WORST_CASE(?,O(n^1)) proof of input_yIRrV4bBCV.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 99 ms] (12) CdtProblem (13) CdtKnowledgeProof [FINISHED, 0 ms] (14) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: U11(tt, N, X, XS) -> U12(splitAt(activate(N), activate(XS)), activate(X)) U12(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) afterNth(N, XS) -> snd(splitAt(N, XS)) and(tt, X) -> activate(X) fst(pair(X, Y)) -> X head(cons(N, XS)) -> N natsFrom(N) -> cons(N, n__natsFrom(s(N))) sel(N, XS) -> head(afterNth(N, XS)) snd(pair(X, Y)) -> Y splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> U11(tt, N, X, activate(XS)) tail(cons(N, XS)) -> activate(XS) take(N, XS) -> fst(splitAt(N, XS)) natsFrom(X) -> n__natsFrom(X) activate(n__natsFrom(X)) -> natsFrom(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: U11(tt, z0, z1, z2) -> U12(splitAt(activate(z0), activate(z2)), activate(z1)) U12(pair(z0, z1), z2) -> pair(cons(activate(z2), z0), z1) afterNth(z0, z1) -> snd(splitAt(z0, z1)) and(tt, z0) -> activate(z0) fst(pair(z0, z1)) -> z0 head(cons(z0, z1)) -> z0 natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) sel(z0, z1) -> head(afterNth(z0, z1)) snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> U11(tt, z0, z1, activate(z2)) tail(cons(z0, z1)) -> activate(z1) take(z0, z1) -> fst(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: U11'(tt, z0, z1, z2) -> c(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), SPLITAT(activate(z0), activate(z2)), ACTIVATE(z0)) U11'(tt, z0, z1, z2) -> c1(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), SPLITAT(activate(z0), activate(z2)), ACTIVATE(z2)) U11'(tt, z0, z1, z2) -> c2(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), ACTIVATE(z1)) U12'(pair(z0, z1), z2) -> c3(ACTIVATE(z2)) AFTERNTH(z0, z1) -> c4(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) AND(tt, z0) -> c5(ACTIVATE(z0)) FST(pair(z0, z1)) -> c6 HEAD(cons(z0, z1)) -> c7 NATSFROM(z0) -> c8 NATSFROM(z0) -> c9 SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) SND(pair(z0, z1)) -> c11 SPLITAT(0, z0) -> c12 SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2)), ACTIVATE(z2)) TAIL(cons(z0, z1)) -> c14(ACTIVATE(z1)) TAKE(z0, z1) -> c15(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) ACTIVATE(n__natsFrom(z0)) -> c16(NATSFROM(z0)) ACTIVATE(z0) -> c17 S tuples: U11'(tt, z0, z1, z2) -> c(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), SPLITAT(activate(z0), activate(z2)), ACTIVATE(z0)) U11'(tt, z0, z1, z2) -> c1(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), SPLITAT(activate(z0), activate(z2)), ACTIVATE(z2)) U11'(tt, z0, z1, z2) -> c2(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), ACTIVATE(z1)) U12'(pair(z0, z1), z2) -> c3(ACTIVATE(z2)) AFTERNTH(z0, z1) -> c4(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) AND(tt, z0) -> c5(ACTIVATE(z0)) FST(pair(z0, z1)) -> c6 HEAD(cons(z0, z1)) -> c7 NATSFROM(z0) -> c8 NATSFROM(z0) -> c9 SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) SND(pair(z0, z1)) -> c11 SPLITAT(0, z0) -> c12 SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2)), ACTIVATE(z2)) TAIL(cons(z0, z1)) -> c14(ACTIVATE(z1)) TAKE(z0, z1) -> c15(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) ACTIVATE(n__natsFrom(z0)) -> c16(NATSFROM(z0)) ACTIVATE(z0) -> c17 K tuples:none Defined Rule Symbols: U11_4, U12_2, afterNth_2, and_2, fst_1, head_1, natsFrom_1, sel_2, snd_1, splitAt_2, tail_1, take_2, activate_1 Defined Pair Symbols: U11'_4, U12'_2, AFTERNTH_2, AND_2, FST_1, HEAD_1, NATSFROM_1, SEL_2, SND_1, SPLITAT_2, TAIL_1, TAKE_2, ACTIVATE_1 Compound Symbols: c_3, c1_3, c2_2, c3_1, c4_2, c5_1, c6, c7, c8, c9, c10_2, c11, c12, c13_2, c14_1, c15_2, c16_1, c17 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 12 trailing nodes: TAIL(cons(z0, z1)) -> c14(ACTIVATE(z1)) SPLITAT(0, z0) -> c12 FST(pair(z0, z1)) -> c6 SND(pair(z0, z1)) -> c11 U12'(pair(z0, z1), z2) -> c3(ACTIVATE(z2)) NATSFROM(z0) -> c9 HEAD(cons(z0, z1)) -> c7 ACTIVATE(n__natsFrom(z0)) -> c16(NATSFROM(z0)) NATSFROM(z0) -> c8 ACTIVATE(z0) -> c17 AND(tt, z0) -> c5(ACTIVATE(z0)) U11'(tt, z0, z1, z2) -> c2(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), ACTIVATE(z1)) ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: U11(tt, z0, z1, z2) -> U12(splitAt(activate(z0), activate(z2)), activate(z1)) U12(pair(z0, z1), z2) -> pair(cons(activate(z2), z0), z1) afterNth(z0, z1) -> snd(splitAt(z0, z1)) and(tt, z0) -> activate(z0) fst(pair(z0, z1)) -> z0 head(cons(z0, z1)) -> z0 natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) sel(z0, z1) -> head(afterNth(z0, z1)) snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> U11(tt, z0, z1, activate(z2)) tail(cons(z0, z1)) -> activate(z1) take(z0, z1) -> fst(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: U11'(tt, z0, z1, z2) -> c(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), SPLITAT(activate(z0), activate(z2)), ACTIVATE(z0)) U11'(tt, z0, z1, z2) -> c1(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), SPLITAT(activate(z0), activate(z2)), ACTIVATE(z2)) AFTERNTH(z0, z1) -> c4(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2)), ACTIVATE(z2)) TAKE(z0, z1) -> c15(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) S tuples: U11'(tt, z0, z1, z2) -> c(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), SPLITAT(activate(z0), activate(z2)), ACTIVATE(z0)) U11'(tt, z0, z1, z2) -> c1(U12'(splitAt(activate(z0), activate(z2)), activate(z1)), SPLITAT(activate(z0), activate(z2)), ACTIVATE(z2)) AFTERNTH(z0, z1) -> c4(SND(splitAt(z0, z1)), SPLITAT(z0, z1)) SEL(z0, z1) -> c10(HEAD(afterNth(z0, z1)), AFTERNTH(z0, z1)) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2)), ACTIVATE(z2)) TAKE(z0, z1) -> c15(FST(splitAt(z0, z1)), SPLITAT(z0, z1)) K tuples:none Defined Rule Symbols: U11_4, U12_2, afterNth_2, and_2, fst_1, head_1, natsFrom_1, sel_2, snd_1, splitAt_2, tail_1, take_2, activate_1 Defined Pair Symbols: U11'_4, AFTERNTH_2, SEL_2, SPLITAT_2, TAKE_2 Compound Symbols: c_3, c1_3, c4_2, c10_2, c13_2, c15_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 8 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: U11(tt, z0, z1, z2) -> U12(splitAt(activate(z0), activate(z2)), activate(z1)) U12(pair(z0, z1), z2) -> pair(cons(activate(z2), z0), z1) afterNth(z0, z1) -> snd(splitAt(z0, z1)) and(tt, z0) -> activate(z0) fst(pair(z0, z1)) -> z0 head(cons(z0, z1)) -> z0 natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) sel(z0, z1) -> head(afterNth(z0, z1)) snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> U11(tt, z0, z1, activate(z2)) tail(cons(z0, z1)) -> activate(z1) take(z0, z1) -> fst(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: U11'(tt, z0, z1, z2) -> c(SPLITAT(activate(z0), activate(z2))) U11'(tt, z0, z1, z2) -> c1(SPLITAT(activate(z0), activate(z2))) AFTERNTH(z0, z1) -> c4(SPLITAT(z0, z1)) SEL(z0, z1) -> c10(AFTERNTH(z0, z1)) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) TAKE(z0, z1) -> c15(SPLITAT(z0, z1)) S tuples: U11'(tt, z0, z1, z2) -> c(SPLITAT(activate(z0), activate(z2))) U11'(tt, z0, z1, z2) -> c1(SPLITAT(activate(z0), activate(z2))) AFTERNTH(z0, z1) -> c4(SPLITAT(z0, z1)) SEL(z0, z1) -> c10(AFTERNTH(z0, z1)) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) TAKE(z0, z1) -> c15(SPLITAT(z0, z1)) K tuples:none Defined Rule Symbols: U11_4, U12_2, afterNth_2, and_2, fst_1, head_1, natsFrom_1, sel_2, snd_1, splitAt_2, tail_1, take_2, activate_1 Defined Pair Symbols: U11'_4, AFTERNTH_2, SEL_2, SPLITAT_2, TAKE_2 Compound Symbols: c_1, c1_1, c4_1, c10_1, c13_1, c15_1 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: SEL(z0, z1) -> c10(AFTERNTH(z0, z1)) AFTERNTH(z0, z1) -> c4(SPLITAT(z0, z1)) TAKE(z0, z1) -> c15(SPLITAT(z0, z1)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: U11(tt, z0, z1, z2) -> U12(splitAt(activate(z0), activate(z2)), activate(z1)) U12(pair(z0, z1), z2) -> pair(cons(activate(z2), z0), z1) afterNth(z0, z1) -> snd(splitAt(z0, z1)) and(tt, z0) -> activate(z0) fst(pair(z0, z1)) -> z0 head(cons(z0, z1)) -> z0 natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) sel(z0, z1) -> head(afterNth(z0, z1)) snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> U11(tt, z0, z1, activate(z2)) tail(cons(z0, z1)) -> activate(z1) take(z0, z1) -> fst(splitAt(z0, z1)) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 Tuples: U11'(tt, z0, z1, z2) -> c(SPLITAT(activate(z0), activate(z2))) U11'(tt, z0, z1, z2) -> c1(SPLITAT(activate(z0), activate(z2))) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) S tuples: U11'(tt, z0, z1, z2) -> c(SPLITAT(activate(z0), activate(z2))) U11'(tt, z0, z1, z2) -> c1(SPLITAT(activate(z0), activate(z2))) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) K tuples:none Defined Rule Symbols: U11_4, U12_2, afterNth_2, and_2, fst_1, head_1, natsFrom_1, sel_2, snd_1, splitAt_2, tail_1, take_2, activate_1 Defined Pair Symbols: U11'_4, SPLITAT_2 Compound Symbols: c_1, c1_1, c13_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: U11(tt, z0, z1, z2) -> U12(splitAt(activate(z0), activate(z2)), activate(z1)) U12(pair(z0, z1), z2) -> pair(cons(activate(z2), z0), z1) afterNth(z0, z1) -> snd(splitAt(z0, z1)) and(tt, z0) -> activate(z0) fst(pair(z0, z1)) -> z0 head(cons(z0, z1)) -> z0 sel(z0, z1) -> head(afterNth(z0, z1)) snd(pair(z0, z1)) -> z1 splitAt(0, z0) -> pair(nil, z0) splitAt(s(z0), cons(z1, z2)) -> U11(tt, z0, z1, activate(z2)) tail(cons(z0, z1)) -> activate(z1) take(z0, z1) -> fst(splitAt(z0, z1)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) Tuples: U11'(tt, z0, z1, z2) -> c(SPLITAT(activate(z0), activate(z2))) U11'(tt, z0, z1, z2) -> c1(SPLITAT(activate(z0), activate(z2))) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) S tuples: U11'(tt, z0, z1, z2) -> c(SPLITAT(activate(z0), activate(z2))) U11'(tt, z0, z1, z2) -> c1(SPLITAT(activate(z0), activate(z2))) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) K tuples:none Defined Rule Symbols: activate_1, natsFrom_1 Defined Pair Symbols: U11'_4, SPLITAT_2 Compound Symbols: c_1, c1_1, c13_1 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) We considered the (Usable) Rules: natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 natsFrom(z0) -> n__natsFrom(z0) And the Tuples: U11'(tt, z0, z1, z2) -> c(SPLITAT(activate(z0), activate(z2))) U11'(tt, z0, z1, z2) -> c1(SPLITAT(activate(z0), activate(z2))) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) The order we found is given by the following interpretation: Polynomial interpretation : POL(SPLITAT(x_1, x_2)) = [1] + x_1 + x_2 POL(U11'(x_1, x_2, x_3, x_4)) = x_1 + x_2 + x_4 POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c13(x_1)) = x_1 POL(cons(x_1, x_2)) = x_2 POL(n__natsFrom(x_1)) = [1] POL(natsFrom(x_1)) = [1] POL(s(x_1)) = [1] + x_1 POL(tt) = [1] ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__natsFrom(z0)) -> natsFrom(z0) activate(z0) -> z0 natsFrom(z0) -> cons(z0, n__natsFrom(s(z0))) natsFrom(z0) -> n__natsFrom(z0) Tuples: U11'(tt, z0, z1, z2) -> c(SPLITAT(activate(z0), activate(z2))) U11'(tt, z0, z1, z2) -> c1(SPLITAT(activate(z0), activate(z2))) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) S tuples: U11'(tt, z0, z1, z2) -> c(SPLITAT(activate(z0), activate(z2))) U11'(tt, z0, z1, z2) -> c1(SPLITAT(activate(z0), activate(z2))) K tuples: SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) Defined Rule Symbols: activate_1, natsFrom_1 Defined Pair Symbols: U11'_4, SPLITAT_2 Compound Symbols: c_1, c1_1, c13_1 ---------------------------------------- (13) CdtKnowledgeProof (FINISHED) The following tuples could be moved from S to K by knowledge propagation: U11'(tt, z0, z1, z2) -> c(SPLITAT(activate(z0), activate(z2))) U11'(tt, z0, z1, z2) -> c1(SPLITAT(activate(z0), activate(z2))) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) SPLITAT(s(z0), cons(z1, z2)) -> c13(U11'(tt, z0, z1, activate(z2))) Now S is empty ---------------------------------------- (14) BOUNDS(1, 1)