KILLED proof of input_kk15a3t6kh.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 9 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 566 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 38 ms] (20) BOUNDS(1, INF) (21) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (22) CpxTRS (23) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (24) CdtProblem (25) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CdtProblem (27) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CdtProblem (29) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CdtProblem (31) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (32) CpxRelTRS (33) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (34) CpxTRS (35) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CpxWeightedTrs (37) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxTypedWeightedTrs (39) CompletionProof [UPPER BOUND(ID), 0 ms] (40) CpxTypedWeightedCompleteTrs (41) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (42) CpxTypedWeightedCompleteTrs (43) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) InliningProof [UPPER BOUND(ID), 158 ms] (46) CpxRNTS (47) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CpxRNTS (49) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CpxRNTS (51) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 77 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 77 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (62) CpxRNTS (63) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 1513 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 649 ms] (68) CpxRNTS (69) CompletionProof [UPPER BOUND(ID), 0 ms] (70) CpxTypedWeightedCompleteTrs (71) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (72) CpxRNTS (73) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (74) CdtProblem (75) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (76) CdtProblem (77) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (78) CdtProblem (79) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (80) CdtProblem (81) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (82) CdtProblem (83) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (84) CdtProblem (85) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (86) CdtProblem (87) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (88) CdtProblem (89) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (90) CdtProblem (91) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (92) CdtProblem (93) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (94) CdtProblem (95) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (96) CdtProblem (97) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (98) CdtProblem (99) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (100) CdtProblem (101) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (102) CdtProblem (103) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 1246 ms] (104) CdtProblem (105) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 1554 ms] (106) CdtProblem (107) CdtKnowledgeProof [BOTH BOUNDS(ID, ID), 0 ms] (108) CdtProblem (109) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (110) CpxWeightedTrs (111) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (112) CpxTypedWeightedTrs (113) CompletionProof [UPPER BOUND(ID), 0 ms] (114) CpxTypedWeightedCompleteTrs (115) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (116) CpxTypedWeightedCompleteTrs (117) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (118) CpxRNTS (119) InliningProof [UPPER BOUND(ID), 205 ms] (120) CpxRNTS (121) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (122) CpxRNTS (123) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (124) CpxRNTS (125) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (126) CpxRNTS (127) IntTrsBoundProof [UPPER BOUND(ID), 187 ms] (128) CpxRNTS (129) IntTrsBoundProof [UPPER BOUND(ID), 55 ms] (130) CpxRNTS (131) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (132) CpxRNTS (133) IntTrsBoundProof [UPPER BOUND(ID), 8 ms] (134) CpxRNTS (135) IntTrsBoundProof [UPPER BOUND(ID), 12 ms] (136) CpxRNTS (137) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (138) CpxRNTS (139) IntTrsBoundProof [UPPER BOUND(ID), 3517 ms] (140) CpxRNTS (141) IntTrsBoundProof [UPPER BOUND(ID), 449 ms] (142) CpxRNTS (143) CompletionProof [UPPER BOUND(ID), 0 ms] (144) CpxTypedWeightedCompleteTrs (145) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (146) CpxRNTS ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt, L) -> U12(tt, activate(L)) U12(tt, L) -> s(length(activate(L))) length(nil) -> 0 length(cons(N, L)) -> U11(tt, activate(L)) zeros -> n__zeros activate(n__zeros) -> zeros activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: zeros -> cons(0', n__zeros) U11(tt, L) -> U12(tt, activate(L)) U12(tt, L) -> s(length(activate(L))) length(nil) -> 0' length(cons(N, L)) -> U11(tt, activate(L)) zeros -> n__zeros activate(n__zeros) -> zeros activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: zeros -> cons(0, n__zeros) zeros -> n__zeros U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0 length(cons(z0, z1)) -> U11(tt, activate(z1)) activate(n__zeros) -> zeros activate(z0) -> z0 Tuples: ZEROS -> c ZEROS -> c1 U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(nil) -> c4 LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 S tuples: ZEROS -> c ZEROS -> c1 U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(nil) -> c4 LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 K tuples:none Defined Rule Symbols: zeros, U11_2, U12_2, length_1, activate_1 Defined Pair Symbols: ZEROS, U11'_2, U12'_2, LENGTH_1, ACTIVATE_1 Compound Symbols: c, c1, c2_2, c3_2, c4, c5_2, c6_1, c7 ---------------------------------------- (5) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ZEROS -> c ZEROS -> c1 U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(nil) -> c4 LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 The (relative) TRS S consists of the following rules: zeros -> cons(0, n__zeros) zeros -> n__zeros U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0 length(cons(z0, z1)) -> U11(tt, activate(z1)) activate(n__zeros) -> zeros activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ZEROS -> c ZEROS -> c1 U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(nil) -> c4 LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 The (relative) TRS S consists of the following rules: zeros -> cons(0', n__zeros) zeros -> n__zeros U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0' length(cons(z0, z1)) -> U11(tt, activate(z1)) activate(n__zeros) -> zeros activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (10) Obligation: Innermost TRS: Rules: ZEROS -> c ZEROS -> c1 U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(nil) -> c4 LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 zeros -> cons(0', n__zeros) zeros -> n__zeros U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0' length(cons(z0, z1)) -> U11(tt, activate(z1)) activate(n__zeros) -> zeros activate(z0) -> z0 Types: ZEROS :: c:c1 c :: c:c1 c1 :: c:c1 U11' :: tt -> nil:cons:n__zeros -> c2 tt :: tt c2 :: c3 -> c6:c7 -> c2 U12' :: tt -> nil:cons:n__zeros -> c3 activate :: nil:cons:n__zeros -> nil:cons:n__zeros ACTIVATE :: nil:cons:n__zeros -> c6:c7 c3 :: c4:c5 -> c6:c7 -> c3 LENGTH :: nil:cons:n__zeros -> c4:c5 nil :: nil:cons:n__zeros c4 :: c4:c5 cons :: 0':s -> nil:cons:n__zeros -> nil:cons:n__zeros c5 :: c2 -> c6:c7 -> c4:c5 n__zeros :: nil:cons:n__zeros c6 :: c:c1 -> c6:c7 c7 :: c6:c7 zeros :: nil:cons:n__zeros 0' :: 0':s U11 :: tt -> nil:cons:n__zeros -> 0':s U12 :: tt -> nil:cons:n__zeros -> 0':s s :: 0':s -> 0':s length :: nil:cons:n__zeros -> 0':s hole_c:c11_8 :: c:c1 hole_c22_8 :: c2 hole_tt3_8 :: tt hole_nil:cons:n__zeros4_8 :: nil:cons:n__zeros hole_c35_8 :: c3 hole_c6:c76_8 :: c6:c7 hole_c4:c57_8 :: c4:c5 hole_0':s8_8 :: 0':s gen_nil:cons:n__zeros9_8 :: Nat -> nil:cons:n__zeros gen_0':s10_8 :: Nat -> 0':s ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: LENGTH, length ---------------------------------------- (12) Obligation: Innermost TRS: Rules: ZEROS -> c ZEROS -> c1 U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(nil) -> c4 LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 zeros -> cons(0', n__zeros) zeros -> n__zeros U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0' length(cons(z0, z1)) -> U11(tt, activate(z1)) activate(n__zeros) -> zeros activate(z0) -> z0 Types: ZEROS :: c:c1 c :: c:c1 c1 :: c:c1 U11' :: tt -> nil:cons:n__zeros -> c2 tt :: tt c2 :: c3 -> c6:c7 -> c2 U12' :: tt -> nil:cons:n__zeros -> c3 activate :: nil:cons:n__zeros -> nil:cons:n__zeros ACTIVATE :: nil:cons:n__zeros -> c6:c7 c3 :: c4:c5 -> c6:c7 -> c3 LENGTH :: nil:cons:n__zeros -> c4:c5 nil :: nil:cons:n__zeros c4 :: c4:c5 cons :: 0':s -> nil:cons:n__zeros -> nil:cons:n__zeros c5 :: c2 -> c6:c7 -> c4:c5 n__zeros :: nil:cons:n__zeros c6 :: c:c1 -> c6:c7 c7 :: c6:c7 zeros :: nil:cons:n__zeros 0' :: 0':s U11 :: tt -> nil:cons:n__zeros -> 0':s U12 :: tt -> nil:cons:n__zeros -> 0':s s :: 0':s -> 0':s length :: nil:cons:n__zeros -> 0':s hole_c:c11_8 :: c:c1 hole_c22_8 :: c2 hole_tt3_8 :: tt hole_nil:cons:n__zeros4_8 :: nil:cons:n__zeros hole_c35_8 :: c3 hole_c6:c76_8 :: c6:c7 hole_c4:c57_8 :: c4:c5 hole_0':s8_8 :: 0':s gen_nil:cons:n__zeros9_8 :: Nat -> nil:cons:n__zeros gen_0':s10_8 :: Nat -> 0':s Generator Equations: gen_nil:cons:n__zeros9_8(0) <=> nil gen_nil:cons:n__zeros9_8(+(x, 1)) <=> cons(0', gen_nil:cons:n__zeros9_8(x)) gen_0':s10_8(0) <=> 0' gen_0':s10_8(+(x, 1)) <=> s(gen_0':s10_8(x)) The following defined symbols remain to be analysed: LENGTH, length ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LENGTH(gen_nil:cons:n__zeros9_8(n12_8)) -> *11_8, rt in Omega(n12_8) Induction Base: LENGTH(gen_nil:cons:n__zeros9_8(0)) Induction Step: LENGTH(gen_nil:cons:n__zeros9_8(+(n12_8, 1))) ->_R^Omega(1) c5(U11'(tt, activate(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))) ->_R^Omega(0) c5(U11'(tt, gen_nil:cons:n__zeros9_8(n12_8)), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))) ->_R^Omega(1) c5(c2(U12'(tt, activate(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))) ->_R^Omega(0) c5(c2(U12'(tt, gen_nil:cons:n__zeros9_8(n12_8)), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))) ->_R^Omega(1) c5(c2(c3(LENGTH(activate(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))) ->_R^Omega(0) c5(c2(c3(LENGTH(gen_nil:cons:n__zeros9_8(n12_8)), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))) ->_IH c5(c2(c3(*11_8, ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))) ->_R^Omega(1) c5(c2(c3(*11_8, c7), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))) ->_R^Omega(1) c5(c2(c3(*11_8, c7), c7), ACTIVATE(gen_nil:cons:n__zeros9_8(n12_8))) ->_R^Omega(1) c5(c2(c3(*11_8, c7), c7), c7) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: ZEROS -> c ZEROS -> c1 U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(nil) -> c4 LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 zeros -> cons(0', n__zeros) zeros -> n__zeros U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0' length(cons(z0, z1)) -> U11(tt, activate(z1)) activate(n__zeros) -> zeros activate(z0) -> z0 Types: ZEROS :: c:c1 c :: c:c1 c1 :: c:c1 U11' :: tt -> nil:cons:n__zeros -> c2 tt :: tt c2 :: c3 -> c6:c7 -> c2 U12' :: tt -> nil:cons:n__zeros -> c3 activate :: nil:cons:n__zeros -> nil:cons:n__zeros ACTIVATE :: nil:cons:n__zeros -> c6:c7 c3 :: c4:c5 -> c6:c7 -> c3 LENGTH :: nil:cons:n__zeros -> c4:c5 nil :: nil:cons:n__zeros c4 :: c4:c5 cons :: 0':s -> nil:cons:n__zeros -> nil:cons:n__zeros c5 :: c2 -> c6:c7 -> c4:c5 n__zeros :: nil:cons:n__zeros c6 :: c:c1 -> c6:c7 c7 :: c6:c7 zeros :: nil:cons:n__zeros 0' :: 0':s U11 :: tt -> nil:cons:n__zeros -> 0':s U12 :: tt -> nil:cons:n__zeros -> 0':s s :: 0':s -> 0':s length :: nil:cons:n__zeros -> 0':s hole_c:c11_8 :: c:c1 hole_c22_8 :: c2 hole_tt3_8 :: tt hole_nil:cons:n__zeros4_8 :: nil:cons:n__zeros hole_c35_8 :: c3 hole_c6:c76_8 :: c6:c7 hole_c4:c57_8 :: c4:c5 hole_0':s8_8 :: 0':s gen_nil:cons:n__zeros9_8 :: Nat -> nil:cons:n__zeros gen_0':s10_8 :: Nat -> 0':s Generator Equations: gen_nil:cons:n__zeros9_8(0) <=> nil gen_nil:cons:n__zeros9_8(+(x, 1)) <=> cons(0', gen_nil:cons:n__zeros9_8(x)) gen_0':s10_8(0) <=> 0' gen_0':s10_8(+(x, 1)) <=> s(gen_0':s10_8(x)) The following defined symbols remain to be analysed: LENGTH, length ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: ZEROS -> c ZEROS -> c1 U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(nil) -> c4 LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 zeros -> cons(0', n__zeros) zeros -> n__zeros U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0' length(cons(z0, z1)) -> U11(tt, activate(z1)) activate(n__zeros) -> zeros activate(z0) -> z0 Types: ZEROS :: c:c1 c :: c:c1 c1 :: c:c1 U11' :: tt -> nil:cons:n__zeros -> c2 tt :: tt c2 :: c3 -> c6:c7 -> c2 U12' :: tt -> nil:cons:n__zeros -> c3 activate :: nil:cons:n__zeros -> nil:cons:n__zeros ACTIVATE :: nil:cons:n__zeros -> c6:c7 c3 :: c4:c5 -> c6:c7 -> c3 LENGTH :: nil:cons:n__zeros -> c4:c5 nil :: nil:cons:n__zeros c4 :: c4:c5 cons :: 0':s -> nil:cons:n__zeros -> nil:cons:n__zeros c5 :: c2 -> c6:c7 -> c4:c5 n__zeros :: nil:cons:n__zeros c6 :: c:c1 -> c6:c7 c7 :: c6:c7 zeros :: nil:cons:n__zeros 0' :: 0':s U11 :: tt -> nil:cons:n__zeros -> 0':s U12 :: tt -> nil:cons:n__zeros -> 0':s s :: 0':s -> 0':s length :: nil:cons:n__zeros -> 0':s hole_c:c11_8 :: c:c1 hole_c22_8 :: c2 hole_tt3_8 :: tt hole_nil:cons:n__zeros4_8 :: nil:cons:n__zeros hole_c35_8 :: c3 hole_c6:c76_8 :: c6:c7 hole_c4:c57_8 :: c4:c5 hole_0':s8_8 :: 0':s gen_nil:cons:n__zeros9_8 :: Nat -> nil:cons:n__zeros gen_0':s10_8 :: Nat -> 0':s Lemmas: LENGTH(gen_nil:cons:n__zeros9_8(n12_8)) -> *11_8, rt in Omega(n12_8) Generator Equations: gen_nil:cons:n__zeros9_8(0) <=> nil gen_nil:cons:n__zeros9_8(+(x, 1)) <=> cons(0', gen_nil:cons:n__zeros9_8(x)) gen_0':s10_8(0) <=> 0' gen_0':s10_8(+(x, 1)) <=> s(gen_0':s10_8(x)) The following defined symbols remain to be analysed: length ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: length(gen_nil:cons:n__zeros9_8(n717_8)) -> gen_0':s10_8(n717_8), rt in Omega(0) Induction Base: length(gen_nil:cons:n__zeros9_8(0)) ->_R^Omega(0) 0' Induction Step: length(gen_nil:cons:n__zeros9_8(+(n717_8, 1))) ->_R^Omega(0) U11(tt, activate(gen_nil:cons:n__zeros9_8(n717_8))) ->_R^Omega(0) U11(tt, gen_nil:cons:n__zeros9_8(n717_8)) ->_R^Omega(0) U12(tt, activate(gen_nil:cons:n__zeros9_8(n717_8))) ->_R^Omega(0) U12(tt, gen_nil:cons:n__zeros9_8(n717_8)) ->_R^Omega(0) s(length(activate(gen_nil:cons:n__zeros9_8(n717_8)))) ->_R^Omega(0) s(length(gen_nil:cons:n__zeros9_8(n717_8))) ->_IH s(gen_0':s10_8(c718_8)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (20) BOUNDS(1, INF) ---------------------------------------- (21) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (22) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt, L) -> U12(tt, activate(L)) U12(tt, L) -> s(length(activate(L))) length(nil) -> 0 length(cons(N, L)) -> U11(tt, activate(L)) zeros -> n__zeros activate(n__zeros) -> zeros activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (23) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: zeros -> cons(0, n__zeros) zeros -> n__zeros U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0 length(cons(z0, z1)) -> U11(tt, activate(z1)) activate(n__zeros) -> zeros activate(z0) -> z0 Tuples: ZEROS -> c ZEROS -> c1 U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(nil) -> c4 LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 S tuples: ZEROS -> c ZEROS -> c1 U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(nil) -> c4 LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 K tuples:none Defined Rule Symbols: zeros, U11_2, U12_2, length_1, activate_1 Defined Pair Symbols: ZEROS, U11'_2, U12'_2, LENGTH_1, ACTIVATE_1 Compound Symbols: c, c1, c2_2, c3_2, c4, c5_2, c6_1, c7 ---------------------------------------- (25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing nodes: ACTIVATE(n__zeros) -> c6(ZEROS) ACTIVATE(z0) -> c7 ZEROS -> c ZEROS -> c1 LENGTH(nil) -> c4 ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: zeros -> cons(0, n__zeros) zeros -> n__zeros U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0 length(cons(z0, z1)) -> U11(tt, activate(z1)) activate(n__zeros) -> zeros activate(z0) -> z0 Tuples: U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) S tuples: U11'(tt, z0) -> c2(U12'(tt, activate(z0)), ACTIVATE(z0)) U12'(tt, z0) -> c3(LENGTH(activate(z0)), ACTIVATE(z0)) LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1)), ACTIVATE(z1)) K tuples:none Defined Rule Symbols: zeros, U11_2, U12_2, length_1, activate_1 Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_2, c3_2, c5_2 ---------------------------------------- (27) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (28) Obligation: Complexity Dependency Tuples Problem Rules: zeros -> cons(0, n__zeros) zeros -> n__zeros U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0 length(cons(z0, z1)) -> U11(tt, activate(z1)) activate(n__zeros) -> zeros activate(z0) -> z0 Tuples: U11'(tt, z0) -> c2(U12'(tt, activate(z0))) U12'(tt, z0) -> c3(LENGTH(activate(z0))) LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) S tuples: U11'(tt, z0) -> c2(U12'(tt, activate(z0))) U12'(tt, z0) -> c3(LENGTH(activate(z0))) LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) K tuples:none Defined Rule Symbols: zeros, U11_2, U12_2, length_1, activate_1 Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (29) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: U11(tt, z0) -> U12(tt, activate(z0)) U12(tt, z0) -> s(length(activate(z0))) length(nil) -> 0 length(cons(z0, z1)) -> U11(tt, activate(z1)) ---------------------------------------- (30) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__zeros) -> zeros activate(z0) -> z0 zeros -> cons(0, n__zeros) zeros -> n__zeros Tuples: U11'(tt, z0) -> c2(U12'(tt, activate(z0))) U12'(tt, z0) -> c3(LENGTH(activate(z0))) LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) S tuples: U11'(tt, z0) -> c2(U12'(tt, activate(z0))) U12'(tt, z0) -> c3(LENGTH(activate(z0))) LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) K tuples:none Defined Rule Symbols: activate_1, zeros Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (31) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (32) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: U11'(tt, z0) -> c2(U12'(tt, activate(z0))) U12'(tt, z0) -> c3(LENGTH(activate(z0))) LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) The (relative) TRS S consists of the following rules: activate(n__zeros) -> zeros activate(z0) -> z0 zeros -> cons(0, n__zeros) zeros -> n__zeros Rewrite Strategy: INNERMOST ---------------------------------------- (33) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (34) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: U11'(tt, z0) -> c2(U12'(tt, activate(z0))) U12'(tt, z0) -> c3(LENGTH(activate(z0))) LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) activate(n__zeros) -> zeros activate(z0) -> z0 zeros -> cons(0, n__zeros) zeros -> n__zeros S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (35) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (36) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: U11'(tt, z0) -> c2(U12'(tt, activate(z0))) [1] U12'(tt, z0) -> c3(LENGTH(activate(z0))) [1] LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) [1] activate(n__zeros) -> zeros [0] activate(z0) -> z0 [0] zeros -> cons(0, n__zeros) [0] zeros -> n__zeros [0] Rewrite Strategy: INNERMOST ---------------------------------------- (37) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (38) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: U11'(tt, z0) -> c2(U12'(tt, activate(z0))) [1] U12'(tt, z0) -> c3(LENGTH(activate(z0))) [1] LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) [1] activate(n__zeros) -> zeros [0] activate(z0) -> z0 [0] zeros -> cons(0, n__zeros) [0] zeros -> n__zeros [0] The TRS has the following type information: U11' :: tt -> cons:n__zeros -> c2 tt :: tt c2 :: c3 -> c2 U12' :: tt -> cons:n__zeros -> c3 activate :: cons:n__zeros -> cons:n__zeros c3 :: c5 -> c3 LENGTH :: cons:n__zeros -> c5 cons :: 0 -> cons:n__zeros -> cons:n__zeros c5 :: c2 -> c5 n__zeros :: cons:n__zeros zeros :: cons:n__zeros 0 :: 0 Rewrite Strategy: INNERMOST ---------------------------------------- (39) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: U11'_2 U12'_2 LENGTH_1 (c) The following functions are completely defined: activate_1 zeros Due to the following rules being added: activate(v0) -> n__zeros [0] zeros -> n__zeros [0] And the following fresh constants: const, const1, const2 ---------------------------------------- (40) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: U11'(tt, z0) -> c2(U12'(tt, activate(z0))) [1] U12'(tt, z0) -> c3(LENGTH(activate(z0))) [1] LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) [1] activate(n__zeros) -> zeros [0] activate(z0) -> z0 [0] zeros -> cons(0, n__zeros) [0] zeros -> n__zeros [0] activate(v0) -> n__zeros [0] zeros -> n__zeros [0] The TRS has the following type information: U11' :: tt -> cons:n__zeros -> c2 tt :: tt c2 :: c3 -> c2 U12' :: tt -> cons:n__zeros -> c3 activate :: cons:n__zeros -> cons:n__zeros c3 :: c5 -> c3 LENGTH :: cons:n__zeros -> c5 cons :: 0 -> cons:n__zeros -> cons:n__zeros c5 :: c2 -> c5 n__zeros :: cons:n__zeros zeros :: cons:n__zeros 0 :: 0 const :: c2 const1 :: c3 const2 :: c5 Rewrite Strategy: INNERMOST ---------------------------------------- (41) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (42) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) [1] U11'(tt, z0) -> c2(U12'(tt, z0)) [1] U11'(tt, z0) -> c2(U12'(tt, n__zeros)) [1] U12'(tt, n__zeros) -> c3(LENGTH(zeros)) [1] U12'(tt, z0) -> c3(LENGTH(z0)) [1] U12'(tt, z0) -> c3(LENGTH(n__zeros)) [1] LENGTH(cons(z0, n__zeros)) -> c5(U11'(tt, zeros)) [1] LENGTH(cons(z0, z1)) -> c5(U11'(tt, z1)) [1] LENGTH(cons(z0, z1)) -> c5(U11'(tt, n__zeros)) [1] activate(n__zeros) -> zeros [0] activate(z0) -> z0 [0] zeros -> cons(0, n__zeros) [0] zeros -> n__zeros [0] activate(v0) -> n__zeros [0] zeros -> n__zeros [0] The TRS has the following type information: U11' :: tt -> cons:n__zeros -> c2 tt :: tt c2 :: c3 -> c2 U12' :: tt -> cons:n__zeros -> c3 activate :: cons:n__zeros -> cons:n__zeros c3 :: c5 -> c3 LENGTH :: cons:n__zeros -> c5 cons :: 0 -> cons:n__zeros -> cons:n__zeros c5 :: c2 -> c5 n__zeros :: cons:n__zeros zeros :: cons:n__zeros 0 :: 0 const :: c2 const1 :: c3 const2 :: c5 Rewrite Strategy: INNERMOST ---------------------------------------- (43) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: tt => 0 n__zeros => 0 0 => 0 const => 0 const1 => 0 const2 => 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, zeros) :|: z0 >= 0, z = 1 + z0 + 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 U11'(z, z') -{ 1 }-> 1 + U12'(0, z0) :|: z0 >= 0, z = 0, z' = z0 U11'(z, z') -{ 1 }-> 1 + U12'(0, zeros) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z0 >= 0, z = 0, z' = z0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z0) :|: z0 >= 0, z = 0, z' = z0 U12'(z, z') -{ 1 }-> 1 + LENGTH(zeros) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z0 >= 0, z = 0, z' = z0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> zeros :|: z = 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: ---------------------------------------- (45) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: zeros -{ 0 }-> 1 + 0 + 0 :|: zeros -{ 0 }-> 0 :|: ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z0 >= 0, z = 1 + z0 + 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z0 >= 0, z = 1 + z0 + 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z0) :|: z0 >= 0, z = 0, z' = z0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z0 >= 0, z = 0, z' = z0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z0) :|: z0 >= 0, z = 0, z' = z0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z0 >= 0, z = 0, z' = z0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: ---------------------------------------- (47) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: ---------------------------------------- (49) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { activate } { zeros } { LENGTH, U11', U12' } ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {activate}, {zeros}, {LENGTH,U11',U12'} ---------------------------------------- (51) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {activate}, {zeros}, {LENGTH,U11',U12'} ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {activate}, {zeros}, {LENGTH,U11',U12'} Previous analysis results are: activate: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {zeros}, {LENGTH,U11',U12'} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + z] ---------------------------------------- (57) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {zeros}, {LENGTH,U11',U12'} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + z] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: zeros after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {zeros}, {LENGTH,U11',U12'} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + z] zeros: runtime: ?, size: O(1) [1] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: zeros after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {LENGTH,U11',U12'} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + z] zeros: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (63) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {LENGTH,U11',U12'} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + z] zeros: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: LENGTH after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: U11' after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 Computed SIZE bound using CoFloCo for: U12' after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {LENGTH,U11',U12'} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + z] zeros: runtime: O(1) [0], size: O(1) [1] LENGTH: runtime: ?, size: O(1) [0] U11': runtime: ?, size: O(1) [2] U12': runtime: ?, size: O(1) [1] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: LENGTH after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + U11'(0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + U11'(0, 0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + U11'(0, 1 + 0 + 0) :|: z - 1 >= 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, z') :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z' >= 0, z = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 0) :|: z = 0, z' = 0 U11'(z, z') -{ 1 }-> 1 + U12'(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(z') :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z' >= 0, z = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(0) :|: z = 0, z' = 0 U12'(z, z') -{ 1 }-> 1 + LENGTH(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 1 + 0 + 0 :|: z = 0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {LENGTH,U11',U12'} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + z] zeros: runtime: O(1) [0], size: O(1) [1] LENGTH: runtime: INF, size: O(1) [0] U11': runtime: ?, size: O(1) [2] U12': runtime: ?, size: O(1) [1] ---------------------------------------- (69) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: activate(v0) -> null_activate [0] zeros -> null_zeros [0] LENGTH(v0) -> null_LENGTH [0] And the following fresh constants: null_activate, null_zeros, null_LENGTH, const, const1 ---------------------------------------- (70) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: U11'(tt, z0) -> c2(U12'(tt, activate(z0))) [1] U12'(tt, z0) -> c3(LENGTH(activate(z0))) [1] LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) [1] activate(n__zeros) -> zeros [0] activate(z0) -> z0 [0] zeros -> cons(0, n__zeros) [0] zeros -> n__zeros [0] activate(v0) -> null_activate [0] zeros -> null_zeros [0] LENGTH(v0) -> null_LENGTH [0] The TRS has the following type information: U11' :: tt -> cons:n__zeros:null_activate:null_zeros -> c2 tt :: tt c2 :: c3 -> c2 U12' :: tt -> cons:n__zeros:null_activate:null_zeros -> c3 activate :: cons:n__zeros:null_activate:null_zeros -> cons:n__zeros:null_activate:null_zeros c3 :: c5:null_LENGTH -> c3 LENGTH :: cons:n__zeros:null_activate:null_zeros -> c5:null_LENGTH cons :: 0 -> cons:n__zeros:null_activate:null_zeros -> cons:n__zeros:null_activate:null_zeros c5 :: c2 -> c5:null_LENGTH n__zeros :: cons:n__zeros:null_activate:null_zeros zeros :: cons:n__zeros:null_activate:null_zeros 0 :: 0 null_activate :: cons:n__zeros:null_activate:null_zeros null_zeros :: cons:n__zeros:null_activate:null_zeros null_LENGTH :: c5:null_LENGTH const :: c2 const1 :: c3 Rewrite Strategy: INNERMOST ---------------------------------------- (71) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: tt => 0 n__zeros => 0 0 => 0 null_activate => 0 null_zeros => 0 null_LENGTH => 0 const => 0 const1 => 0 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 LENGTH(z) -{ 1 }-> 1 + U11'(0, activate(z1)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 U11'(z, z') -{ 1 }-> 1 + U12'(0, activate(z0)) :|: z0 >= 0, z = 0, z' = z0 U12'(z, z') -{ 1 }-> 1 + LENGTH(activate(z0)) :|: z0 >= 0, z = 0, z' = z0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> zeros :|: z = 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 zeros -{ 0 }-> 0 :|: zeros -{ 0 }-> 1 + 0 + 0 :|: Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (73) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace U11'(tt, z0) -> c2(U12'(tt, activate(z0))) by U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) U11'(tt, z0) -> c2(U12'(tt, z0)) ---------------------------------------- (74) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__zeros) -> zeros activate(z0) -> z0 zeros -> cons(0, n__zeros) zeros -> n__zeros Tuples: U12'(tt, z0) -> c3(LENGTH(activate(z0))) LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) U11'(tt, z0) -> c2(U12'(tt, z0)) S tuples: U12'(tt, z0) -> c3(LENGTH(activate(z0))) LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) U11'(tt, z0) -> c2(U12'(tt, z0)) K tuples:none Defined Rule Symbols: activate_1, zeros Defined Pair Symbols: U12'_2, LENGTH_1, U11'_2 Compound Symbols: c3_1, c5_1, c2_1 ---------------------------------------- (75) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace U12'(tt, z0) -> c3(LENGTH(activate(z0))) by U12'(tt, n__zeros) -> c3(LENGTH(zeros)) U12'(tt, z0) -> c3(LENGTH(z0)) ---------------------------------------- (76) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__zeros) -> zeros activate(z0) -> z0 zeros -> cons(0, n__zeros) zeros -> n__zeros Tuples: LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, n__zeros) -> c3(LENGTH(zeros)) U12'(tt, z0) -> c3(LENGTH(z0)) S tuples: LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, n__zeros) -> c3(LENGTH(zeros)) U12'(tt, z0) -> c3(LENGTH(z0)) K tuples:none Defined Rule Symbols: activate_1, zeros Defined Pair Symbols: LENGTH_1, U11'_2, U12'_2 Compound Symbols: c5_1, c2_1, c3_1 ---------------------------------------- (77) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH(cons(z0, z1)) -> c5(U11'(tt, activate(z1))) by LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) ---------------------------------------- (78) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__zeros) -> zeros activate(z0) -> z0 zeros -> cons(0, n__zeros) zeros -> n__zeros Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, n__zeros) -> c3(LENGTH(zeros)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) S tuples: U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, n__zeros) -> c3(LENGTH(zeros)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) K tuples:none Defined Rule Symbols: activate_1, zeros Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (79) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: activate(n__zeros) -> zeros activate(z0) -> z0 ---------------------------------------- (80) Obligation: Complexity Dependency Tuples Problem Rules: zeros -> cons(0, n__zeros) zeros -> n__zeros Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, n__zeros) -> c3(LENGTH(zeros)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) S tuples: U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, n__zeros) -> c3(LENGTH(zeros)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) K tuples:none Defined Rule Symbols: zeros Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (81) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace U11'(tt, n__zeros) -> c2(U12'(tt, zeros)) by U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) ---------------------------------------- (82) Obligation: Complexity Dependency Tuples Problem Rules: zeros -> cons(0, n__zeros) zeros -> n__zeros Tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, n__zeros) -> c3(LENGTH(zeros)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) S tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, n__zeros) -> c3(LENGTH(zeros)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) K tuples:none Defined Rule Symbols: zeros Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (83) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace U12'(tt, n__zeros) -> c3(LENGTH(zeros)) by U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) U12'(tt, n__zeros) -> c3(LENGTH(n__zeros)) ---------------------------------------- (84) Obligation: Complexity Dependency Tuples Problem Rules: zeros -> cons(0, n__zeros) zeros -> n__zeros Tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) U12'(tt, n__zeros) -> c3(LENGTH(n__zeros)) S tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) U12'(tt, n__zeros) -> c3(LENGTH(n__zeros)) K tuples:none Defined Rule Symbols: zeros Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (85) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: U12'(tt, n__zeros) -> c3(LENGTH(n__zeros)) ---------------------------------------- (86) Obligation: Complexity Dependency Tuples Problem Rules: zeros -> cons(0, n__zeros) zeros -> n__zeros Tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) S tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) K tuples:none Defined Rule Symbols: zeros Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (87) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, zeros)) by LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) ---------------------------------------- (88) Obligation: Complexity Dependency Tuples Problem Rules: zeros -> cons(0, n__zeros) zeros -> n__zeros Tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) S tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) K tuples:none Defined Rule Symbols: zeros Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (89) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: zeros -> cons(0, n__zeros) zeros -> n__zeros ---------------------------------------- (90) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) S tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) U12'(tt, z0) -> c3(LENGTH(z0)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (91) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace U12'(tt, z0) -> c3(LENGTH(z0)) by U12'(tt, cons(y0, y1)) -> c3(LENGTH(cons(y0, y1))) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) ---------------------------------------- (92) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, y1)) -> c3(LENGTH(cons(y0, y1))) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) S tuples: U11'(tt, z0) -> c2(U12'(tt, z0)) LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, y1)) -> c3(LENGTH(cons(y0, y1))) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: U11'_2, LENGTH_1, U12'_2 Compound Symbols: c2_1, c5_1, c3_1 ---------------------------------------- (93) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace U11'(tt, z0) -> c2(U12'(tt, z0)) by U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U11'(tt, cons(y0, y1)) -> c2(U12'(tt, cons(y0, y1))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) ---------------------------------------- (94) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, y1)) -> c3(LENGTH(cons(y0, y1))) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, y1)) -> c2(U12'(tt, cons(y0, y1))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) S tuples: LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, y1)) -> c3(LENGTH(cons(y0, y1))) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, y1)) -> c2(U12'(tt, cons(y0, y1))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, U11'_2, U12'_2 Compound Symbols: c5_1, c2_1, c3_1 ---------------------------------------- (95) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH(cons(x0, z0)) -> c5(U11'(tt, z0)) by LENGTH(cons(z0, n__zeros)) -> c5(U11'(tt, n__zeros)) LENGTH(cons(z0, cons(y0, y1))) -> c5(U11'(tt, cons(y0, y1))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) ---------------------------------------- (96) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, y1)) -> c3(LENGTH(cons(y0, y1))) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, y1)) -> c2(U12'(tt, cons(y0, y1))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, y1))) -> c5(U11'(tt, cons(y0, y1))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) S tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, y1)) -> c3(LENGTH(cons(y0, y1))) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, y1)) -> c2(U12'(tt, cons(y0, y1))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, y1))) -> c5(U11'(tt, cons(y0, y1))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (97) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace U12'(tt, cons(y0, y1)) -> c3(LENGTH(cons(y0, y1))) by U12'(tt, cons(z0, n__zeros)) -> c3(LENGTH(cons(z0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) ---------------------------------------- (98) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, y1)) -> c2(U12'(tt, cons(y0, y1))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, y1))) -> c5(U11'(tt, cons(y0, y1))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) S tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, y1)) -> c2(U12'(tt, cons(y0, y1))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, y1))) -> c5(U11'(tt, cons(y0, y1))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (99) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace U11'(tt, cons(y0, y1)) -> c2(U12'(tt, cons(y0, y1))) by U11'(tt, cons(z0, n__zeros)) -> c2(U12'(tt, cons(z0, n__zeros))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) ---------------------------------------- (100) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, y1))) -> c5(U11'(tt, cons(y0, y1))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) S tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, y1))) -> c5(U11'(tt, cons(y0, y1))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (101) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH(cons(z0, cons(y0, y1))) -> c5(U11'(tt, cons(y0, y1))) by LENGTH(cons(z0, cons(z1, n__zeros))) -> c5(U11'(tt, cons(z1, n__zeros))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) ---------------------------------------- (102) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) S tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (103) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) We considered the (Usable) Rules:none And the Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) The order we found is given by the following interpretation: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( n__zeros ) = [[0], [0], [0]] >>> <<< M( 0 ) = [[2], [0], [0]] >>> <<< M( cons_2(x_1, x_2) ) = [[0], [0], [3]] + [[0, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 + [[0, 0, 0], [0, 0, 2], [0, 0, 0]] * x_2 >>> <<< M( tt ) = [[0], [0], [0]] >>> Tuple symbols: <<< M( LENGTH_1(x_1) ) = [[0], [2], [0]] + [[0, 3, 0], [0, 0, 0], [0, 0, 0]] * x_1 >>> <<< M( U11'_2(x_1, x_2) ) = [[0], [0], [0]] + [[0, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 + [[0, 3, 0], [0, 0, 0], [0, 0, 0]] * x_2 >>> <<< M( c5_1(x_1) ) = [[0], [0], [0]] + [[1, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 >>> <<< M( c3_1(x_1) ) = [[0], [0], [0]] + [[1, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 >>> <<< M( c2_1(x_1) ) = [[0], [0], [0]] + [[1, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 >>> <<< M( U12'_2(x_1, x_2) ) = [[0], [0], [0]] + [[0, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 + [[0, 3, 0], [0, 0, 0], [0, 0, 0]] * x_2 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. ---------------------------------------- (104) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) S tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) K tuples: LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) Defined Rule Symbols:none Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (105) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) We considered the (Usable) Rules:none And the Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) The order we found is given by the following interpretation: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( n__zeros ) = [[0], [0], [0]] >>> <<< M( 0 ) = [[2], [0], [0]] >>> <<< M( cons_2(x_1, x_2) ) = [[0], [0], [2]] + [[0, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 + [[0, 0, 0], [0, 1, 2], [0, 0, 0]] * x_2 >>> <<< M( tt ) = [[0], [0], [0]] >>> Tuple symbols: <<< M( LENGTH_1(x_1) ) = [[0], [0], [0]] + [[0, 2, 0], [0, 0, 0], [0, 0, 0]] * x_1 >>> <<< M( U11'_2(x_1, x_2) ) = [[0], [0], [2]] + [[0, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 + [[0, 2, 0], [0, 0, 0], [0, 0, 0]] * x_2 >>> <<< M( c5_1(x_1) ) = [[0], [0], [0]] + [[1, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 >>> <<< M( c3_1(x_1) ) = [[0], [0], [0]] + [[1, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 >>> <<< M( c2_1(x_1) ) = [[0], [0], [0]] + [[1, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 >>> <<< M( U12'_2(x_1, x_2) ) = [[0], [0], [2]] + [[0, 0, 0], [0, 0, 0], [0, 0, 0]] * x_1 + [[0, 2, 0], [0, 0, 0], [0, 0, 0]] * x_2 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. ---------------------------------------- (106) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) S tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) K tuples: LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) Defined Rule Symbols:none Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (107) CdtKnowledgeProof (BOTH BOUNDS(ID, ID)) The following tuples could be moved from S to K by knowledge propagation: U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(z1, n__zeros))) -> c5(U11'(tt, cons(z1, n__zeros))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(z1, n__zeros))) -> c5(U11'(tt, cons(z1, n__zeros))) ---------------------------------------- (108) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) S tuples: U11'(tt, n__zeros) -> c2(U12'(tt, cons(0, n__zeros))) U11'(tt, n__zeros) -> c2(U12'(tt, n__zeros)) U12'(tt, n__zeros) -> c3(LENGTH(cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, cons(0, n__zeros))) LENGTH(cons(x0, n__zeros)) -> c5(U11'(tt, n__zeros)) U12'(tt, cons(y0, n__zeros)) -> c3(LENGTH(cons(y0, n__zeros))) U11'(tt, cons(y0, n__zeros)) -> c2(U12'(tt, cons(y0, n__zeros))) K tuples: LENGTH(cons(z0, cons(y0, n__zeros))) -> c5(U11'(tt, cons(y0, n__zeros))) LENGTH(cons(z0, cons(z1, cons(y1, y2)))) -> c5(U11'(tt, cons(z1, cons(y1, y2)))) LENGTH(cons(z0, cons(z1, cons(y1, n__zeros)))) -> c5(U11'(tt, cons(z1, cons(y1, n__zeros)))) U11'(tt, cons(z0, cons(y1, y2))) -> c2(U12'(tt, cons(z0, cons(y1, y2)))) U11'(tt, cons(z0, cons(y1, n__zeros))) -> c2(U12'(tt, cons(z0, cons(y1, n__zeros)))) U12'(tt, cons(z0, cons(y1, y2))) -> c3(LENGTH(cons(z0, cons(y1, y2)))) U12'(tt, cons(z0, cons(y1, n__zeros))) -> c3(LENGTH(cons(z0, cons(y1, n__zeros)))) Defined Rule Symbols:none Defined Pair Symbols: U11'_2, U12'_2, LENGTH_1 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (109) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (110) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) [1] U11(tt, L) -> U12(tt, activate(L)) [1] U12(tt, L) -> s(length(activate(L))) [1] length(nil) -> 0 [1] length(cons(N, L)) -> U11(tt, activate(L)) [1] zeros -> n__zeros [1] activate(n__zeros) -> zeros [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (111) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (112) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: zeros -> cons(0, n__zeros) [1] U11(tt, L) -> U12(tt, activate(L)) [1] U12(tt, L) -> s(length(activate(L))) [1] length(nil) -> 0 [1] length(cons(N, L)) -> U11(tt, activate(L)) [1] zeros -> n__zeros [1] activate(n__zeros) -> zeros [1] activate(X) -> X [1] The TRS has the following type information: zeros :: n__zeros:cons:nil cons :: 0:s -> n__zeros:cons:nil -> n__zeros:cons:nil 0 :: 0:s n__zeros :: n__zeros:cons:nil U11 :: tt -> n__zeros:cons:nil -> 0:s tt :: tt U12 :: tt -> n__zeros:cons:nil -> 0:s activate :: n__zeros:cons:nil -> n__zeros:cons:nil s :: 0:s -> 0:s length :: n__zeros:cons:nil -> 0:s nil :: n__zeros:cons:nil Rewrite Strategy: INNERMOST ---------------------------------------- (113) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: U11_2 U12_2 length_1 (c) The following functions are completely defined: activate_1 zeros Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (114) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: zeros -> cons(0, n__zeros) [1] U11(tt, L) -> U12(tt, activate(L)) [1] U12(tt, L) -> s(length(activate(L))) [1] length(nil) -> 0 [1] length(cons(N, L)) -> U11(tt, activate(L)) [1] zeros -> n__zeros [1] activate(n__zeros) -> zeros [1] activate(X) -> X [1] The TRS has the following type information: zeros :: n__zeros:cons:nil cons :: 0:s -> n__zeros:cons:nil -> n__zeros:cons:nil 0 :: 0:s n__zeros :: n__zeros:cons:nil U11 :: tt -> n__zeros:cons:nil -> 0:s tt :: tt U12 :: tt -> n__zeros:cons:nil -> 0:s activate :: n__zeros:cons:nil -> n__zeros:cons:nil s :: 0:s -> 0:s length :: n__zeros:cons:nil -> 0:s nil :: n__zeros:cons:nil Rewrite Strategy: INNERMOST ---------------------------------------- (115) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (116) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: zeros -> cons(0, n__zeros) [1] U11(tt, n__zeros) -> U12(tt, zeros) [2] U11(tt, L) -> U12(tt, L) [2] U12(tt, n__zeros) -> s(length(zeros)) [2] U12(tt, L) -> s(length(L)) [2] length(nil) -> 0 [1] length(cons(N, n__zeros)) -> U11(tt, zeros) [2] length(cons(N, L)) -> U11(tt, L) [2] zeros -> n__zeros [1] activate(n__zeros) -> zeros [1] activate(X) -> X [1] The TRS has the following type information: zeros :: n__zeros:cons:nil cons :: 0:s -> n__zeros:cons:nil -> n__zeros:cons:nil 0 :: 0:s n__zeros :: n__zeros:cons:nil U11 :: tt -> n__zeros:cons:nil -> 0:s tt :: tt U12 :: tt -> n__zeros:cons:nil -> 0:s activate :: n__zeros:cons:nil -> n__zeros:cons:nil s :: 0:s -> 0:s length :: n__zeros:cons:nil -> 0:s nil :: n__zeros:cons:nil Rewrite Strategy: INNERMOST ---------------------------------------- (117) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 n__zeros => 0 tt => 0 nil => 1 ---------------------------------------- (118) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, L) :|: L >= 0, z = 0, z' = L U11(z, z') -{ 2 }-> U12(0, zeros) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(L) :|: L >= 0, z = 0, z' = L U12(z, z') -{ 2 }-> 1 + length(zeros) :|: z = 0, z' = 0 activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> zeros :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 2 }-> U11(0, zeros) :|: z = 1 + N + 0, N >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: ---------------------------------------- (119) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: zeros -{ 1 }-> 1 + 0 + 0 :|: zeros -{ 1 }-> 0 :|: ---------------------------------------- (120) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, L) :|: L >= 0, z = 0, z' = L U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(L) :|: L >= 0, z = 0, z' = L U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z = 1 + N + 0, N >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z = 1 + N + 0, N >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: ---------------------------------------- (121) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (122) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: ---------------------------------------- (123) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { activate } { zeros } { length, U12, U11 } ---------------------------------------- (124) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {activate}, {zeros}, {length,U12,U11} ---------------------------------------- (125) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (126) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {activate}, {zeros}, {length,U12,U11} ---------------------------------------- (127) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (128) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {activate}, {zeros}, {length,U12,U11} Previous analysis results are: activate: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (129) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (130) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {zeros}, {length,U12,U11} Previous analysis results are: activate: runtime: O(1) [2], size: O(n^1) [1 + z] ---------------------------------------- (131) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (132) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {zeros}, {length,U12,U11} Previous analysis results are: activate: runtime: O(1) [2], size: O(n^1) [1 + z] ---------------------------------------- (133) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: zeros after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (134) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {zeros}, {length,U12,U11} Previous analysis results are: activate: runtime: O(1) [2], size: O(n^1) [1 + z] zeros: runtime: ?, size: O(1) [1] ---------------------------------------- (135) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: zeros after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (136) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {length,U12,U11} Previous analysis results are: activate: runtime: O(1) [2], size: O(n^1) [1 + z] zeros: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (137) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (138) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {length,U12,U11} Previous analysis results are: activate: runtime: O(1) [2], size: O(n^1) [1 + z] zeros: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (139) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: length after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? Computed SIZE bound using CoFloCo for: U12 after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? Computed SIZE bound using CoFloCo for: U11 after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (140) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {length,U12,U11} Previous analysis results are: activate: runtime: O(1) [2], size: O(n^1) [1 + z] zeros: runtime: O(1) [1], size: O(1) [1] length: runtime: ?, size: INF U12: runtime: ?, size: INF U11: runtime: ?, size: INF ---------------------------------------- (141) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: length after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (142) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 2 }-> U12(0, z') :|: z' >= 0, z = 0 U11(z, z') -{ 3 }-> U12(0, 0) :|: z = 0, z' = 0 U11(z, z') -{ 3 }-> U12(0, 1 + 0 + 0) :|: z = 0, z' = 0 U12(z, z') -{ 2 }-> 1 + length(z') :|: z' >= 0, z = 0 U12(z, z') -{ 3 }-> 1 + length(0) :|: z = 0, z' = 0 U12(z, z') -{ 3 }-> 1 + length(1 + 0 + 0) :|: z = 0, z' = 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + 0 + 0 :|: z = 0 length(z) -{ 2 }-> U11(0, L) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 3 }-> U11(0, 0) :|: z - 1 >= 0 length(z) -{ 3 }-> U11(0, 1 + 0 + 0) :|: z - 1 >= 0 length(z) -{ 1 }-> 0 :|: z = 1 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Function symbols to be analyzed: {length,U12,U11} Previous analysis results are: activate: runtime: O(1) [2], size: O(n^1) [1 + z] zeros: runtime: O(1) [1], size: O(1) [1] length: runtime: INF, size: INF U12: runtime: ?, size: INF U11: runtime: ?, size: INF ---------------------------------------- (143) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: length(v0) -> null_length [0] And the following fresh constants: null_length ---------------------------------------- (144) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: zeros -> cons(0, n__zeros) [1] U11(tt, L) -> U12(tt, activate(L)) [1] U12(tt, L) -> s(length(activate(L))) [1] length(nil) -> 0 [1] length(cons(N, L)) -> U11(tt, activate(L)) [1] zeros -> n__zeros [1] activate(n__zeros) -> zeros [1] activate(X) -> X [1] length(v0) -> null_length [0] The TRS has the following type information: zeros :: n__zeros:cons:nil cons :: 0:s:null_length -> n__zeros:cons:nil -> n__zeros:cons:nil 0 :: 0:s:null_length n__zeros :: n__zeros:cons:nil U11 :: tt -> n__zeros:cons:nil -> 0:s:null_length tt :: tt U12 :: tt -> n__zeros:cons:nil -> 0:s:null_length activate :: n__zeros:cons:nil -> n__zeros:cons:nil s :: 0:s:null_length -> 0:s:null_length length :: n__zeros:cons:nil -> 0:s:null_length nil :: n__zeros:cons:nil null_length :: 0:s:null_length Rewrite Strategy: INNERMOST ---------------------------------------- (145) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 n__zeros => 0 tt => 0 nil => 1 null_length => 0 ---------------------------------------- (146) Obligation: Complexity RNTS consisting of the following rules: U11(z, z') -{ 1 }-> U12(0, activate(L)) :|: L >= 0, z = 0, z' = L U12(z, z') -{ 1 }-> 1 + length(activate(L)) :|: L >= 0, z = 0, z' = L activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> zeros :|: z = 0 length(z) -{ 1 }-> U11(0, activate(L)) :|: z = 1 + N + L, L >= 0, N >= 0 length(z) -{ 1 }-> 0 :|: z = 1 length(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 zeros -{ 1 }-> 0 :|: zeros -{ 1 }-> 1 + 0 + 0 :|: Only complete derivations are relevant for the runtime complexity.