(z0) -> c4 ACTIVATE(n__from(z0)) -> c5(FROM(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(S(activate(z0)), ACTIVATE(z0)) ACTIVATE(z0) -> c7 K tuples:none Defined Rule Symbols: 2nd_1, from_1, s_1, activate_1 Defined Pair Symbols: 2ND_1, FROM_1, S_1, ACTIVATE_1 Compound Symbols: c, c1_2, c2, c3, c4, c5_2, c6_2, c7 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing nodes: FROM(z0) -> c3 2ND(cons1(z0, cons(z1, z2))) -> c ACTIVATE(z0) -> c7 S(z0) -> c4 FROM(z0) -> c2 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(n__s(z0))) from(z0) -> n__from(z0) s(z0) -> n__s(z0) activate(n__from(z0)) -> from(activate(z0)) activate(n__s(z0)) -> s(activate(z0)) activate(z0) -> z0 Tuples: 2ND(cons(z0, z1)) -> c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) ACTIVATE(n__from(z0)) -> c5(FROM(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(S(activate(z0)), ACTIVATE(z0)) S tuples: 2ND(cons(z0, z1)) -> c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) ACTIVATE(n__from(z0)) -> c5(FROM(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(S(activate(z0)), ACTIVATE(z0)) K tuples:none Defined Rule Symbols: 2nd_1, from_1, s_1, activate_1 Defined Pair Symbols: 2ND_1, ACTIVATE_1 Compound Symbols: c1_2, c5_2, c6_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(n__s(z0))) from(z0) -> n__from(z0) s(z0) -> n__s(z0) activate(n__from(z0)) -> from(activate(z0)) activate(n__s(z0)) -> s(activate(z0)) activate(z0) -> z0 Tuples: 2ND(cons(z0, z1)) -> c1(ACTIVATE(z1)) ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) S tuples: 2ND(cons(z0, z1)) -> c1(ACTIVATE(z1)) ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) K tuples:none Defined Rule Symbols: 2nd_1, from_1, s_1, activate_1 Defined Pair Symbols: 2ND_1, ACTIVATE_1 Compound Symbols: c1_1, c5_1, c6_1 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: 2ND(cons(z0, z1)) -> c1(ACTIVATE(z1)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(n__s(z0))) from(z0) -> n__from(z0) s(z0) -> n__s(z0) activate(n__from(z0)) -> from(activate(z0)) activate(n__s(z0)) -> s(activate(z0)) activate(z0) -> z0 Tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) S tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) K tuples:none Defined Rule Symbols: 2nd_1, from_1, s_1, activate_1 Defined Pair Symbols: ACTIVATE_1 Compound Symbols: c5_1, c6_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(n__s(z0))) from(z0) -> n__from(z0) s(z0) -> n__s(z0) activate(n__from(z0)) -> from(activate(z0)) activate(n__s(z0)) -> s(activate(z0)) activate(z0) -> z0 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) S tuples: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: ACTIVATE_1 Compound Symbols: c5_1, c6_1 ---------------------------------------- (11) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ACTIVATE(n__from(z0)) -> c5(ACTIVATE(z0)) ACTIVATE(n__s(z0)) -> c6(ACTIVATE(z0)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1. The certificate found is represented by the following graph. "[100, 101, 102, 103] {(100,101,[ACTIVATE_1|0]), (100,102,[c5_1|1]), (100,103,[c6_1|1]), (101,101,[n__from_1|0, c5_1|0, n__s_1|0, c6_1|0]), (102,101,[ACTIVATE_1|1]), (102,102,[c5_1|1]), (102,103,[c6_1|1]), (103,101,[ACTIVATE_1|1]), (103,102,[c5_1|1]), (103,103,[c6_1|1])}" ---------------------------------------- (16) BOUNDS(1, n^1)