MAYBE proof of input_HBl6y2VDWN.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 8 ms] (12) typed CpxTrs (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (16) CpxTRS (17) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (18) CdtProblem (19) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CdtProblem (21) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CdtProblem (25) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxTRS (27) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (28) CpxTRS (29) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxWeightedTrs (31) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (32) CpxTypedWeightedTrs (33) CompletionProof [UPPER BOUND(ID), 0 ms] (34) CpxTypedWeightedCompleteTrs (35) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) CompletionProof [UPPER BOUND(ID), 0 ms] (38) CpxTypedWeightedCompleteTrs (39) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxTypedWeightedCompleteTrs (41) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CpxRNTS (45) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 785 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 55 ms] (52) CpxRNTS (53) CdtInstantiationProof [BOTH BOUNDS(ID, ID), 2 ms] (54) CdtProblem (55) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (56) CpxWeightedTrs (57) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CpxTypedWeightedTrs (59) CompletionProof [UPPER BOUND(ID), 0 ms] (60) CpxTypedWeightedCompleteTrs (61) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) CompletionProof [UPPER BOUND(ID), 0 ms] (64) CpxTypedWeightedCompleteTrs (65) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CpxTypedWeightedCompleteTrs (67) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) InliningProof [UPPER BOUND(ID), 114 ms] (70) CpxRNTS (71) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (72) CpxRNTS (73) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (74) CpxRNTS (75) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (76) CpxRNTS (77) IntTrsBoundProof [UPPER BOUND(ID), 94 ms] (78) CpxRNTS (79) IntTrsBoundProof [UPPER BOUND(ID), 24 ms] (80) CpxRNTS (81) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (82) CpxRNTS (83) IntTrsBoundProof [UPPER BOUND(ID), 1356 ms] (84) CpxRNTS (85) IntTrsBoundProof [UPPER BOUND(ID), 28 ms] (86) CpxRNTS ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) c -> n__c activate(n__g(X)) -> g(X) activate(n__c) -> c activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) c -> n__c activate(n__g(X)) -> g(X) activate(n__c) -> c activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: c -> f(n__g(n__c)) c -> n__c f(n__g(z0)) -> g(activate(z0)) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(z0) activate(n__c) -> c activate(z0) -> z0 Tuples: C -> c1(F(n__g(n__c))) C -> c2 F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) G(z0) -> c4 ACTIVATE(n__g(z0)) -> c5(G(z0)) ACTIVATE(n__c) -> c6(C) ACTIVATE(z0) -> c7 S tuples: C -> c1(F(n__g(n__c))) C -> c2 F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) G(z0) -> c4 ACTIVATE(n__g(z0)) -> c5(G(z0)) ACTIVATE(n__c) -> c6(C) ACTIVATE(z0) -> c7 K tuples:none Defined Rule Symbols: c, f_1, g_1, activate_1 Defined Pair Symbols: C, F_1, G_1, ACTIVATE_1 Compound Symbols: c1_1, c2, c3_2, c4, c5_1, c6_1, c7 ---------------------------------------- (5) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: C -> c1(F(n__g(n__c))) C -> c2 F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) G(z0) -> c4 ACTIVATE(n__g(z0)) -> c5(G(z0)) ACTIVATE(n__c) -> c6(C) ACTIVATE(z0) -> c7 The (relative) TRS S consists of the following rules: c -> f(n__g(n__c)) c -> n__c f(n__g(z0)) -> g(activate(z0)) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(z0) activate(n__c) -> c activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: C -> c1(F(n__g(n__c))) C -> c2 F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) G(z0) -> c4 ACTIVATE(n__g(z0)) -> c5(G(z0)) ACTIVATE(n__c) -> c6(C) ACTIVATE(z0) -> c7 The (relative) TRS S consists of the following rules: c -> f(n__g(n__c)) c -> n__c f(n__g(z0)) -> g(activate(z0)) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(z0) activate(n__c) -> c activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (10) Obligation: Innermost TRS: Rules: C -> c1(F(n__g(n__c))) C -> c2 F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) G(z0) -> c4 ACTIVATE(n__g(z0)) -> c5(G(z0)) ACTIVATE(n__c) -> c6(C) ACTIVATE(z0) -> c7 c -> f(n__g(n__c)) c -> n__c f(n__g(z0)) -> g(activate(z0)) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(z0) activate(n__c) -> c activate(z0) -> z0 Types: C :: c1:c2 c1 :: c3 -> c1:c2 F :: n__c:n__g -> c3 n__g :: n__c:n__g -> n__c:n__g n__c :: n__c:n__g c2 :: c1:c2 c3 :: c4 -> c5:c6:c7 -> c3 G :: n__c:n__g -> c4 activate :: n__c:n__g -> n__c:n__g ACTIVATE :: n__c:n__g -> c5:c6:c7 c4 :: c4 c5 :: c4 -> c5:c6:c7 c6 :: c1:c2 -> c5:c6:c7 c7 :: c5:c6:c7 c :: n__c:n__g f :: n__c:n__g -> n__c:n__g g :: n__c:n__g -> n__c:n__g hole_c1:c21_8 :: c1:c2 hole_c32_8 :: c3 hole_n__c:n__g3_8 :: n__c:n__g hole_c44_8 :: c4 hole_c5:c6:c75_8 :: c5:c6:c7 gen_n__c:n__g6_8 :: Nat -> n__c:n__g ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: C, activate, c They will be analysed ascendingly in the following order: activate < C activate = c ---------------------------------------- (12) Obligation: Innermost TRS: Rules: C -> c1(F(n__g(n__c))) C -> c2 F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) G(z0) -> c4 ACTIVATE(n__g(z0)) -> c5(G(z0)) ACTIVATE(n__c) -> c6(C) ACTIVATE(z0) -> c7 c -> f(n__g(n__c)) c -> n__c f(n__g(z0)) -> g(activate(z0)) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(z0) activate(n__c) -> c activate(z0) -> z0 Types: C :: c1:c2 c1 :: c3 -> c1:c2 F :: n__c:n__g -> c3 n__g :: n__c:n__g -> n__c:n__g n__c :: n__c:n__g c2 :: c1:c2 c3 :: c4 -> c5:c6:c7 -> c3 G :: n__c:n__g -> c4 activate :: n__c:n__g -> n__c:n__g ACTIVATE :: n__c:n__g -> c5:c6:c7 c4 :: c4 c5 :: c4 -> c5:c6:c7 c6 :: c1:c2 -> c5:c6:c7 c7 :: c5:c6:c7 c :: n__c:n__g f :: n__c:n__g -> n__c:n__g g :: n__c:n__g -> n__c:n__g hole_c1:c21_8 :: c1:c2 hole_c32_8 :: c3 hole_n__c:n__g3_8 :: n__c:n__g hole_c44_8 :: c4 hole_c5:c6:c75_8 :: c5:c6:c7 gen_n__c:n__g6_8 :: Nat -> n__c:n__g Generator Equations: gen_n__c:n__g6_8(0) <=> n__c gen_n__c:n__g6_8(+(x, 1)) <=> n__g(gen_n__c:n__g6_8(x)) The following defined symbols remain to be analysed: c, C, activate They will be analysed ascendingly in the following order: activate < C activate = c ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: C -> c1(F(n__g(n__c))) C -> c2 F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) G(z0) -> c4 ACTIVATE(n__g(z0)) -> c5(G(z0)) ACTIVATE(n__c) -> c6(C) ACTIVATE(z0) -> c7 The (relative) TRS S consists of the following rules: c -> f(n__g(n__c)) c -> n__c f(n__g(z0)) -> g(activate(z0)) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(z0) activate(n__c) -> c activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (15) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (16) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: c -> f(n__g(n__c)) f(n__g(X)) -> g(activate(X)) g(X) -> n__g(X) c -> n__c activate(n__g(X)) -> g(X) activate(n__c) -> c activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (17) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: c -> f(n__g(n__c)) c -> n__c f(n__g(z0)) -> g(activate(z0)) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(z0) activate(n__c) -> c activate(z0) -> z0 Tuples: C -> c1(F(n__g(n__c))) C -> c2 F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) G(z0) -> c4 ACTIVATE(n__g(z0)) -> c5(G(z0)) ACTIVATE(n__c) -> c6(C) ACTIVATE(z0) -> c7 S tuples: C -> c1(F(n__g(n__c))) C -> c2 F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) G(z0) -> c4 ACTIVATE(n__g(z0)) -> c5(G(z0)) ACTIVATE(n__c) -> c6(C) ACTIVATE(z0) -> c7 K tuples:none Defined Rule Symbols: c, f_1, g_1, activate_1 Defined Pair Symbols: C, F_1, G_1, ACTIVATE_1 Compound Symbols: c1_1, c2, c3_2, c4, c5_1, c6_1, c7 ---------------------------------------- (19) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: G(z0) -> c4 ACTIVATE(n__g(z0)) -> c5(G(z0)) C -> c2 ACTIVATE(z0) -> c7 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: c -> f(n__g(n__c)) c -> n__c f(n__g(z0)) -> g(activate(z0)) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(z0) activate(n__c) -> c activate(z0) -> z0 Tuples: C -> c1(F(n__g(n__c))) F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__c) -> c6(C) S tuples: C -> c1(F(n__g(n__c))) F(n__g(z0)) -> c3(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__c) -> c6(C) K tuples:none Defined Rule Symbols: c, f_1, g_1, activate_1 Defined Pair Symbols: C, F_1, ACTIVATE_1 Compound Symbols: c1_1, c3_2, c6_1 ---------------------------------------- (21) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: c -> f(n__g(n__c)) c -> n__c f(n__g(z0)) -> g(activate(z0)) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(z0) activate(n__c) -> c activate(z0) -> z0 Tuples: C -> c1(F(n__g(n__c))) ACTIVATE(n__c) -> c6(C) F(n__g(z0)) -> c3(ACTIVATE(z0)) S tuples: C -> c1(F(n__g(n__c))) ACTIVATE(n__c) -> c6(C) F(n__g(z0)) -> c3(ACTIVATE(z0)) K tuples:none Defined Rule Symbols: c, f_1, g_1, activate_1 Defined Pair Symbols: C, ACTIVATE_1, F_1 Compound Symbols: c1_1, c6_1, c3_1 ---------------------------------------- (23) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: c -> f(n__g(n__c)) c -> n__c f(n__g(z0)) -> g(activate(z0)) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(z0) activate(n__c) -> c activate(z0) -> z0 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: C -> c1(F(n__g(n__c))) ACTIVATE(n__c) -> c6(C) F(n__g(z0)) -> c3(ACTIVATE(z0)) S tuples: C -> c1(F(n__g(n__c))) ACTIVATE(n__c) -> c6(C) F(n__g(z0)) -> c3(ACTIVATE(z0)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: C, ACTIVATE_1, F_1 Compound Symbols: c1_1, c6_1, c3_1 ---------------------------------------- (25) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: C -> c1(F(n__g(n__c))) ACTIVATE(n__c) -> c6(C) F(n__g(z0)) -> c3(ACTIVATE(z0)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (27) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (28) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: C -> c1(F(n__g(n__c))) ACTIVATE(n__c) -> c6(C) F(n__g(z0)) -> c3(ACTIVATE(z0)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (29) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (30) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: C -> c1(F(n__g(n__c))) [1] ACTIVATE(n__c) -> c6(C) [1] F(n__g(z0)) -> c3(ACTIVATE(z0)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (31) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (32) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: C -> c1(F(n__g(n__c))) [1] ACTIVATE(n__c) -> c6(C) [1] F(n__g(z0)) -> c3(ACTIVATE(z0)) [1] The TRS has the following type information: C :: c1 c1 :: c3 -> c1 F :: n__g -> c3 n__g :: n__c -> n__g n__c :: n__c ACTIVATE :: n__c -> c6 c6 :: c1 -> c6 c3 :: c6 -> c3 Rewrite Strategy: INNERMOST ---------------------------------------- (33) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: F(v0) -> null_F [0] And the following fresh constants: null_F, const, const1, const2 ---------------------------------------- (34) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: C -> c1(F(n__g(n__c))) [1] ACTIVATE(n__c) -> c6(C) [1] F(n__g(z0)) -> c3(ACTIVATE(z0)) [1] F(v0) -> null_F [0] The TRS has the following type information: C :: c1 c1 :: c3:null_F -> c1 F :: n__g -> c3:null_F n__g :: n__c -> n__g n__c :: n__c ACTIVATE :: n__c -> c6 c6 :: c1 -> c6 c3 :: c6 -> c3:null_F null_F :: c3:null_F const :: c1 const1 :: n__g const2 :: c6 Rewrite Strategy: INNERMOST ---------------------------------------- (35) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: n__c => 0 null_F => 0 const => 0 const1 => 0 const2 => 0 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + C :|: z = 0 C -{ 1 }-> 1 + F(1 + 0) :|: F(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 F(z) -{ 1 }-> 1 + ACTIVATE(z0) :|: z = 1 + z0, z0 >= 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (37) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: C ACTIVATE_1 F_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const, const1, const2, const3 ---------------------------------------- (38) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: C -> c1(F(n__g(n__c))) [1] ACTIVATE(n__c) -> c6(C) [1] F(n__g(z0)) -> c3(ACTIVATE(z0)) [1] The TRS has the following type information: C :: c1 c1 :: c3 -> c1 F :: n__g -> c3 n__g :: n__c -> n__g n__c :: n__c ACTIVATE :: n__c -> c6 c6 :: c1 -> c6 c3 :: c6 -> c3 const :: c1 const1 :: c3 const2 :: n__g const3 :: c6 Rewrite Strategy: INNERMOST ---------------------------------------- (39) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (40) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: C -> c1(F(n__g(n__c))) [1] ACTIVATE(n__c) -> c6(C) [1] F(n__g(z0)) -> c3(ACTIVATE(z0)) [1] The TRS has the following type information: C :: c1 c1 :: c3 -> c1 F :: n__g -> c3 n__g :: n__c -> n__g n__c :: n__c ACTIVATE :: n__c -> c6 c6 :: c1 -> c6 c3 :: c6 -> c3 const :: c1 const1 :: c3 const2 :: n__g const3 :: c6 Rewrite Strategy: INNERMOST ---------------------------------------- (41) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: n__c => 0 const => 0 const1 => 0 const2 => 0 const3 => 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + C :|: z = 0 C -{ 1 }-> 1 + F(1 + 0) :|: F(z) -{ 1 }-> 1 + ACTIVATE(z0) :|: z = 1 + z0, z0 >= 0 ---------------------------------------- (43) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + C :|: z = 0 C -{ 1 }-> 1 + F(1 + 0) :|: F(z) -{ 1 }-> 1 + ACTIVATE(z - 1) :|: z - 1 >= 0 ---------------------------------------- (45) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { C, F, ACTIVATE } ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + C :|: z = 0 C -{ 1 }-> 1 + F(1 + 0) :|: F(z) -{ 1 }-> 1 + ACTIVATE(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {C,F,ACTIVATE} ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + C :|: z = 0 C -{ 1 }-> 1 + F(1 + 0) :|: F(z) -{ 1 }-> 1 + ACTIVATE(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {C,F,ACTIVATE} ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: C after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: F after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 Computed SIZE bound using CoFloCo for: ACTIVATE after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + C :|: z = 0 C -{ 1 }-> 1 + F(1 + 0) :|: F(z) -{ 1 }-> 1 + ACTIVATE(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {C,F,ACTIVATE} Previous analysis results are: C: runtime: ?, size: O(1) [0] F: runtime: ?, size: O(1) [2] ACTIVATE: runtime: ?, size: O(1) [1] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: C after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 1 + C :|: z = 0 C -{ 1 }-> 1 + F(1 + 0) :|: F(z) -{ 1 }-> 1 + ACTIVATE(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {C,F,ACTIVATE} Previous analysis results are: C: runtime: INF, size: O(1) [0] F: runtime: ?, size: O(1) [2] ACTIVATE: runtime: ?, size: O(1) [1] ---------------------------------------- (53) CdtInstantiationProof (BOTH BOUNDS(ID, ID)) Use instantiation to replace F(n__g(z0)) -> c3(ACTIVATE(z0)) by F(n__g(n__c)) -> c3(ACTIVATE(n__c)) ---------------------------------------- (54) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: C -> c1(F(n__g(n__c))) ACTIVATE(n__c) -> c6(C) F(n__g(n__c)) -> c3(ACTIVATE(n__c)) S tuples: C -> c1(F(n__g(n__c))) ACTIVATE(n__c) -> c6(C) F(n__g(n__c)) -> c3(ACTIVATE(n__c)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: C, ACTIVATE_1, F_1 Compound Symbols: c1_1, c6_1, c3_1 ---------------------------------------- (55) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (56) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: c -> f(n__g(n__c)) [1] f(n__g(X)) -> g(activate(X)) [1] g(X) -> n__g(X) [1] c -> n__c [1] activate(n__g(X)) -> g(X) [1] activate(n__c) -> c [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (57) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (58) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: c -> f(n__g(n__c)) [1] f(n__g(X)) -> g(activate(X)) [1] g(X) -> n__g(X) [1] c -> n__c [1] activate(n__g(X)) -> g(X) [1] activate(n__c) -> c [1] activate(X) -> X [1] The TRS has the following type information: c :: n__c:n__g f :: n__c:n__g -> n__c:n__g n__g :: n__c:n__g -> n__c:n__g n__c :: n__c:n__g g :: n__c:n__g -> n__c:n__g activate :: n__c:n__g -> n__c:n__g Rewrite Strategy: INNERMOST ---------------------------------------- (59) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: f(v0) -> null_f [0] And the following fresh constants: null_f ---------------------------------------- (60) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: c -> f(n__g(n__c)) [1] f(n__g(X)) -> g(activate(X)) [1] g(X) -> n__g(X) [1] c -> n__c [1] activate(n__g(X)) -> g(X) [1] activate(n__c) -> c [1] activate(X) -> X [1] f(v0) -> null_f [0] The TRS has the following type information: c :: n__c:n__g:null_f f :: n__c:n__g:null_f -> n__c:n__g:null_f n__g :: n__c:n__g:null_f -> n__c:n__g:null_f n__c :: n__c:n__g:null_f g :: n__c:n__g:null_f -> n__c:n__g:null_f activate :: n__c:n__g:null_f -> n__c:n__g:null_f null_f :: n__c:n__g:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (61) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: n__c => 0 null_f => 0 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> g(X) :|: z = 1 + X, X >= 0 activate(z) -{ 1 }-> c :|: z = 0 c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 1 }-> g(activate(X)) :|: z = 1 + X, X >= 0 f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 1 }-> 1 + X :|: X >= 0, z = X Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (63) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: activate_1 c g_1 f_1 Due to the following rules being added: f(v0) -> n__c [0] And the following fresh constants: none ---------------------------------------- (64) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: c -> f(n__g(n__c)) [1] f(n__g(X)) -> g(activate(X)) [1] g(X) -> n__g(X) [1] c -> n__c [1] activate(n__g(X)) -> g(X) [1] activate(n__c) -> c [1] activate(X) -> X [1] f(v0) -> n__c [0] The TRS has the following type information: c :: n__c:n__g f :: n__c:n__g -> n__c:n__g n__g :: n__c:n__g -> n__c:n__g n__c :: n__c:n__g g :: n__c:n__g -> n__c:n__g activate :: n__c:n__g -> n__c:n__g Rewrite Strategy: INNERMOST ---------------------------------------- (65) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (66) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: c -> f(n__g(n__c)) [1] f(n__g(n__g(X'))) -> g(g(X')) [2] f(n__g(n__c)) -> g(c) [2] f(n__g(X)) -> g(X) [2] g(X) -> n__g(X) [1] c -> n__c [1] activate(n__g(X)) -> g(X) [1] activate(n__c) -> c [1] activate(X) -> X [1] f(v0) -> n__c [0] The TRS has the following type information: c :: n__c:n__g f :: n__c:n__g -> n__c:n__g n__g :: n__c:n__g -> n__c:n__g n__c :: n__c:n__g g :: n__c:n__g -> n__c:n__g activate :: n__c:n__g -> n__c:n__g Rewrite Strategy: INNERMOST ---------------------------------------- (67) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: n__c => 0 ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> g(X) :|: z = 1 + X, X >= 0 activate(z) -{ 1 }-> c :|: z = 0 c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 2 }-> g(X) :|: z = 1 + X, X >= 0 f(z) -{ 2 }-> g(g(X')) :|: X' >= 0, z = 1 + (1 + X') f(z) -{ 2 }-> g(c) :|: z = 1 + 0 f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 1 }-> 1 + X :|: X >= 0, z = X ---------------------------------------- (69) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: g(z) -{ 1 }-> 1 + X :|: X >= 0, z = X ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> c :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X' c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 2 }-> g(c) :|: z = 1 + 0 f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 f(z) -{ 3 }-> 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X' f(z) -{ 4 }-> 1 + X'' :|: X' >= 0, z = 1 + (1 + X'), X >= 0, X' = X, X'' >= 0, 1 + X = X'' g(z) -{ 1 }-> 1 + X :|: X >= 0, z = X ---------------------------------------- (71) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> c :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 2 }-> g(c) :|: z = 1 + 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 3 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 4 }-> 1 + X'' :|: z - 2 >= 0, X >= 0, z - 2 = X, X'' >= 0, 1 + X = X'' g(z) -{ 1 }-> 1 + z :|: z >= 0 ---------------------------------------- (73) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g } { c, f } { activate } ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> c :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 2 }-> g(c) :|: z = 1 + 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 3 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 4 }-> 1 + X'' :|: z - 2 >= 0, X >= 0, z - 2 = X, X'' >= 0, 1 + X = X'' g(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {c,f}, {activate} ---------------------------------------- (75) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> c :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 2 }-> g(c) :|: z = 1 + 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 3 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 4 }-> 1 + X'' :|: z - 2 >= 0, X >= 0, z - 2 = X, X'' >= 0, 1 + X = X'' g(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {c,f}, {activate} ---------------------------------------- (77) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> c :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 2 }-> g(c) :|: z = 1 + 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 3 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 4 }-> 1 + X'' :|: z - 2 >= 0, X >= 0, z - 2 = X, X'' >= 0, 1 + X = X'' g(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {c,f}, {activate} Previous analysis results are: g: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (79) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (80) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> c :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 2 }-> g(c) :|: z = 1 + 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 3 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 4 }-> 1 + X'' :|: z - 2 >= 0, X >= 0, z - 2 = X, X'' >= 0, 1 + X = X'' g(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {c,f}, {activate} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (81) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> c :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 2 }-> g(c) :|: z = 1 + 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 3 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 4 }-> 1 + X'' :|: z - 2 >= 0, X >= 0, z - 2 = X, X'' >= 0, 1 + X = X'' g(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {c,f}, {activate} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (83) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: c after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> c :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 2 }-> g(c) :|: z = 1 + 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 3 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 4 }-> 1 + X'' :|: z - 2 >= 0, X >= 0, z - 2 = X, X'' >= 0, 1 + X = X'' g(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {c,f}, {activate} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [1 + z] c: runtime: ?, size: INF f: runtime: ?, size: INF ---------------------------------------- (85) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: c after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (86) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> c :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' c -{ 1 }-> f(1 + 0) :|: c -{ 1 }-> 0 :|: f(z) -{ 2 }-> g(c) :|: z = 1 + 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 3 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 4 }-> 1 + X'' :|: z - 2 >= 0, X >= 0, z - 2 = X, X'' >= 0, 1 + X = X'' g(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {c,f}, {activate} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [1 + z] c: runtime: INF, size: INF f: runtime: ?, size: INF