KILLED proof of input_bU7VLmT06Y.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 6 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 0 ms] (14) typed CpxTrs (15) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (16) TRS for Loop Detection (17) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (18) CdtProblem (19) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (20) CdtProblem (21) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxRelTRS (25) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (26) CpxTRS (27) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxWeightedTrs (29) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxTypedWeightedTrs (31) CompletionProof [UPPER BOUND(ID), 0 ms] (32) CpxTypedWeightedCompleteTrs (33) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxTypedWeightedCompleteTrs (35) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxRNTS (39) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 599 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 69 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 272 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 57 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 97 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 22 ms] (58) CpxRNTS (59) CompletionProof [UPPER BOUND(ID), 0 ms] (60) CpxTypedWeightedCompleteTrs (61) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CdtProblem (65) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CdtProblem (67) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (68) CdtProblem (69) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (70) CdtProblem (71) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (72) CdtProblem (73) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (74) CdtProblem (75) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (76) CpxWeightedTrs (77) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (78) CpxTypedWeightedTrs (79) CompletionProof [UPPER BOUND(ID), 0 ms] (80) CpxTypedWeightedCompleteTrs (81) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (82) CpxTypedWeightedCompleteTrs (83) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (84) CpxRNTS (85) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (86) CpxRNTS (87) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (88) CpxRNTS (89) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (90) CpxRNTS (91) IntTrsBoundProof [UPPER BOUND(ID), 665 ms] (92) CpxRNTS (93) IntTrsBoundProof [UPPER BOUND(ID), 96 ms] (94) CpxRNTS (95) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (96) CpxRNTS (97) IntTrsBoundProof [UPPER BOUND(ID), 130 ms] (98) CpxRNTS (99) IntTrsBoundProof [UPPER BOUND(ID), 12 ms] (100) CpxRNTS (101) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (102) CpxRNTS (103) IntTrsBoundProof [UPPER BOUND(ID), 186 ms] (104) CpxRNTS (105) IntTrsBoundProof [UPPER BOUND(ID), 32 ms] (106) CpxRNTS (107) CompletionProof [UPPER BOUND(ID), 0 ms] (108) CpxTypedWeightedCompleteTrs (109) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (110) CpxRNTS ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: nats -> cons(0, n__incr(nats)) pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) head(cons(X, XS)) -> X tail(cons(X, XS)) -> activate(XS) incr(X) -> n__incr(X) activate(n__incr(X)) -> incr(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: nats -> cons(0', n__incr(nats)) pairs -> cons(0', n__incr(odds)) odds -> incr(pairs) incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) head(cons(X, XS)) -> X tail(cons(X, XS)) -> activate(XS) incr(X) -> n__incr(X) activate(n__incr(X)) -> incr(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: nats -> cons(0, n__incr(nats)) pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) head(cons(X, XS)) -> X tail(cons(X, XS)) -> activate(XS) incr(X) -> n__incr(X) activate(n__incr(X)) -> incr(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: nats -> cons(0, n__incr(nats)) pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) INCR(z0) -> c4 HEAD(cons(z0, z1)) -> c5 TAIL(cons(z0, z1)) -> c6(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ACTIVATE(z0) -> c8 S tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) INCR(z0) -> c4 HEAD(cons(z0, z1)) -> c5 TAIL(cons(z0, z1)) -> c6(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ACTIVATE(z0) -> c8 K tuples:none Defined Rule Symbols: nats, pairs, odds, incr_1, head_1, tail_1, activate_1 Defined Pair Symbols: NATS, PAIRS, ODDS, INCR_1, HEAD_1, TAIL_1, ACTIVATE_1 Compound Symbols: c_1, c1_1, c2_2, c3_1, c4, c5, c6_1, c7_1, c8 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) INCR(z0) -> c4 HEAD(cons(z0, z1)) -> c5 TAIL(cons(z0, z1)) -> c6(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ACTIVATE(z0) -> c8 The (relative) TRS S consists of the following rules: nats -> cons(0, n__incr(nats)) pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) INCR(z0) -> c4 HEAD(cons(z0, z1)) -> c5 TAIL(cons(z0, z1)) -> c6(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ACTIVATE(z0) -> c8 The (relative) TRS S consists of the following rules: nats -> cons(0', n__incr(nats)) pairs -> cons(0', n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) INCR(z0) -> c4 HEAD(cons(z0, z1)) -> c5 TAIL(cons(z0, z1)) -> c6(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ACTIVATE(z0) -> c8 nats -> cons(0', n__incr(nats)) pairs -> cons(0', n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Types: NATS :: c c :: c -> c PAIRS :: c1 c1 :: c2 -> c1 ODDS :: c2 c2 :: c3:c4 -> c1 -> c2 INCR :: cons:n__incr -> c3:c4 pairs :: cons:n__incr cons :: 0':s -> cons:n__incr -> cons:n__incr c3 :: c7:c8 -> c3:c4 ACTIVATE :: cons:n__incr -> c7:c8 c4 :: c3:c4 HEAD :: cons:n__incr -> c5 c5 :: c5 TAIL :: cons:n__incr -> c6 c6 :: c7:c8 -> c6 n__incr :: cons:n__incr -> cons:n__incr c7 :: c3:c4 -> c7:c8 c8 :: c7:c8 nats :: cons:n__incr 0' :: 0':s odds :: cons:n__incr incr :: cons:n__incr -> cons:n__incr s :: 0':s -> 0':s activate :: cons:n__incr -> cons:n__incr head :: cons:n__incr -> 0':s tail :: cons:n__incr -> cons:n__incr hole_c1_9 :: c hole_c12_9 :: c1 hole_c23_9 :: c2 hole_c3:c44_9 :: c3:c4 hole_cons:n__incr5_9 :: cons:n__incr hole_0':s6_9 :: 0':s hole_c7:c87_9 :: c7:c8 hole_c58_9 :: c5 hole_c69_9 :: c6 gen_c10_9 :: Nat -> c gen_cons:n__incr11_9 :: Nat -> cons:n__incr gen_0':s12_9 :: Nat -> 0':s ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: NATS, PAIRS, ODDS, INCR, pairs, ACTIVATE, nats, odds, incr, activate They will be analysed ascendingly in the following order: PAIRS = ODDS INCR < ODDS pairs < ODDS INCR = ACTIVATE pairs = odds incr < odds incr = activate ---------------------------------------- (14) Obligation: Innermost TRS: Rules: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) INCR(z0) -> c4 HEAD(cons(z0, z1)) -> c5 TAIL(cons(z0, z1)) -> c6(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ACTIVATE(z0) -> c8 nats -> cons(0', n__incr(nats)) pairs -> cons(0', n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Types: NATS :: c c :: c -> c PAIRS :: c1 c1 :: c2 -> c1 ODDS :: c2 c2 :: c3:c4 -> c1 -> c2 INCR :: cons:n__incr -> c3:c4 pairs :: cons:n__incr cons :: 0':s -> cons:n__incr -> cons:n__incr c3 :: c7:c8 -> c3:c4 ACTIVATE :: cons:n__incr -> c7:c8 c4 :: c3:c4 HEAD :: cons:n__incr -> c5 c5 :: c5 TAIL :: cons:n__incr -> c6 c6 :: c7:c8 -> c6 n__incr :: cons:n__incr -> cons:n__incr c7 :: c3:c4 -> c7:c8 c8 :: c7:c8 nats :: cons:n__incr 0' :: 0':s odds :: cons:n__incr incr :: cons:n__incr -> cons:n__incr s :: 0':s -> 0':s activate :: cons:n__incr -> cons:n__incr head :: cons:n__incr -> 0':s tail :: cons:n__incr -> cons:n__incr hole_c1_9 :: c hole_c12_9 :: c1 hole_c23_9 :: c2 hole_c3:c44_9 :: c3:c4 hole_cons:n__incr5_9 :: cons:n__incr hole_0':s6_9 :: 0':s hole_c7:c87_9 :: c7:c8 hole_c58_9 :: c5 hole_c69_9 :: c6 gen_c10_9 :: Nat -> c gen_cons:n__incr11_9 :: Nat -> cons:n__incr gen_0':s12_9 :: Nat -> 0':s Generator Equations: gen_c10_9(0) <=> hole_c1_9 gen_c10_9(+(x, 1)) <=> c(gen_c10_9(x)) gen_cons:n__incr11_9(0) <=> hole_cons:n__incr5_9 gen_cons:n__incr11_9(+(x, 1)) <=> cons(0', gen_cons:n__incr11_9(x)) gen_0':s12_9(0) <=> 0' gen_0':s12_9(+(x, 1)) <=> s(gen_0':s12_9(x)) The following defined symbols remain to be analysed: NATS, PAIRS, ODDS, INCR, pairs, ACTIVATE, nats, odds, incr, activate They will be analysed ascendingly in the following order: PAIRS = ODDS INCR < ODDS pairs < ODDS INCR = ACTIVATE pairs = odds incr < odds incr = activate ---------------------------------------- (15) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) INCR(z0) -> c4 HEAD(cons(z0, z1)) -> c5 TAIL(cons(z0, z1)) -> c6(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ACTIVATE(z0) -> c8 The (relative) TRS S consists of the following rules: nats -> cons(0, n__incr(nats)) pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (17) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: nats -> cons(0, n__incr(nats)) pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) INCR(z0) -> c4 HEAD(cons(z0, z1)) -> c5 TAIL(cons(z0, z1)) -> c6(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ACTIVATE(z0) -> c8 S tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) INCR(z0) -> c4 HEAD(cons(z0, z1)) -> c5 TAIL(cons(z0, z1)) -> c6(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ACTIVATE(z0) -> c8 K tuples:none Defined Rule Symbols: nats, pairs, odds, incr_1, head_1, tail_1, activate_1 Defined Pair Symbols: NATS, PAIRS, ODDS, INCR_1, HEAD_1, TAIL_1, ACTIVATE_1 Compound Symbols: c_1, c1_1, c2_2, c3_1, c4, c5, c6_1, c7_1, c8 ---------------------------------------- (19) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: TAIL(cons(z0, z1)) -> c6(ACTIVATE(z1)) Removed 3 trailing nodes: HEAD(cons(z0, z1)) -> c5 ACTIVATE(z0) -> c8 INCR(z0) -> c4 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: nats -> cons(0, n__incr(nats)) pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) S tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) K tuples:none Defined Rule Symbols: nats, pairs, odds, incr_1, head_1, tail_1, activate_1 Defined Pair Symbols: NATS, PAIRS, ODDS, INCR_1, ACTIVATE_1 Compound Symbols: c_1, c1_1, c2_2, c3_1, c7_1 ---------------------------------------- (21) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: nats -> cons(0, n__incr(nats)) head(cons(z0, z1)) -> z0 tail(cons(z0, z1)) -> activate(z1) ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) S tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) K tuples:none Defined Rule Symbols: pairs, odds, incr_1, activate_1 Defined Pair Symbols: NATS, PAIRS, ODDS, INCR_1, ACTIVATE_1 Compound Symbols: c_1, c1_1, c2_2, c3_1, c7_1 ---------------------------------------- (23) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (24) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) The (relative) TRS S consists of the following rules: pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (25) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(pairs), PAIRS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (27) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (28) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: NATS -> c(NATS) [1] PAIRS -> c1(ODDS) [1] ODDS -> c2(INCR(pairs), PAIRS) [1] INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) [1] ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) [1] pairs -> cons(0, n__incr(odds)) [0] odds -> incr(pairs) [0] incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) [0] incr(z0) -> n__incr(z0) [0] activate(n__incr(z0)) -> incr(z0) [0] activate(z0) -> z0 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (29) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (30) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: NATS -> c(NATS) [1] PAIRS -> c1(ODDS) [1] ODDS -> c2(INCR(pairs), PAIRS) [1] INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) [1] ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) [1] pairs -> cons(0, n__incr(odds)) [0] odds -> incr(pairs) [0] incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) [0] incr(z0) -> n__incr(z0) [0] activate(n__incr(z0)) -> incr(z0) [0] activate(z0) -> z0 [0] The TRS has the following type information: NATS :: c c :: c -> c PAIRS :: c1 c1 :: c2 -> c1 ODDS :: c2 c2 :: c3 -> c1 -> c2 INCR :: cons:n__incr -> c3 pairs :: cons:n__incr cons :: 0:s -> cons:n__incr -> cons:n__incr c3 :: c7 -> c3 ACTIVATE :: cons:n__incr -> c7 n__incr :: cons:n__incr -> cons:n__incr c7 :: c3 -> c7 0 :: 0:s odds :: cons:n__incr incr :: cons:n__incr -> cons:n__incr s :: 0:s -> 0:s activate :: cons:n__incr -> cons:n__incr Rewrite Strategy: INNERMOST ---------------------------------------- (31) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: NATS PAIRS ODDS INCR_1 ACTIVATE_1 (c) The following functions are completely defined: pairs odds incr_1 activate_1 Due to the following rules being added: pairs -> const4 [0] odds -> const4 [0] incr(v0) -> const4 [0] activate(v0) -> const4 [0] And the following fresh constants: const4, const, const1, const2, const3, const5 ---------------------------------------- (32) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: NATS -> c(NATS) [1] PAIRS -> c1(ODDS) [1] ODDS -> c2(INCR(pairs), PAIRS) [1] INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) [1] ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) [1] pairs -> cons(0, n__incr(odds)) [0] odds -> incr(pairs) [0] incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) [0] incr(z0) -> n__incr(z0) [0] activate(n__incr(z0)) -> incr(z0) [0] activate(z0) -> z0 [0] pairs -> const4 [0] odds -> const4 [0] incr(v0) -> const4 [0] activate(v0) -> const4 [0] The TRS has the following type information: NATS :: c c :: c -> c PAIRS :: c1 c1 :: c2 -> c1 ODDS :: c2 c2 :: c3 -> c1 -> c2 INCR :: cons:n__incr:const4 -> c3 pairs :: cons:n__incr:const4 cons :: 0:s -> cons:n__incr:const4 -> cons:n__incr:const4 c3 :: c7 -> c3 ACTIVATE :: cons:n__incr:const4 -> c7 n__incr :: cons:n__incr:const4 -> cons:n__incr:const4 c7 :: c3 -> c7 0 :: 0:s odds :: cons:n__incr:const4 incr :: cons:n__incr:const4 -> cons:n__incr:const4 s :: 0:s -> 0:s activate :: cons:n__incr:const4 -> cons:n__incr:const4 const4 :: cons:n__incr:const4 const :: c const1 :: c1 const2 :: c2 const3 :: c3 const5 :: c7 Rewrite Strategy: INNERMOST ---------------------------------------- (33) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (34) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: NATS -> c(NATS) [1] PAIRS -> c1(ODDS) [1] ODDS -> c2(INCR(cons(0, n__incr(odds))), PAIRS) [1] ODDS -> c2(INCR(const4), PAIRS) [1] INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) [1] ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) [1] pairs -> cons(0, n__incr(odds)) [0] odds -> incr(cons(0, n__incr(odds))) [0] odds -> incr(const4) [0] incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) [0] incr(z0) -> n__incr(z0) [0] activate(n__incr(z0)) -> incr(z0) [0] activate(z0) -> z0 [0] pairs -> const4 [0] odds -> const4 [0] incr(v0) -> const4 [0] activate(v0) -> const4 [0] The TRS has the following type information: NATS :: c c :: c -> c PAIRS :: c1 c1 :: c2 -> c1 ODDS :: c2 c2 :: c3 -> c1 -> c2 INCR :: cons:n__incr:const4 -> c3 pairs :: cons:n__incr:const4 cons :: 0:s -> cons:n__incr:const4 -> cons:n__incr:const4 c3 :: c7 -> c3 ACTIVATE :: cons:n__incr:const4 -> c7 n__incr :: cons:n__incr:const4 -> cons:n__incr:const4 c7 :: c3 -> c7 0 :: 0:s odds :: cons:n__incr:const4 incr :: cons:n__incr:const4 -> cons:n__incr:const4 s :: 0:s -> 0:s activate :: cons:n__incr:const4 -> cons:n__incr:const4 const4 :: cons:n__incr:const4 const :: c const1 :: c1 const2 :: c2 const3 :: c3 const5 :: c7 Rewrite Strategy: INNERMOST ---------------------------------------- (35) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const4 => 0 const => 0 const1 => 0 const2 => 0 const3 => 0 const5 => 0 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + INCR(z0) :|: z = 1 + z0, z0 >= 0 INCR(z) -{ 1 }-> 1 + ACTIVATE(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + INCR(0) + PAIRS :|: ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> incr(z0) :|: z = 1 + z0, z0 >= 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 incr(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 incr(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + activate(z1)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> incr(0) :|: odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: ---------------------------------------- (37) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + INCR(z - 1) :|: z - 1 >= 0 INCR(z) -{ 1 }-> 1 + ACTIVATE(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + INCR(0) + PAIRS :|: ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> incr(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + activate(z1)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> incr(0) :|: odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: ---------------------------------------- (39) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { activate, incr } { INCR, ACTIVATE } { NATS } { odds } { ODDS, PAIRS } { pairs } ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + INCR(z - 1) :|: z - 1 >= 0 INCR(z) -{ 1 }-> 1 + ACTIVATE(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + INCR(0) + PAIRS :|: ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> incr(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + activate(z1)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> incr(0) :|: odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Function symbols to be analyzed: {activate,incr}, {INCR,ACTIVATE}, {NATS}, {odds}, {ODDS,PAIRS}, {pairs} ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + INCR(z - 1) :|: z - 1 >= 0 INCR(z) -{ 1 }-> 1 + ACTIVATE(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + INCR(0) + PAIRS :|: ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> incr(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + activate(z1)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> incr(0) :|: odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Function symbols to be analyzed: {activate,incr}, {INCR,ACTIVATE}, {NATS}, {odds}, {ODDS,PAIRS}, {pairs} ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3*z Computed SIZE bound using CoFloCo for: incr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 3*z ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + INCR(z - 1) :|: z - 1 >= 0 INCR(z) -{ 1 }-> 1 + ACTIVATE(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + INCR(0) + PAIRS :|: ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> incr(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + activate(z1)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> incr(0) :|: odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Function symbols to be analyzed: {activate,incr}, {INCR,ACTIVATE}, {NATS}, {odds}, {ODDS,PAIRS}, {pairs} Previous analysis results are: activate: runtime: ?, size: O(n^1) [3*z] incr: runtime: ?, size: O(n^1) [1 + 3*z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed RUNTIME bound using CoFloCo for: incr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + INCR(z - 1) :|: z - 1 >= 0 INCR(z) -{ 1 }-> 1 + ACTIVATE(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + INCR(0) + PAIRS :|: ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> incr(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + activate(z1)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> incr(0) :|: odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Function symbols to be analyzed: {INCR,ACTIVATE}, {NATS}, {odds}, {ODDS,PAIRS}, {pairs} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [3*z] incr: runtime: O(1) [0], size: O(n^1) [1 + 3*z] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + INCR(z - 1) :|: z - 1 >= 0 INCR(z) -{ 1 }-> 1 + ACTIVATE(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + INCR(0) + PAIRS :|: ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + s') :|: s' >= 0, s' <= 3 * z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> s :|: s >= 0, s <= 3 * 0 + 1 odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Function symbols to be analyzed: {INCR,ACTIVATE}, {NATS}, {odds}, {ODDS,PAIRS}, {pairs} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [3*z] incr: runtime: O(1) [0], size: O(n^1) [1 + 3*z] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: INCR after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: ACTIVATE after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + INCR(z - 1) :|: z - 1 >= 0 INCR(z) -{ 1 }-> 1 + ACTIVATE(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + INCR(0) + PAIRS :|: ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + s') :|: s' >= 0, s' <= 3 * z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> s :|: s >= 0, s <= 3 * 0 + 1 odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Function symbols to be analyzed: {INCR,ACTIVATE}, {NATS}, {odds}, {ODDS,PAIRS}, {pairs} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [3*z] incr: runtime: O(1) [0], size: O(n^1) [1 + 3*z] INCR: runtime: ?, size: O(1) [0] ACTIVATE: runtime: ?, size: O(1) [1] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: INCR after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z Computed RUNTIME bound using KoAT for: ACTIVATE after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + INCR(z - 1) :|: z - 1 >= 0 INCR(z) -{ 1 }-> 1 + ACTIVATE(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + INCR(0) + PAIRS :|: ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + s') :|: s' >= 0, s' <= 3 * z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> s :|: s >= 0, s <= 3 * 0 + 1 odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Function symbols to be analyzed: {NATS}, {odds}, {ODDS,PAIRS}, {pairs} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [3*z] incr: runtime: O(1) [0], size: O(n^1) [1 + 3*z] INCR: runtime: O(n^1) [2*z], size: O(1) [0] ACTIVATE: runtime: O(n^1) [2*z], size: O(1) [1] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ -1 + 2*z }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z - 1 >= 0 INCR(z) -{ 1 + 2*z1 }-> 1 + s2 :|: s2 >= 0, s2 <= 1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + s1 + PAIRS :|: s1 >= 0, s1 <= 0 ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + s') :|: s' >= 0, s' <= 3 * z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> s :|: s >= 0, s <= 3 * 0 + 1 odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Function symbols to be analyzed: {NATS}, {odds}, {ODDS,PAIRS}, {pairs} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [3*z] incr: runtime: O(1) [0], size: O(n^1) [1 + 3*z] INCR: runtime: O(n^1) [2*z], size: O(1) [0] ACTIVATE: runtime: O(n^1) [2*z], size: O(1) [1] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: NATS after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ -1 + 2*z }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z - 1 >= 0 INCR(z) -{ 1 + 2*z1 }-> 1 + s2 :|: s2 >= 0, s2 <= 1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + s1 + PAIRS :|: s1 >= 0, s1 <= 0 ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + s') :|: s' >= 0, s' <= 3 * z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> s :|: s >= 0, s <= 3 * 0 + 1 odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Function symbols to be analyzed: {NATS}, {odds}, {ODDS,PAIRS}, {pairs} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [3*z] incr: runtime: O(1) [0], size: O(n^1) [1 + 3*z] INCR: runtime: O(n^1) [2*z], size: O(1) [0] ACTIVATE: runtime: O(n^1) [2*z], size: O(1) [1] NATS: runtime: ?, size: O(1) [0] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: NATS after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ -1 + 2*z }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z - 1 >= 0 INCR(z) -{ 1 + 2*z1 }-> 1 + s2 :|: s2 >= 0, s2 <= 1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + s1 + PAIRS :|: s1 >= 0, s1 <= 0 ODDS -{ 1 }-> 1 + INCR(1 + 0 + (1 + odds)) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 0 :|: z >= 0 incr(z) -{ 0 }-> 1 + z :|: z >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + s') :|: s' >= 0, s' <= 3 * z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> s :|: s >= 0, s <= 3 * 0 + 1 odds -{ 0 }-> incr(1 + 0 + (1 + odds)) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Function symbols to be analyzed: {NATS}, {odds}, {ODDS,PAIRS}, {pairs} Previous analysis results are: activate: runtime: O(1) [0], size: O(n^1) [3*z] incr: runtime: O(1) [0], size: O(n^1) [1 + 3*z] INCR: runtime: O(n^1) [2*z], size: O(1) [0] ACTIVATE: runtime: O(n^1) [2*z], size: O(1) [1] NATS: runtime: INF, size: O(1) [0] ---------------------------------------- (59) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: pairs -> null_pairs [0] odds -> null_odds [0] incr(v0) -> null_incr [0] activate(v0) -> null_activate [0] INCR(v0) -> null_INCR [0] ACTIVATE(v0) -> null_ACTIVATE [0] And the following fresh constants: null_pairs, null_odds, null_incr, null_activate, null_INCR, null_ACTIVATE, const, const1, const2 ---------------------------------------- (60) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: NATS -> c(NATS) [1] PAIRS -> c1(ODDS) [1] ODDS -> c2(INCR(pairs), PAIRS) [1] INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) [1] ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) [1] pairs -> cons(0, n__incr(odds)) [0] odds -> incr(pairs) [0] incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) [0] incr(z0) -> n__incr(z0) [0] activate(n__incr(z0)) -> incr(z0) [0] activate(z0) -> z0 [0] pairs -> null_pairs [0] odds -> null_odds [0] incr(v0) -> null_incr [0] activate(v0) -> null_activate [0] INCR(v0) -> null_INCR [0] ACTIVATE(v0) -> null_ACTIVATE [0] The TRS has the following type information: NATS :: c c :: c -> c PAIRS :: c1 c1 :: c2 -> c1 ODDS :: c2 c2 :: c3:null_INCR -> c1 -> c2 INCR :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate -> c3:null_INCR pairs :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate cons :: 0:s -> cons:n__incr:null_pairs:null_odds:null_incr:null_activate -> cons:n__incr:null_pairs:null_odds:null_incr:null_activate c3 :: c7:null_ACTIVATE -> c3:null_INCR ACTIVATE :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate -> c7:null_ACTIVATE n__incr :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate -> cons:n__incr:null_pairs:null_odds:null_incr:null_activate c7 :: c3:null_INCR -> c7:null_ACTIVATE 0 :: 0:s odds :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate incr :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate -> cons:n__incr:null_pairs:null_odds:null_incr:null_activate s :: 0:s -> 0:s activate :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate -> cons:n__incr:null_pairs:null_odds:null_incr:null_activate null_pairs :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate null_odds :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate null_incr :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate null_activate :: cons:n__incr:null_pairs:null_odds:null_incr:null_activate null_INCR :: c3:null_INCR null_ACTIVATE :: c7:null_ACTIVATE const :: c const1 :: c1 const2 :: c2 Rewrite Strategy: INNERMOST ---------------------------------------- (61) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 null_pairs => 0 null_odds => 0 null_incr => 0 null_activate => 0 null_INCR => 0 null_ACTIVATE => 0 const => 0 const1 => 0 const2 => 0 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ACTIVATE(z) -{ 1 }-> 1 + INCR(z0) :|: z = 1 + z0, z0 >= 0 INCR(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 INCR(z) -{ 1 }-> 1 + ACTIVATE(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 NATS -{ 1 }-> 1 + NATS :|: ODDS -{ 1 }-> 1 + INCR(pairs) + PAIRS :|: PAIRS -{ 1 }-> 1 + ODDS :|: activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> incr(z0) :|: z = 1 + z0, z0 >= 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 incr(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 incr(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 incr(z) -{ 0 }-> 1 + (1 + z0) + (1 + activate(z1)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 odds -{ 0 }-> incr(pairs) :|: odds -{ 0 }-> 0 :|: pairs -{ 0 }-> 0 :|: pairs -{ 0 }-> 1 + 0 + (1 + odds) :|: Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (63) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ODDS -> c2(INCR(pairs), PAIRS) by ODDS -> c2(INCR(cons(0, n__incr(odds))), PAIRS) ---------------------------------------- (64) Obligation: Complexity Dependency Tuples Problem Rules: pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ODDS -> c2(INCR(cons(0, n__incr(odds))), PAIRS) S tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ODDS -> c2(INCR(cons(0, n__incr(odds))), PAIRS) K tuples:none Defined Rule Symbols: pairs, odds, incr_1, activate_1 Defined Pair Symbols: NATS, PAIRS, INCR_1, ACTIVATE_1, ODDS Compound Symbols: c_1, c1_1, c3_1, c7_1, c2_2 ---------------------------------------- (65) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ODDS -> c2(INCR(cons(0, n__incr(odds))), PAIRS) by ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) ---------------------------------------- (66) Obligation: Complexity Dependency Tuples Problem Rules: pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) S tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) K tuples:none Defined Rule Symbols: pairs, odds, incr_1, activate_1 Defined Pair Symbols: NATS, PAIRS, INCR_1, ACTIVATE_1, ODDS Compound Symbols: c_1, c1_1, c3_1, c7_1, c2_2 ---------------------------------------- (67) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace INCR(cons(z0, z1)) -> c3(ACTIVATE(z1)) by INCR(cons(z0, n__incr(y0))) -> c3(ACTIVATE(n__incr(y0))) ---------------------------------------- (68) Obligation: Complexity Dependency Tuples Problem Rules: pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) INCR(cons(z0, n__incr(y0))) -> c3(ACTIVATE(n__incr(y0))) S tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) INCR(cons(z0, n__incr(y0))) -> c3(ACTIVATE(n__incr(y0))) K tuples:none Defined Rule Symbols: pairs, odds, incr_1, activate_1 Defined Pair Symbols: NATS, PAIRS, ACTIVATE_1, ODDS, INCR_1 Compound Symbols: c_1, c1_1, c7_1, c2_2, c3_1 ---------------------------------------- (69) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace ACTIVATE(n__incr(z0)) -> c7(INCR(z0)) by ACTIVATE(n__incr(cons(y0, n__incr(y1)))) -> c7(INCR(cons(y0, n__incr(y1)))) ---------------------------------------- (70) Obligation: Complexity Dependency Tuples Problem Rules: pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) INCR(cons(z0, n__incr(y0))) -> c3(ACTIVATE(n__incr(y0))) ACTIVATE(n__incr(cons(y0, n__incr(y1)))) -> c7(INCR(cons(y0, n__incr(y1)))) S tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) INCR(cons(z0, n__incr(y0))) -> c3(ACTIVATE(n__incr(y0))) ACTIVATE(n__incr(cons(y0, n__incr(y1)))) -> c7(INCR(cons(y0, n__incr(y1)))) K tuples:none Defined Rule Symbols: pairs, odds, incr_1, activate_1 Defined Pair Symbols: NATS, PAIRS, ODDS, INCR_1, ACTIVATE_1 Compound Symbols: c_1, c1_1, c2_2, c3_1, c7_1 ---------------------------------------- (71) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace INCR(cons(z0, n__incr(y0))) -> c3(ACTIVATE(n__incr(y0))) by INCR(cons(z0, n__incr(cons(y0, n__incr(y1))))) -> c3(ACTIVATE(n__incr(cons(y0, n__incr(y1))))) ---------------------------------------- (72) Obligation: Complexity Dependency Tuples Problem Rules: pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) ACTIVATE(n__incr(cons(y0, n__incr(y1)))) -> c7(INCR(cons(y0, n__incr(y1)))) INCR(cons(z0, n__incr(cons(y0, n__incr(y1))))) -> c3(ACTIVATE(n__incr(cons(y0, n__incr(y1))))) S tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) ACTIVATE(n__incr(cons(y0, n__incr(y1)))) -> c7(INCR(cons(y0, n__incr(y1)))) INCR(cons(z0, n__incr(cons(y0, n__incr(y1))))) -> c3(ACTIVATE(n__incr(cons(y0, n__incr(y1))))) K tuples:none Defined Rule Symbols: pairs, odds, incr_1, activate_1 Defined Pair Symbols: NATS, PAIRS, ODDS, ACTIVATE_1, INCR_1 Compound Symbols: c_1, c1_1, c2_2, c7_1, c3_1 ---------------------------------------- (73) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace ACTIVATE(n__incr(cons(y0, n__incr(y1)))) -> c7(INCR(cons(y0, n__incr(y1)))) by ACTIVATE(n__incr(cons(z0, n__incr(cons(y1, n__incr(y2)))))) -> c7(INCR(cons(z0, n__incr(cons(y1, n__incr(y2)))))) ---------------------------------------- (74) Obligation: Complexity Dependency Tuples Problem Rules: pairs -> cons(0, n__incr(odds)) odds -> incr(pairs) incr(cons(z0, z1)) -> cons(s(z0), n__incr(activate(z1))) incr(z0) -> n__incr(z0) activate(n__incr(z0)) -> incr(z0) activate(z0) -> z0 Tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) INCR(cons(z0, n__incr(cons(y0, n__incr(y1))))) -> c3(ACTIVATE(n__incr(cons(y0, n__incr(y1))))) ACTIVATE(n__incr(cons(z0, n__incr(cons(y1, n__incr(y2)))))) -> c7(INCR(cons(z0, n__incr(cons(y1, n__incr(y2)))))) S tuples: NATS -> c(NATS) PAIRS -> c1(ODDS) ODDS -> c2(INCR(cons(0, n__incr(incr(pairs)))), PAIRS) INCR(cons(z0, n__incr(cons(y0, n__incr(y1))))) -> c3(ACTIVATE(n__incr(cons(y0, n__incr(y1))))) ACTIVATE(n__incr(cons(z0, n__incr(cons(y1, n__incr(y2)))))) -> c7(INCR(cons(z0, n__incr(cons(y1, n__incr(y2)))))) K tuples:none Defined Rule Symbols: pairs, odds, incr_1, activate_1 Defined Pair Symbols: NATS, PAIRS, ODDS, INCR_1, ACTIVATE_1 Compound Symbols: c_1, c1_1, c2_2, c3_1, c7_1 ---------------------------------------- (75) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (76) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: nats -> cons(0, n__incr(nats)) [1] pairs -> cons(0, n__incr(odds)) [1] odds -> incr(pairs) [1] incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) [1] head(cons(X, XS)) -> X [1] tail(cons(X, XS)) -> activate(XS) [1] incr(X) -> n__incr(X) [1] activate(n__incr(X)) -> incr(X) [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (77) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (78) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: nats -> cons(0, n__incr(nats)) [1] pairs -> cons(0, n__incr(odds)) [1] odds -> incr(pairs) [1] incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) [1] head(cons(X, XS)) -> X [1] tail(cons(X, XS)) -> activate(XS) [1] incr(X) -> n__incr(X) [1] activate(n__incr(X)) -> incr(X) [1] activate(X) -> X [1] The TRS has the following type information: nats :: n__incr:cons cons :: 0:s -> n__incr:cons -> n__incr:cons 0 :: 0:s n__incr :: n__incr:cons -> n__incr:cons pairs :: n__incr:cons odds :: n__incr:cons incr :: n__incr:cons -> n__incr:cons s :: 0:s -> 0:s activate :: n__incr:cons -> n__incr:cons head :: n__incr:cons -> 0:s tail :: n__incr:cons -> n__incr:cons Rewrite Strategy: INNERMOST ---------------------------------------- (79) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: nats head_1 tail_1 (c) The following functions are completely defined: pairs odds incr_1 activate_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (80) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: nats -> cons(0, n__incr(nats)) [1] pairs -> cons(0, n__incr(odds)) [1] odds -> incr(pairs) [1] incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) [1] head(cons(X, XS)) -> X [1] tail(cons(X, XS)) -> activate(XS) [1] incr(X) -> n__incr(X) [1] activate(n__incr(X)) -> incr(X) [1] activate(X) -> X [1] The TRS has the following type information: nats :: n__incr:cons cons :: 0:s -> n__incr:cons -> n__incr:cons 0 :: 0:s n__incr :: n__incr:cons -> n__incr:cons pairs :: n__incr:cons odds :: n__incr:cons incr :: n__incr:cons -> n__incr:cons s :: 0:s -> 0:s activate :: n__incr:cons -> n__incr:cons head :: n__incr:cons -> 0:s tail :: n__incr:cons -> n__incr:cons const :: n__incr:cons Rewrite Strategy: INNERMOST ---------------------------------------- (81) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (82) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: nats -> cons(0, n__incr(nats)) [1] pairs -> cons(0, n__incr(odds)) [1] odds -> incr(cons(0, n__incr(odds))) [2] incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) [1] head(cons(X, XS)) -> X [1] tail(cons(X, XS)) -> activate(XS) [1] incr(X) -> n__incr(X) [1] activate(n__incr(X)) -> incr(X) [1] activate(X) -> X [1] The TRS has the following type information: nats :: n__incr:cons cons :: 0:s -> n__incr:cons -> n__incr:cons 0 :: 0:s n__incr :: n__incr:cons -> n__incr:cons pairs :: n__incr:cons odds :: n__incr:cons incr :: n__incr:cons -> n__incr:cons s :: 0:s -> 0:s activate :: n__incr:cons -> n__incr:cons head :: n__incr:cons -> 0:s tail :: n__incr:cons -> n__incr:cons const :: n__incr:cons Rewrite Strategy: INNERMOST ---------------------------------------- (83) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const => 0 ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> incr(X) :|: z = 1 + X, X >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + X :|: X >= 0, z = X incr(z) -{ 1 }-> 1 + (1 + X) + (1 + activate(XS)) :|: z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 1 }-> activate(XS) :|: z = 1 + X + XS, X >= 0, XS >= 0 ---------------------------------------- (85) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (86) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> incr(z - 1) :|: z - 1 >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 1 }-> 1 + (1 + X) + (1 + activate(XS)) :|: z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 1 }-> activate(XS) :|: z = 1 + X + XS, X >= 0, XS >= 0 ---------------------------------------- (87) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { activate, incr } { head } { nats } { odds } { tail } { pairs } ---------------------------------------- (88) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> incr(z - 1) :|: z - 1 >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 1 }-> 1 + (1 + X) + (1 + activate(XS)) :|: z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 1 }-> activate(XS) :|: z = 1 + X + XS, X >= 0, XS >= 0 Function symbols to be analyzed: {activate,incr}, {head}, {nats}, {odds}, {tail}, {pairs} ---------------------------------------- (89) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (90) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> incr(z - 1) :|: z - 1 >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 1 }-> 1 + (1 + X) + (1 + activate(XS)) :|: z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 1 }-> activate(XS) :|: z = 1 + X + XS, X >= 0, XS >= 0 Function symbols to be analyzed: {activate,incr}, {head}, {nats}, {odds}, {tail}, {pairs} ---------------------------------------- (91) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3*z Computed SIZE bound using CoFloCo for: incr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 3*z ---------------------------------------- (92) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> incr(z - 1) :|: z - 1 >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 1 }-> 1 + (1 + X) + (1 + activate(XS)) :|: z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 1 }-> activate(XS) :|: z = 1 + X + XS, X >= 0, XS >= 0 Function symbols to be analyzed: {activate,incr}, {head}, {nats}, {odds}, {tail}, {pairs} Previous analysis results are: activate: runtime: ?, size: O(n^1) [3*z] incr: runtime: ?, size: O(n^1) [1 + 3*z] ---------------------------------------- (93) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z Computed RUNTIME bound using CoFloCo for: incr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (94) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> incr(z - 1) :|: z - 1 >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 1 }-> 1 + (1 + X) + (1 + activate(XS)) :|: z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 1 }-> activate(XS) :|: z = 1 + X + XS, X >= 0, XS >= 0 Function symbols to be analyzed: {head}, {nats}, {odds}, {tail}, {pairs} Previous analysis results are: activate: runtime: O(n^1) [2 + 2*z], size: O(n^1) [3*z] incr: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + 3*z] ---------------------------------------- (95) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (96) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2*z }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 3 + 2*XS }-> 1 + (1 + X) + (1 + s) :|: s >= 0, s <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 3 + 2*XS }-> s' :|: s' >= 0, s' <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 Function symbols to be analyzed: {head}, {nats}, {odds}, {tail}, {pairs} Previous analysis results are: activate: runtime: O(n^1) [2 + 2*z], size: O(n^1) [3*z] incr: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + 3*z] ---------------------------------------- (97) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: head after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (98) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2*z }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 3 + 2*XS }-> 1 + (1 + X) + (1 + s) :|: s >= 0, s <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 3 + 2*XS }-> s' :|: s' >= 0, s' <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 Function symbols to be analyzed: {head}, {nats}, {odds}, {tail}, {pairs} Previous analysis results are: activate: runtime: O(n^1) [2 + 2*z], size: O(n^1) [3*z] incr: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + 3*z] head: runtime: ?, size: O(n^1) [z] ---------------------------------------- (99) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: head after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (100) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2*z }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 3 + 2*XS }-> 1 + (1 + X) + (1 + s) :|: s >= 0, s <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 3 + 2*XS }-> s' :|: s' >= 0, s' <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 Function symbols to be analyzed: {nats}, {odds}, {tail}, {pairs} Previous analysis results are: activate: runtime: O(n^1) [2 + 2*z], size: O(n^1) [3*z] incr: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + 3*z] head: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (101) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (102) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2*z }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 3 + 2*XS }-> 1 + (1 + X) + (1 + s) :|: s >= 0, s <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 3 + 2*XS }-> s' :|: s' >= 0, s' <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 Function symbols to be analyzed: {nats}, {odds}, {tail}, {pairs} Previous analysis results are: activate: runtime: O(n^1) [2 + 2*z], size: O(n^1) [3*z] incr: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + 3*z] head: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (103) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: nats after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (104) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2*z }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 3 + 2*XS }-> 1 + (1 + X) + (1 + s) :|: s >= 0, s <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 3 + 2*XS }-> s' :|: s' >= 0, s' <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 Function symbols to be analyzed: {nats}, {odds}, {tail}, {pairs} Previous analysis results are: activate: runtime: O(n^1) [2 + 2*z], size: O(n^1) [3*z] incr: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + 3*z] head: runtime: O(1) [1], size: O(n^1) [z] nats: runtime: ?, size: O(1) [0] ---------------------------------------- (105) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: nats after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (106) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2*z }-> s'' :|: s'' >= 0, s'' <= 3 * (z - 1) + 1, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 incr(z) -{ 1 }-> 1 + z :|: z >= 0 incr(z) -{ 3 + 2*XS }-> 1 + (1 + X) + (1 + s) :|: s >= 0, s <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 2 }-> incr(1 + 0 + (1 + odds)) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 3 + 2*XS }-> s' :|: s' >= 0, s' <= 3 * XS, z = 1 + X + XS, X >= 0, XS >= 0 Function symbols to be analyzed: {nats}, {odds}, {tail}, {pairs} Previous analysis results are: activate: runtime: O(n^1) [2 + 2*z], size: O(n^1) [3*z] incr: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + 3*z] head: runtime: O(1) [1], size: O(n^1) [z] nats: runtime: INF, size: O(1) [0] ---------------------------------------- (107) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: head(v0) -> null_head [0] tail(v0) -> null_tail [0] And the following fresh constants: null_head, null_tail ---------------------------------------- (108) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: nats -> cons(0, n__incr(nats)) [1] pairs -> cons(0, n__incr(odds)) [1] odds -> incr(pairs) [1] incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) [1] head(cons(X, XS)) -> X [1] tail(cons(X, XS)) -> activate(XS) [1] incr(X) -> n__incr(X) [1] activate(n__incr(X)) -> incr(X) [1] activate(X) -> X [1] head(v0) -> null_head [0] tail(v0) -> null_tail [0] The TRS has the following type information: nats :: n__incr:cons:null_tail cons :: 0:s:null_head -> n__incr:cons:null_tail -> n__incr:cons:null_tail 0 :: 0:s:null_head n__incr :: n__incr:cons:null_tail -> n__incr:cons:null_tail pairs :: n__incr:cons:null_tail odds :: n__incr:cons:null_tail incr :: n__incr:cons:null_tail -> n__incr:cons:null_tail s :: 0:s:null_head -> 0:s:null_head activate :: n__incr:cons:null_tail -> n__incr:cons:null_tail head :: n__incr:cons:null_tail -> 0:s:null_head tail :: n__incr:cons:null_tail -> n__incr:cons:null_tail null_head :: 0:s:null_head null_tail :: n__incr:cons:null_tail Rewrite Strategy: INNERMOST ---------------------------------------- (109) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 null_head => 0 null_tail => 0 ---------------------------------------- (110) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> incr(X) :|: z = 1 + X, X >= 0 head(z) -{ 1 }-> X :|: z = 1 + X + XS, X >= 0, XS >= 0 head(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 incr(z) -{ 1 }-> 1 + X :|: X >= 0, z = X incr(z) -{ 1 }-> 1 + (1 + X) + (1 + activate(XS)) :|: z = 1 + X + XS, X >= 0, XS >= 0 nats -{ 1 }-> 1 + 0 + (1 + nats) :|: odds -{ 1 }-> incr(pairs) :|: pairs -{ 1 }-> 1 + 0 + (1 + odds) :|: tail(z) -{ 1 }-> activate(XS) :|: z = 1 + X + XS, X >= 0, XS >= 0 tail(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 Only complete derivations are relevant for the runtime complexity.