WORST_CASE(?,O(n^1)) proof of input_a9WUBT4umm.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRelTRS (13) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxWeightedTrs (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTypedWeightedTrs (17) CompletionProof [UPPER BOUND(ID), 0 ms] (18) CpxTypedWeightedCompleteTrs (19) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxTypedWeightedCompleteTrs (21) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) InliningProof [UPPER BOUND(ID), 64 ms] (24) CpxRNTS (25) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxRNTS (27) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 170 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 303 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 43 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 468 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 208 ms] (46) CpxRNTS (47) FinalProof [FINISHED, 0 ms] (48) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: natsFrom(N) -> cons(N, n__natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, activate(XS)), N, X, activate(XS)) u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> activate(XS) sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) natsFrom(X) -> n__natsFrom(X) activate(n__natsFrom(X)) -> natsFrom(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) fst(pair(z0, z1)) -> z0 snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> u(splitAt(z0, activate(z2)), z0, z1, activate(z2)) u(pair(z0, z1), z2, z3, z4) -> pair(cons(activate(z3), z0), z1) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) sel(z0, z1) -> head(afterNth(z0, z1)) take(z0, z1) -> fst(splitAt(z0, z1)) afterNth(z0, z1) -> snd(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: NATSFROM(z0) -> c NATSFROM(z0) -> c1 FST(pair(z0, z1)) -> c2 SND(pair(z0, z1)) -> c3 SPLITAT(0, z0) -> c4 SPLITAT(s(z0), cons(z1, z2)) -> c5(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), SPLITAT(z0, activate(z2)), ACTIVATE(z2)) SPLITAT(s(z0), cons(z1, z2)) -> c6(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), ACTIVATE(z2)) U(pair(z0, z1), z2, z3, z4) -> c7(ACTIVATE(z3)) HEAD(cons(z0, z1)) -> c8 TAIL(cons(z0, z1)) -> c9(ACTIVATE(z1)) SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) ACTIVATE(n__natsFrom(z0)) -> c13(NATSFROM(z0)) ACTIVATE(z0) -> c14 S tuples: NATSFROM(z0) -> c NATSFROM(z0) -> c1 FST(pair(z0, z1)) -> c2 SND(pair(z0, z1)) -> c3 SPLITAT(0, z0) -> c4 SPLITAT(s(z0), cons(z1, z2)) -> c5(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), SPLITAT(z0, activate(z2)), ACTIVATE(z2)) SPLITAT(s(z0), cons(z1, z2)) -> c6(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), ACTIVATE(z2)) U(pair(z0, z1), z2, z3, z4) -> c7(ACTIVATE(z3)) HEAD(cons(z0, z1)) -> c8 TAIL(cons(z0, z1)) -> c9(ACTIVATE(z1)) SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) ACTIVATE(n__natsFrom(z0)) -> c13(NATSFROM(z0)) ACTIVATE(z0) -> c14 K tuples:none Defined Rule Symbols: natsFrom_1, fst_1, snd_1, splitAt_2, u_4, head_1, tail_1, sel_2, take_2, afterNth_2, activate_1 Defined Pair Symbols: NATSFROM_1, FST_1, SND_1, SPLITAT_2, U_4, HEAD_1, TAIL_1, SEL_2, TAKE_2, AFTERNTH_2, ACTIVATE_1 Compound Symbols: c, c1, c2, c3, c4, c5_3, c6_2, c7_1, c8, c9_1, c10_2, c11_2, c12_2, c13_1, c14 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 11 trailing nodes: SPLITAT(s(z0), cons(z1, z2)) -> c6(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), ACTIVATE(z2)) HEAD(cons(z0, z1)) -> c8 TAIL(cons(z0, z1)) -> c9(ACTIVATE(z1)) ACTIVATE(z0) -> c14 NATSFROM(z0) -> c FST(pair(z0, z1)) -> c2 ACTIVATE(n__natsFrom(z0)) -> c13(NATSFROM(z0)) SPLITAT(0, z0) -> c4 SND(pair(z0, z1)) -> c3 U(pair(z0, z1), z2, z3, z4) -> c7(ACTIVATE(z3)) NATSFROM(z0) -> c1 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) fst(pair(z0, z1)) -> z0 snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> u(splitAt(z0, activate(z2)), z0, z1, activate(z2)) u(pair(z0, z1), z2, z3, z4) -> pair(cons(activate(z3), z0), z1) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) sel(z0, z1) -> head(afterNth(z0, z1)) take(z0, z1) -> fst(splitAt(z0, z1)) afterNth(z0, z1) -> snd(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), SPLITAT(z0, activate(z2)), ACTIVATE(z2)) SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) S tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(U(splitAt(z0, activate(z2)), z0, z1, activate(z2)), SPLITAT(z0, activate(z2)), ACTIVATE(z2)) SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) K tuples:none Defined Rule Symbols: natsFrom_1, fst_1, snd_1, splitAt_2, u_4, head_1, tail_1, sel_2, take_2, afterNth_2, activate_1 Defined Pair Symbols: SPLITAT_2, SEL_2, TAKE_2, AFTERNTH_2 Compound Symbols: c5_3, c10_2, c11_2, c12_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) fst(pair(z0, z1)) -> z0 snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> u(splitAt(z0, activate(z2)), z0, z1, activate(z2)) u(pair(z0, z1), z2, z3, z4) -> pair(cons(activate(z3), z0), z1) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) sel(z0, z1) -> head(afterNth(z0, z1)) take(z0, z1) -> fst(splitAt(z0, z1)) afterNth(z0, z1) -> snd(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) SEL(z0, z1) -> c10(AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SPLITAT(z0, z1)) S tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) SEL(z0, z1) -> c10(AFTERNTH(z0, z1)) TAKE(z0, z1) -> c11(SPLITAT(z0, z1)) AFTERNTH(z0, z1) -> c12(SPLITAT(z0, z1)) K tuples:none Defined Rule Symbols: natsFrom_1, fst_1, snd_1, splitAt_2, u_4, head_1, tail_1, sel_2, take_2, afterNth_2, activate_1 Defined Pair Symbols: SPLITAT_2, SEL_2, TAKE_2, AFTERNTH_2 Compound Symbols: c5_1, c10_1, c11_1, c12_1 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: TAKE(z0, z1) -> c11(SPLITAT(z0, z1)) SEL(z0, z1) -> c10(AFTERNTH(z0, z1)) AFTERNTH(z0, z1) -> c12(SPLITAT(z0, z1)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) fst(pair(z0, z1)) -> z0 snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> u(splitAt(z0, activate(z2)), z0, z1, activate(z2)) u(pair(z0, z1), z2, z3, z4) -> pair(cons(activate(z3), z0), z1) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) sel(z0, z1) -> head(afterNth(z0, z1)) take(z0, z1) -> fst(splitAt(z0, z1)) afterNth(z0, z1) -> snd(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) S tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) K tuples:none Defined Rule Symbols: natsFrom_1, fst_1, snd_1, splitAt_2, u_4, head_1, tail_1, sel_2, take_2, afterNth_2, activate_1 Defined Pair Symbols: SPLITAT_2 Compound Symbols: c5_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: fst(pair(z0, z1)) -> z0 snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> u(splitAt(z0, activate(z2)), z0, z1, activate(z2)) u(pair(z0, z1), z2, z3, z4) -> pair(cons(activate(z3), z0), z1) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) sel(z0, z1) -> head(afterNth(z0, z1)) take(z0, z1) -> fst(splitAt(z0, z1)) afterNth(z0, z1) -> snd(splitAt(z0, z1)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) Tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) S tuples: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) K tuples:none Defined Rule Symbols: activate_1, natsFrom_1 Defined Pair Symbols: SPLITAT_2 Compound Symbols: c5_1 ---------------------------------------- (11) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) The (relative) TRS S consists of the following rules: activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (13) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) [1] activate(n__natsFrom(z0)) -> natsFrom(z0) [0] activate(z0) -> z0 [0] natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) [0] natsFrom(z0) -> n__natsFrom(z0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) [1] activate(n__natsFrom(z0)) -> natsFrom(z0) [0] activate(z0) -> z0 [0] natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) [0] natsFrom(z0) -> n__natsFrom(z0) [0] The TRS has the following type information: SPLITAT :: s -> cons:n__natsFrom -> c5 s :: s -> s cons :: s -> cons:n__natsFrom -> cons:n__natsFrom c5 :: c5 -> c5 activate :: cons:n__natsFrom -> cons:n__natsFrom n__natsFrom :: s -> cons:n__natsFrom natsFrom :: s -> cons:n__natsFrom Rewrite Strategy: INNERMOST ---------------------------------------- (17) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: SPLITAT_2 (c) The following functions are completely defined: activate_1 natsFrom_1 Due to the following rules being added: activate(v0) -> const2 [0] natsFrom(v0) -> const2 [0] And the following fresh constants: const2, const, const1 ---------------------------------------- (18) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, activate(z2))) [1] activate(n__natsFrom(z0)) -> natsFrom(z0) [0] activate(z0) -> z0 [0] natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) [0] natsFrom(z0) -> n__natsFrom(z0) [0] activate(v0) -> const2 [0] natsFrom(v0) -> const2 [0] The TRS has the following type information: SPLITAT :: s -> cons:n__natsFrom:const2 -> c5 s :: s -> s cons :: s -> cons:n__natsFrom:const2 -> cons:n__natsFrom:const2 c5 :: c5 -> c5 activate :: cons:n__natsFrom:const2 -> cons:n__natsFrom:const2 n__natsFrom :: s -> cons:n__natsFrom:const2 natsFrom :: s -> cons:n__natsFrom:const2 const2 :: cons:n__natsFrom:const2 const :: c5 const1 :: s Rewrite Strategy: INNERMOST ---------------------------------------- (19) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (20) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: SPLITAT(s(z0), cons(z1, n__natsFrom(z0'))) -> c5(SPLITAT(z0, natsFrom(z0'))) [1] SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, z2)) [1] SPLITAT(s(z0), cons(z1, z2)) -> c5(SPLITAT(z0, const2)) [1] activate(n__natsFrom(z0)) -> natsFrom(z0) [0] activate(z0) -> z0 [0] natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) [0] natsFrom(z0) -> n__natsFrom(z0) [0] activate(v0) -> const2 [0] natsFrom(v0) -> const2 [0] The TRS has the following type information: SPLITAT :: s -> cons:n__natsFrom:const2 -> c5 s :: s -> s cons :: s -> cons:n__natsFrom:const2 -> cons:n__natsFrom:const2 c5 :: c5 -> c5 activate :: cons:n__natsFrom:const2 -> cons:n__natsFrom:const2 n__natsFrom :: s -> cons:n__natsFrom:const2 natsFrom :: s -> cons:n__natsFrom:const2 const2 :: cons:n__natsFrom:const2 const :: c5 const1 :: s Rewrite Strategy: INNERMOST ---------------------------------------- (21) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const2 => 0 const => 0 const1 => 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z0, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z0, natsFrom(z0')) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z = 1 + z0, z0 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z0, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> natsFrom(z0) :|: z = 1 + z0, z0 >= 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 natsFrom(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 natsFrom(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 natsFrom(z) -{ 0 }-> 1 + z0 + (1 + (1 + z0)) :|: z = z0, z0 >= 0 ---------------------------------------- (23) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: natsFrom(z) -{ 0 }-> 1 + z0 + (1 + (1 + z0)) :|: z = z0, z0 >= 0 natsFrom(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 natsFrom(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z0, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z0, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z0, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z = 1 + z0, z0 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z0, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z = 1 + z0, z0 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z0, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z = 1 + z0, z0 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 activate(z) -{ 0 }-> 0 :|: z = 1 + z0, z0 >= 0, v0 >= 0, z0 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z = 1 + z0, z0 >= 0, z0 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z = 1 + z0, z0 >= 0, z0 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 natsFrom(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 natsFrom(z) -{ 0 }-> 1 + z0 + (1 + (1 + z0)) :|: z = z0, z0 >= 0 ---------------------------------------- (25) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 ---------------------------------------- (27) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { natsFrom } { activate } { SPLITAT } ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {natsFrom}, {activate}, {SPLITAT} ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {natsFrom}, {activate}, {SPLITAT} ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: natsFrom after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {natsFrom}, {activate}, {SPLITAT} Previous analysis results are: natsFrom: runtime: ?, size: O(n^1) [3 + 2*z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: natsFrom after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {activate}, {SPLITAT} Previous analysis results are: natsFrom: runtime: O(1) [0], size: O(n^1) [3 + 2*z] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {activate}, {SPLITAT} Previous analysis results are: natsFrom: runtime: O(1) [0], size: O(n^1) [3 + 2*z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {activate}, {SPLITAT} Previous analysis results are: natsFrom: runtime: O(1) [0], size: O(n^1) [3 + 2*z] activate: runtime: ?, size: O(n^1) [1 + 2*z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {SPLITAT} Previous analysis results are: natsFrom: runtime: O(1) [0], size: O(n^1) [3 + 2*z] activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {SPLITAT} Previous analysis results are: natsFrom: runtime: O(1) [0], size: O(n^1) [3 + 2*z] activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: SPLITAT after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {SPLITAT} Previous analysis results are: natsFrom: runtime: O(1) [0], size: O(n^1) [3 + 2*z] activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] SPLITAT: runtime: ?, size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: SPLITAT after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 0) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, v0 >= 0, z0' = v0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'') :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 SPLITAT(z, z') -{ 1 }-> 1 + SPLITAT(z - 1, 1 + z0'' + (1 + (1 + z0''))) :|: z' = 1 + z1 + (1 + z0'), z1 >= 0, z0' >= 0, z - 1 >= 0, z0' = z0'', z0'' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + (1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 natsFrom(z) -{ 0 }-> 0 :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z :|: z >= 0 natsFrom(z) -{ 0 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: Previous analysis results are: natsFrom: runtime: O(1) [0], size: O(n^1) [3 + 2*z] activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] SPLITAT: runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (47) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (48) BOUNDS(1, n^1)