WORST_CASE(?,O(n^1)) proof of input_NQzc6Il7hl.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxWeightedTrs (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedTrs (15) CompletionProof [UPPER BOUND(ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxTypedWeightedCompleteTrs (19) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) InliningProof [UPPER BOUND(ID), 143 ms] (22) CpxRNTS (23) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxRNTS (25) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 244 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 1 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 22 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 438 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 249 ms] (44) CpxRNTS (45) FinalProof [FINISHED, 0 ms] (46) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) after(0, XS) -> XS after(s(N), cons(X, XS)) -> after(N, activate(XS)) from(X) -> n__from(X) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) after(0, z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, activate(z2)) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: FROM(z0) -> c FROM(z0) -> c1 AFTER(0, z0) -> c2 AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2)), ACTIVATE(z2)) ACTIVATE(n__from(z0)) -> c4(FROM(z0)) ACTIVATE(z0) -> c5 S tuples: FROM(z0) -> c FROM(z0) -> c1 AFTER(0, z0) -> c2 AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2)), ACTIVATE(z2)) ACTIVATE(n__from(z0)) -> c4(FROM(z0)) ACTIVATE(z0) -> c5 K tuples:none Defined Rule Symbols: from_1, after_2, activate_1 Defined Pair Symbols: FROM_1, AFTER_2, ACTIVATE_1 Compound Symbols: c, c1, c2, c3_2, c4_1, c5 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing nodes: FROM(z0) -> c ACTIVATE(z0) -> c5 AFTER(0, z0) -> c2 ACTIVATE(n__from(z0)) -> c4(FROM(z0)) FROM(z0) -> c1 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) after(0, z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, activate(z2)) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2)), ACTIVATE(z2)) S tuples: AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2)), ACTIVATE(z2)) K tuples:none Defined Rule Symbols: from_1, after_2, activate_1 Defined Pair Symbols: AFTER_2 Compound Symbols: c3_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) after(0, z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, activate(z2)) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2))) S tuples: AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2))) K tuples:none Defined Rule Symbols: from_1, after_2, activate_1 Defined Pair Symbols: AFTER_2 Compound Symbols: c3_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: after(0, z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, activate(z2)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__from(z0)) -> from(z0) activate(z0) -> z0 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) Tuples: AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2))) S tuples: AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2))) K tuples:none Defined Rule Symbols: activate_1, from_1 Defined Pair Symbols: AFTER_2 Compound Symbols: c3_1 ---------------------------------------- (9) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2))) The (relative) TRS S consists of the following rules: activate(n__from(z0)) -> from(z0) activate(z0) -> z0 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (11) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2))) [1] activate(n__from(z0)) -> from(z0) [0] activate(z0) -> z0 [0] from(z0) -> cons(z0, n__from(s(z0))) [0] from(z0) -> n__from(z0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2))) [1] activate(n__from(z0)) -> from(z0) [0] activate(z0) -> z0 [0] from(z0) -> cons(z0, n__from(s(z0))) [0] from(z0) -> n__from(z0) [0] The TRS has the following type information: AFTER :: s -> cons:n__from -> c3 s :: s -> s cons :: s -> cons:n__from -> cons:n__from c3 :: c3 -> c3 activate :: cons:n__from -> cons:n__from n__from :: s -> cons:n__from from :: s -> cons:n__from Rewrite Strategy: INNERMOST ---------------------------------------- (15) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: AFTER_2 (c) The following functions are completely defined: activate_1 from_1 Due to the following rules being added: activate(v0) -> const2 [0] from(v0) -> const2 [0] And the following fresh constants: const2, const, const1 ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, activate(z2))) [1] activate(n__from(z0)) -> from(z0) [0] activate(z0) -> z0 [0] from(z0) -> cons(z0, n__from(s(z0))) [0] from(z0) -> n__from(z0) [0] activate(v0) -> const2 [0] from(v0) -> const2 [0] The TRS has the following type information: AFTER :: s -> cons:n__from:const2 -> c3 s :: s -> s cons :: s -> cons:n__from:const2 -> cons:n__from:const2 c3 :: c3 -> c3 activate :: cons:n__from:const2 -> cons:n__from:const2 n__from :: s -> cons:n__from:const2 from :: s -> cons:n__from:const2 const2 :: cons:n__from:const2 const :: c3 const1 :: s Rewrite Strategy: INNERMOST ---------------------------------------- (17) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (18) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: AFTER(s(z0), cons(z1, n__from(z0'))) -> c3(AFTER(z0, from(z0'))) [1] AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, z2)) [1] AFTER(s(z0), cons(z1, z2)) -> c3(AFTER(z0, const2)) [1] activate(n__from(z0)) -> from(z0) [0] activate(z0) -> z0 [0] from(z0) -> cons(z0, n__from(s(z0))) [0] from(z0) -> n__from(z0) [0] activate(v0) -> const2 [0] from(v0) -> const2 [0] The TRS has the following type information: AFTER :: s -> cons:n__from:const2 -> c3 s :: s -> s cons :: s -> cons:n__from:const2 -> cons:n__from:const2 c3 :: c3 -> c3 activate :: cons:n__from:const2 -> cons:n__from:const2 n__from :: s -> cons:n__from:const2 from :: s -> cons:n__from:const2 const2 :: cons:n__from:const2 const :: c3 const1 :: s Rewrite Strategy: INNERMOST ---------------------------------------- (19) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const2 => 0 const => 0 const1 => 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z0, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z0, from(z0')) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z = 1 + z0, z0 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z0, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> from(z0) :|: z = 1 + z0, z0 >= 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 from(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 from(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 from(z) -{ 0 }-> 1 + z0 + (1 + (1 + z0)) :|: z = z0, z0 >= 0 ---------------------------------------- (21) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: from(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 from(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 from(z) -{ 0 }-> 1 + z0 + (1 + (1 + z0)) :|: z = z0, z0 >= 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z0, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z0, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z0, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z = 1 + z0, z0 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z0, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z = 1 + z0, z0 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z0, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z = 1 + z0, z0 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 activate(z) -{ 0 }-> 0 :|: z = 1 + z0, z0 >= 0, v0 >= 0, z0 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z = 1 + z0, z0 >= 0, z0 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z = 1 + z0, z0 >= 0, z0 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 from(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 from(z) -{ 0 }-> 1 + z0 + (1 + (1 + z0)) :|: z = z0, z0 >= 0 ---------------------------------------- (23) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 ---------------------------------------- (25) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { activate } { from } { AFTER } ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {activate}, {from}, {AFTER} ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {activate}, {from}, {AFTER} ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {activate}, {from}, {AFTER} Previous analysis results are: activate: runtime: ?, size: O(n^1) [1 + 2*z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {from}, {AFTER} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {from}, {AFTER} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {from}, {AFTER} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] from: runtime: ?, size: O(n^1) [3 + 2*z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {AFTER} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {AFTER} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: AFTER after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {AFTER} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] AFTER: runtime: ?, size: O(1) [0] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: AFTER after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 AFTER(z, z') -{ 1 }-> 1 + AFTER(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] AFTER: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (45) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (46) BOUNDS(1, n^1)