WORST_CASE(?,O(n^3)) proof of input_hWE3S4JUFE.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 244 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 55 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 284 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 83 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 368 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 54 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 530 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 1979 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 29 ms] (44) CpxRNTS (45) FinalProof [FINISHED, 0 ms] (46) BOUNDS(1, n^3) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) terms(X) -> n__terms(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) [1] sqr(0) -> 0 [1] sqr(s(X)) -> s(add(sqr(X), dbl(X))) [1] dbl(0) -> 0 [1] dbl(s(X)) -> s(s(dbl(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(add(X, Y)) [1] first(0, X) -> nil [1] first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] terms(X) -> n__terms(X) [1] first(X1, X2) -> n__first(X1, X2) [1] activate(n__terms(X)) -> terms(X) [1] activate(n__first(X1, X2)) -> first(X1, X2) [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) [1] sqr(0) -> 0 [1] sqr(s(X)) -> s(add(sqr(X), dbl(X))) [1] dbl(0) -> 0 [1] dbl(s(X)) -> s(s(dbl(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(add(X, Y)) [1] first(0, X) -> nil [1] first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] terms(X) -> n__terms(X) [1] first(X1, X2) -> n__first(X1, X2) [1] activate(n__terms(X)) -> terms(X) [1] activate(n__first(X1, X2)) -> first(X1, X2) [1] activate(X) -> X [1] The TRS has the following type information: terms :: s:0 -> n__terms:cons:nil:n__first cons :: recip -> n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first recip :: s:0 -> recip sqr :: s:0 -> s:0 n__terms :: s:0 -> n__terms:cons:nil:n__first s :: s:0 -> s:0 0 :: s:0 add :: s:0 -> s:0 -> s:0 dbl :: s:0 -> s:0 first :: s:0 -> n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first nil :: n__terms:cons:nil:n__first n__first :: s:0 -> n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first activate :: n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: terms_1 first_2 activate_1 (c) The following functions are completely defined: sqr_1 dbl_1 add_2 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) [1] sqr(0) -> 0 [1] sqr(s(X)) -> s(add(sqr(X), dbl(X))) [1] dbl(0) -> 0 [1] dbl(s(X)) -> s(s(dbl(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(add(X, Y)) [1] first(0, X) -> nil [1] first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] terms(X) -> n__terms(X) [1] first(X1, X2) -> n__first(X1, X2) [1] activate(n__terms(X)) -> terms(X) [1] activate(n__first(X1, X2)) -> first(X1, X2) [1] activate(X) -> X [1] The TRS has the following type information: terms :: s:0 -> n__terms:cons:nil:n__first cons :: recip -> n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first recip :: s:0 -> recip sqr :: s:0 -> s:0 n__terms :: s:0 -> n__terms:cons:nil:n__first s :: s:0 -> s:0 0 :: s:0 add :: s:0 -> s:0 -> s:0 dbl :: s:0 -> s:0 first :: s:0 -> n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first nil :: n__terms:cons:nil:n__first n__first :: s:0 -> n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first activate :: n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first const :: recip Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) [1] sqr(0) -> 0 [1] sqr(s(0)) -> s(add(0, 0)) [3] sqr(s(s(X'))) -> s(add(s(add(sqr(X'), dbl(X'))), s(s(dbl(X'))))) [3] dbl(0) -> 0 [1] dbl(s(X)) -> s(s(dbl(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(add(X, Y)) [1] first(0, X) -> nil [1] first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] terms(X) -> n__terms(X) [1] first(X1, X2) -> n__first(X1, X2) [1] activate(n__terms(X)) -> terms(X) [1] activate(n__first(X1, X2)) -> first(X1, X2) [1] activate(X) -> X [1] The TRS has the following type information: terms :: s:0 -> n__terms:cons:nil:n__first cons :: recip -> n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first recip :: s:0 -> recip sqr :: s:0 -> s:0 n__terms :: s:0 -> n__terms:cons:nil:n__first s :: s:0 -> s:0 0 :: s:0 add :: s:0 -> s:0 -> s:0 dbl :: s:0 -> s:0 first :: s:0 -> n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first nil :: n__terms:cons:nil:n__first n__first :: s:0 -> n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first activate :: n__terms:cons:nil:n__first -> n__terms:cons:nil:n__first const :: recip Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 nil => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> terms(X) :|: z = 1 + X, X >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> X :|: z' = X, X >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(X, Y) :|: z = 1 + X, z' = Y, Y >= 0, X >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(X)) :|: z = 1 + X, X >= 0 first(z, z') -{ 1 }-> 0 :|: z' = X, X >= 0, z = 0 first(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 first(z, z') -{ 1 }-> 1 + Y + (1 + X + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(X'), dbl(X')), 1 + (1 + dbl(X'))) :|: X' >= 0, z = 1 + (1 + X') terms(z) -{ 1 }-> 1 + X :|: X >= 0, z = X terms(z) -{ 1 }-> 1 + (1 + sqr(N)) + (1 + (1 + N)) :|: z = N, N >= 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { dbl } { add } { sqr } { terms } { first, activate } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {terms}, {first,activate} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {terms}, {first,activate} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: dbl after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {terms}, {first,activate} Previous analysis results are: dbl: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: dbl after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {terms}, {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {terms}, {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: add after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {terms}, {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: add after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {terms}, {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {terms}, {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 4*z + 4*z^2 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {terms}, {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: ?, size: O(n^2) [1 + 4*z + 4*z^2] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 5 + 22*z + 8*z^3 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + add(1 + add(sqr(z - 2), s), 1 + (1 + s')) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 1 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {terms}, {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ -99 + s4 + s5 + 120*z + -48*z^2 + 8*z^3 }-> 1 + s6 :|: s4 >= 0, s4 <= 4 * ((z - 2) * (z - 2)) + 4 * (z - 2) + 1, s5 >= 0, s5 <= s4 + s, s6 >= 0, s6 <= 1 + s5 + (1 + (1 + s')), s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 6 + 22*z + 8*z^3 }-> 1 + (1 + s3) + (1 + (1 + z)) :|: s3 >= 0, s3 <= 4 * (z * z) + 4 * z + 1, z >= 0 Function symbols to be analyzed: {terms}, {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: terms after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 6 + 6*z + 4*z^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ -99 + s4 + s5 + 120*z + -48*z^2 + 8*z^3 }-> 1 + s6 :|: s4 >= 0, s4 <= 4 * ((z - 2) * (z - 2)) + 4 * (z - 2) + 1, s5 >= 0, s5 <= s4 + s, s6 >= 0, s6 <= 1 + s5 + (1 + (1 + s')), s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 6 + 22*z + 8*z^3 }-> 1 + (1 + s3) + (1 + (1 + z)) :|: s3 >= 0, s3 <= 4 * (z * z) + 4 * z + 1, z >= 0 Function symbols to be analyzed: {terms}, {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] terms: runtime: ?, size: O(n^2) [6 + 6*z + 4*z^2] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: terms after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 7 + 22*z + 8*z^3 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ -99 + s4 + s5 + 120*z + -48*z^2 + 8*z^3 }-> 1 + s6 :|: s4 >= 0, s4 <= 4 * ((z - 2) * (z - 2)) + 4 * (z - 2) + 1, s5 >= 0, s5 <= s4 + s, s6 >= 0, s6 <= 1 + s5 + (1 + (1 + s')), s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 6 + 22*z + 8*z^3 }-> 1 + (1 + s3) + (1 + (1 + z)) :|: s3 >= 0, s3 <= 4 * (z * z) + 4 * z + 1, z >= 0 Function symbols to be analyzed: {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] terms: runtime: O(n^3) [7 + 22*z + 8*z^3], size: O(n^2) [6 + 6*z + 4*z^2] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ -22 + 46*z + -24*z^2 + 8*z^3 }-> s7 :|: s7 >= 0, s7 <= 6 * (z - 1) + 4 * ((z - 1) * (z - 1)) + 6, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ -99 + s4 + s5 + 120*z + -48*z^2 + 8*z^3 }-> 1 + s6 :|: s4 >= 0, s4 <= 4 * ((z - 2) * (z - 2)) + 4 * (z - 2) + 1, s5 >= 0, s5 <= s4 + s, s6 >= 0, s6 <= 1 + s5 + (1 + (1 + s')), s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 6 + 22*z + 8*z^3 }-> 1 + (1 + s3) + (1 + (1 + z)) :|: s3 >= 0, s3 <= 4 * (z * z) + 4 * z + 1, z >= 0 Function symbols to be analyzed: {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] terms: runtime: O(n^3) [7 + 22*z + 8*z^3], size: O(n^2) [6 + 6*z + 4*z^2] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: first after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ -22 + 46*z + -24*z^2 + 8*z^3 }-> s7 :|: s7 >= 0, s7 <= 6 * (z - 1) + 4 * ((z - 1) * (z - 1)) + 6, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ -99 + s4 + s5 + 120*z + -48*z^2 + 8*z^3 }-> 1 + s6 :|: s4 >= 0, s4 <= 4 * ((z - 2) * (z - 2)) + 4 * (z - 2) + 1, s5 >= 0, s5 <= s4 + s, s6 >= 0, s6 <= 1 + s5 + (1 + (1 + s')), s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 6 + 22*z + 8*z^3 }-> 1 + (1 + s3) + (1 + (1 + z)) :|: s3 >= 0, s3 <= 4 * (z * z) + 4 * z + 1, z >= 0 Function symbols to be analyzed: {first,activate} Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] terms: runtime: O(n^3) [7 + 22*z + 8*z^3], size: O(n^2) [6 + 6*z + 4*z^2] first: runtime: ?, size: INF activate: runtime: ?, size: INF ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: first after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 3 + 48*z' + 8*z'^3 Computed RUNTIME bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 5 + 94*z + 16*z^3 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ -22 + 46*z + -24*z^2 + 8*z^3 }-> s7 :|: s7 >= 0, s7 <= 6 * (z - 1) + 4 * ((z - 1) * (z - 1)) + 6, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 + z }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 1 }-> 0 :|: z = 0 dbl(z) -{ 1 + z }-> 1 + (1 + s'') :|: s'' >= 0, s'' <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s1 :|: s1 >= 0, s1 <= 0 + 0, z = 1 + 0 sqr(z) -{ -99 + s4 + s5 + 120*z + -48*z^2 + 8*z^3 }-> 1 + s6 :|: s4 >= 0, s4 <= 4 * ((z - 2) * (z - 2)) + 4 * (z - 2) + 1, s5 >= 0, s5 <= s4 + s, s6 >= 0, s6 <= 1 + s5 + (1 + (1 + s')), s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 1 }-> 1 + z :|: z >= 0 terms(z) -{ 6 + 22*z + 8*z^3 }-> 1 + (1 + s3) + (1 + (1 + z)) :|: s3 >= 0, s3 <= 4 * (z * z) + 4 * z + 1, z >= 0 Function symbols to be analyzed: Previous analysis results are: dbl: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] add: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] sqr: runtime: O(n^3) [5 + 22*z + 8*z^3], size: O(n^2) [1 + 4*z + 4*z^2] terms: runtime: O(n^3) [7 + 22*z + 8*z^3], size: O(n^2) [6 + 6*z + 4*z^2] first: runtime: O(n^3) [3 + 48*z' + 8*z'^3], size: INF activate: runtime: O(n^3) [5 + 94*z + 16*z^3], size: INF ---------------------------------------- (45) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (46) BOUNDS(1, n^3)