MAYBE proof of input_kmNEsfCB7R.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 3 ms] (12) typed CpxTrs (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (16) CpxTRS (17) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (18) CdtProblem (19) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CdtProblem (21) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxTRS (25) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (26) CpxTRS (27) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxWeightedTrs (29) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxTypedWeightedTrs (31) CompletionProof [UPPER BOUND(ID), 0 ms] (32) CpxTypedWeightedCompleteTrs (33) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) CompletionProof [UPPER BOUND(ID), 0 ms] (36) CpxTypedWeightedCompleteTrs (37) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxTypedWeightedCompleteTrs (39) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (42) CpxRNTS (43) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CpxRNTS (45) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 208 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 63 ms] (50) CpxRNTS (51) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (52) CpxWeightedTrs (53) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (54) CpxTypedWeightedTrs (55) CompletionProof [UPPER BOUND(ID), 0 ms] (56) CpxTypedWeightedCompleteTrs (57) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CpxTypedWeightedCompleteTrs (59) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) InliningProof [UPPER BOUND(ID), 39 ms] (62) CpxRNTS (63) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CpxRNTS (65) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CpxRNTS (67) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 93 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 17 ms] (72) CpxRNTS (73) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 125 ms] (76) CpxRNTS (77) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (78) CpxRNTS (79) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (80) CpxRNTS (81) IntTrsBoundProof [UPPER BOUND(ID), 221 ms] (82) CpxRNTS (83) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (84) CpxRNTS (85) CompletionProof [UPPER BOUND(ID), 0 ms] (86) CpxTypedWeightedCompleteTrs (87) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (88) CpxRNTS ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(X) -> g(n__h(f(X))) h(X) -> n__h(X) activate(n__h(X)) -> h(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(X) -> g(n__h(f(X))) h(X) -> n__h(X) activate(n__h(X)) -> h(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: f(z0) -> g(n__h(f(z0))) h(z0) -> n__h(z0) activate(n__h(z0)) -> h(z0) activate(z0) -> z0 Tuples: F(z0) -> c(F(z0)) H(z0) -> c1 ACTIVATE(n__h(z0)) -> c2(H(z0)) ACTIVATE(z0) -> c3 S tuples: F(z0) -> c(F(z0)) H(z0) -> c1 ACTIVATE(n__h(z0)) -> c2(H(z0)) ACTIVATE(z0) -> c3 K tuples:none Defined Rule Symbols: f_1, h_1, activate_1 Defined Pair Symbols: F_1, H_1, ACTIVATE_1 Compound Symbols: c_1, c1, c2_1, c3 ---------------------------------------- (5) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(z0) -> c(F(z0)) H(z0) -> c1 ACTIVATE(n__h(z0)) -> c2(H(z0)) ACTIVATE(z0) -> c3 The (relative) TRS S consists of the following rules: f(z0) -> g(n__h(f(z0))) h(z0) -> n__h(z0) activate(n__h(z0)) -> h(z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(z0) -> c(F(z0)) H(z0) -> c1 ACTIVATE(n__h(z0)) -> c2(H(z0)) ACTIVATE(z0) -> c3 The (relative) TRS S consists of the following rules: f(z0) -> g(n__h(f(z0))) h(z0) -> n__h(z0) activate(n__h(z0)) -> h(z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (10) Obligation: Innermost TRS: Rules: F(z0) -> c(F(z0)) H(z0) -> c1 ACTIVATE(n__h(z0)) -> c2(H(z0)) ACTIVATE(z0) -> c3 f(z0) -> g(n__h(f(z0))) h(z0) -> n__h(z0) activate(n__h(z0)) -> h(z0) activate(z0) -> z0 Types: F :: a -> c c :: c -> c H :: g -> c1 c1 :: c1 ACTIVATE :: n__h -> c2:c3 n__h :: g -> n__h c2 :: c1 -> c2:c3 c3 :: c2:c3 f :: b -> g g :: n__h -> g h :: g -> n__h activate :: n__h -> n__h hole_c1_4 :: c hole_a2_4 :: a hole_c13_4 :: c1 hole_g4_4 :: g hole_c2:c35_4 :: c2:c3 hole_n__h6_4 :: n__h hole_b7_4 :: b gen_c8_4 :: Nat -> c ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: F, f ---------------------------------------- (12) Obligation: Innermost TRS: Rules: F(z0) -> c(F(z0)) H(z0) -> c1 ACTIVATE(n__h(z0)) -> c2(H(z0)) ACTIVATE(z0) -> c3 f(z0) -> g(n__h(f(z0))) h(z0) -> n__h(z0) activate(n__h(z0)) -> h(z0) activate(z0) -> z0 Types: F :: a -> c c :: c -> c H :: g -> c1 c1 :: c1 ACTIVATE :: n__h -> c2:c3 n__h :: g -> n__h c2 :: c1 -> c2:c3 c3 :: c2:c3 f :: b -> g g :: n__h -> g h :: g -> n__h activate :: n__h -> n__h hole_c1_4 :: c hole_a2_4 :: a hole_c13_4 :: c1 hole_g4_4 :: g hole_c2:c35_4 :: c2:c3 hole_n__h6_4 :: n__h hole_b7_4 :: b gen_c8_4 :: Nat -> c Generator Equations: gen_c8_4(0) <=> hole_c1_4 gen_c8_4(+(x, 1)) <=> c(gen_c8_4(x)) The following defined symbols remain to be analysed: F, f ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(z0) -> c(F(z0)) H(z0) -> c1 ACTIVATE(n__h(z0)) -> c2(H(z0)) ACTIVATE(z0) -> c3 The (relative) TRS S consists of the following rules: f(z0) -> g(n__h(f(z0))) h(z0) -> n__h(z0) activate(n__h(z0)) -> h(z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (15) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (16) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(X) -> g(n__h(f(X))) h(X) -> n__h(X) activate(n__h(X)) -> h(X) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (17) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: f(z0) -> g(n__h(f(z0))) h(z0) -> n__h(z0) activate(n__h(z0)) -> h(z0) activate(z0) -> z0 Tuples: F(z0) -> c(F(z0)) H(z0) -> c1 ACTIVATE(n__h(z0)) -> c2(H(z0)) ACTIVATE(z0) -> c3 S tuples: F(z0) -> c(F(z0)) H(z0) -> c1 ACTIVATE(n__h(z0)) -> c2(H(z0)) ACTIVATE(z0) -> c3 K tuples:none Defined Rule Symbols: f_1, h_1, activate_1 Defined Pair Symbols: F_1, H_1, ACTIVATE_1 Compound Symbols: c_1, c1, c2_1, c3 ---------------------------------------- (19) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing nodes: ACTIVATE(n__h(z0)) -> c2(H(z0)) ACTIVATE(z0) -> c3 H(z0) -> c1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: f(z0) -> g(n__h(f(z0))) h(z0) -> n__h(z0) activate(n__h(z0)) -> h(z0) activate(z0) -> z0 Tuples: F(z0) -> c(F(z0)) S tuples: F(z0) -> c(F(z0)) K tuples:none Defined Rule Symbols: f_1, h_1, activate_1 Defined Pair Symbols: F_1 Compound Symbols: c_1 ---------------------------------------- (21) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: f(z0) -> g(n__h(f(z0))) h(z0) -> n__h(z0) activate(n__h(z0)) -> h(z0) activate(z0) -> z0 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(z0) -> c(F(z0)) S tuples: F(z0) -> c(F(z0)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_1 Compound Symbols: c_1 ---------------------------------------- (23) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (24) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(z0) -> c(F(z0)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (25) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(z0) -> c(F(z0)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (27) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (28) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(z0) -> c(F(z0)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (29) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (30) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F(z0) -> c(F(z0)) [1] The TRS has the following type information: F :: a -> c c :: c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (31) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: none And the following fresh constants: const, const1 ---------------------------------------- (32) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F(z0) -> c(F(z0)) [1] The TRS has the following type information: F :: a -> c c :: c -> c const :: c const1 :: a Rewrite Strategy: INNERMOST ---------------------------------------- (33) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 const1 => 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: F(z) -{ 1 }-> 1 + F(z0) :|: z = z0, z0 >= 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (35) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: F_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const, const1 ---------------------------------------- (36) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F(z0) -> c(F(z0)) [1] The TRS has the following type information: F :: a -> c c :: c -> c const :: c const1 :: a Rewrite Strategy: INNERMOST ---------------------------------------- (37) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (38) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F(z0) -> c(F(z0)) [1] The TRS has the following type information: F :: a -> c c :: c -> c const :: c const1 :: a Rewrite Strategy: INNERMOST ---------------------------------------- (39) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 const1 => 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: F(z) -{ 1 }-> 1 + F(z0) :|: z = z0, z0 >= 0 ---------------------------------------- (41) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: F(z) -{ 1 }-> 1 + F(z) :|: z >= 0 ---------------------------------------- (43) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { F } ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: F(z) -{ 1 }-> 1 + F(z) :|: z >= 0 Function symbols to be analyzed: {F} ---------------------------------------- (45) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: F(z) -{ 1 }-> 1 + F(z) :|: z >= 0 Function symbols to be analyzed: {F} ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: F(z) -{ 1 }-> 1 + F(z) :|: z >= 0 Function symbols to be analyzed: {F} Previous analysis results are: F: runtime: ?, size: O(1) [0] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: F(z) -{ 1 }-> 1 + F(z) :|: z >= 0 Function symbols to be analyzed: {F} Previous analysis results are: F: runtime: INF, size: O(1) [0] ---------------------------------------- (51) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (52) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(X) -> g(n__h(f(X))) [1] h(X) -> n__h(X) [1] activate(n__h(X)) -> h(X) [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (53) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (54) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X) -> g(n__h(f(X))) [1] h(X) -> n__h(X) [1] activate(n__h(X)) -> h(X) [1] activate(X) -> X [1] The TRS has the following type information: f :: a -> g g :: n__h -> g n__h :: g -> n__h h :: g -> n__h activate :: n__h -> n__h Rewrite Strategy: INNERMOST ---------------------------------------- (55) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: f_1 h_1 activate_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const, const1, const2 ---------------------------------------- (56) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X) -> g(n__h(f(X))) [1] h(X) -> n__h(X) [1] activate(n__h(X)) -> h(X) [1] activate(X) -> X [1] The TRS has the following type information: f :: a -> g g :: n__h -> g n__h :: g -> n__h h :: g -> n__h activate :: n__h -> n__h const :: g const1 :: a const2 :: n__h Rewrite Strategy: INNERMOST ---------------------------------------- (57) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (58) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X) -> g(n__h(f(X))) [1] h(X) -> n__h(X) [1] activate(n__h(X)) -> h(X) [1] activate(X) -> X [1] The TRS has the following type information: f :: a -> g g :: n__h -> g n__h :: g -> n__h h :: g -> n__h activate :: n__h -> n__h const :: g const1 :: a const2 :: n__h Rewrite Strategy: INNERMOST ---------------------------------------- (59) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 const1 => 0 const2 => 0 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> h(X) :|: z = 1 + X, X >= 0 f(z) -{ 1 }-> 1 + (1 + f(X)) :|: X >= 0, z = X h(z) -{ 1 }-> 1 + X :|: X >= 0, z = X ---------------------------------------- (61) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: h(z) -{ 1 }-> 1 + X :|: X >= 0, z = X ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 2 }-> 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X' f(z) -{ 1 }-> 1 + (1 + f(X)) :|: X >= 0, z = X h(z) -{ 1 }-> 1 + X :|: X >= 0, z = X ---------------------------------------- (63) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 ---------------------------------------- (65) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { activate } { h } { f } ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {activate}, {h}, {f} ---------------------------------------- (67) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {activate}, {h}, {f} ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {activate}, {h}, {f} Previous analysis results are: activate: runtime: ?, size: O(n^1) [z] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 3 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {h}, {f} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [z] ---------------------------------------- (73) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {h}, {f} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [z] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: h after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {h}, {f} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [z] h: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (77) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: h after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [z] h: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (79) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (80) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [z] h: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (81) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [z] h: runtime: O(1) [1], size: O(n^1) [1 + z] f: runtime: ?, size: O(1) [0] ---------------------------------------- (83) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' f(z) -{ 1 }-> 1 + (1 + f(z)) :|: z >= 0 h(z) -{ 1 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [z] h: runtime: O(1) [1], size: O(n^1) [1 + z] f: runtime: INF, size: O(1) [0] ---------------------------------------- (85) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: none And the following fresh constants: const, const1, const2 ---------------------------------------- (86) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X) -> g(n__h(f(X))) [1] h(X) -> n__h(X) [1] activate(n__h(X)) -> h(X) [1] activate(X) -> X [1] The TRS has the following type information: f :: a -> g g :: n__h -> g n__h :: g -> n__h h :: g -> n__h activate :: n__h -> n__h const :: g const1 :: a const2 :: n__h Rewrite Strategy: INNERMOST ---------------------------------------- (87) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 const1 => 0 const2 => 0 ---------------------------------------- (88) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> h(X) :|: z = 1 + X, X >= 0 f(z) -{ 1 }-> 1 + (1 + f(X)) :|: X >= 0, z = X h(z) -{ 1 }-> 1 + X :|: X >= 0, z = X Only complete derivations are relevant for the runtime complexity.