KILLED proof of input_w80Di0i0cj.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 11 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 491 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 152 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 336 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 1565 ms] (22) BEST (23) proven lower bound (24) LowerBoundPropagationProof [FINISHED, 0 ms] (25) BOUNDS(n^1, INF) (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 536 ms] (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 1231 ms] (30) BOUNDS(1, INF) (31) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (32) CdtProblem (33) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CdtProblem (35) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CdtProblem (37) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CdtProblem (39) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxRelTRS (41) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (42) CpxTRS (43) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CpxWeightedTrs (45) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CpxTypedWeightedTrs (47) CompletionProof [UPPER BOUND(ID), 0 ms] (48) CpxTypedWeightedCompleteTrs (49) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CpxTypedWeightedCompleteTrs (51) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) InliningProof [UPPER BOUND(ID), 475 ms] (54) CpxRNTS (55) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (56) CpxRNTS (57) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 6 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 71 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 14 ms] (70) CpxRNTS (71) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (76) CpxRNTS (77) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (78) CpxRNTS (79) IntTrsBoundProof [UPPER BOUND(ID), 337 ms] (80) CpxRNTS (81) IntTrsBoundProof [UPPER BOUND(ID), 25 ms] (82) CpxRNTS (83) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (84) CpxRNTS (85) IntTrsBoundProof [UPPER BOUND(ID), 2161 ms] (86) CpxRNTS (87) IntTrsBoundProof [UPPER BOUND(ID), 811 ms] (88) CpxRNTS (89) CompletionProof [UPPER BOUND(ID), 0 ms] (90) CpxTypedWeightedCompleteTrs (91) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (92) CpxRNTS (93) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (94) CdtProblem (95) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 1 ms] (96) CdtProblem (97) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (98) CdtProblem (99) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (100) CdtProblem (101) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (102) CdtProblem (103) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (104) CdtProblem (105) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (106) CdtProblem (107) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (108) CdtProblem (109) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (110) CdtProblem (111) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (112) CdtProblem (113) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (114) CdtProblem (115) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (116) CdtProblem (117) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (118) CdtProblem (119) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (120) CdtProblem (121) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (122) CdtProblem (123) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (124) CdtProblem (125) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (126) CdtProblem (127) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (128) CdtProblem (129) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (130) CdtProblem (131) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (132) CdtProblem (133) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (134) CdtProblem (135) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (136) CdtProblem (137) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (138) CdtProblem (139) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (140) CdtProblem (141) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (142) CdtProblem (143) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (144) CdtProblem (145) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (146) CdtProblem (147) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (148) CdtProblem (149) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (150) CdtProblem (151) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (152) CdtProblem (153) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (154) CdtProblem (155) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (156) CdtProblem (157) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (158) CdtProblem (159) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (160) CdtProblem (161) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (162) CdtProblem (163) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 1895 ms] (164) CdtProblem (165) CdtKnowledgeProof [BOTH BOUNDS(ID, ID), 0 ms] (166) CdtProblem (167) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (168) CpxWeightedTrs (169) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (170) CpxTypedWeightedTrs (171) CompletionProof [UPPER BOUND(ID), 0 ms] (172) CpxTypedWeightedCompleteTrs (173) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (174) CpxTypedWeightedCompleteTrs (175) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (176) CpxRNTS (177) InliningProof [UPPER BOUND(ID), 373 ms] (178) CpxRNTS (179) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (180) CpxRNTS (181) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (182) CpxRNTS (183) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (184) CpxRNTS (185) IntTrsBoundProof [UPPER BOUND(ID), 27 ms] (186) CpxRNTS (187) IntTrsBoundProof [UPPER BOUND(ID), 14 ms] (188) CpxRNTS (189) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (190) CpxRNTS (191) IntTrsBoundProof [UPPER BOUND(ID), 225 ms] (192) CpxRNTS (193) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (194) CpxRNTS (195) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (196) CpxRNTS (197) IntTrsBoundProof [UPPER BOUND(ID), 169 ms] (198) CpxRNTS (199) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (200) CpxRNTS (201) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (202) CpxRNTS (203) IntTrsBoundProof [UPPER BOUND(ID), 195 ms] (204) CpxRNTS (205) IntTrsBoundProof [UPPER BOUND(ID), 6 ms] (206) CpxRNTS (207) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (208) CpxRNTS (209) IntTrsBoundProof [UPPER BOUND(ID), 3732 ms] (210) CpxRNTS (211) IntTrsBoundProof [UPPER BOUND(ID), 709 ms] (212) CpxRNTS (213) CompletionProof [UPPER BOUND(ID), 0 ms] (214) CpxTypedWeightedCompleteTrs (215) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (216) CpxRNTS ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) length(n__nil) -> 0 length(n__cons(X, Y)) -> s(length1(activate(Y))) length1(X) -> length(activate(X)) from(X) -> n__from(X) nil -> n__nil cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) length(n__nil) -> 0' length(n__cons(X, Y)) -> s(length1(activate(Y))) length1(X) -> length(activate(X)) from(X) -> n__from(X) nil -> n__nil cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) length(n__nil) -> 0 length(n__cons(X, Y)) -> s(length1(activate(Y))) length1(X) -> length(activate(X)) from(X) -> n__from(X) nil -> n__nil cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0 length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Tuples: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 S tuples: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 K tuples:none Defined Rule Symbols: from_1, length_1, length1_1, nil, cons_2, activate_1 Defined Pair Symbols: FROM_1, LENGTH_1, LENGTH1_1, NIL, CONS_2, ACTIVATE_1 Compound Symbols: c_1, c1, c2, c3_2, c4_2, c5, c6, c7_1, c8_1, c9_1, c10 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 The (relative) TRS S consists of the following rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0 length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 The (relative) TRS S consists of the following rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0' length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0' length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Types: FROM :: s:0' -> c:c1 c :: c6 -> c:c1 CONS :: s:0' -> n__from:n__nil:n__cons -> c6 n__from :: s:0' -> n__from:n__nil:n__cons s :: s:0' -> s:0' c1 :: c:c1 LENGTH :: n__from:n__nil:n__cons -> c2:c3 n__nil :: n__from:n__nil:n__cons c2 :: c2:c3 n__cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons c3 :: c4 -> c7:c8:c9:c10 -> c2:c3 LENGTH1 :: n__from:n__nil:n__cons -> c4 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons ACTIVATE :: n__from:n__nil:n__cons -> c7:c8:c9:c10 c4 :: c2:c3 -> c7:c8:c9:c10 -> c4 NIL :: c5 c5 :: c5 c6 :: c6 c7 :: c:c1 -> c7:c8:c9:c10 c8 :: c5 -> c7:c8:c9:c10 c9 :: c6 -> c7:c8:c9:c10 c10 :: c7:c8:c9:c10 from :: s:0' -> n__from:n__nil:n__cons cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length :: n__from:n__nil:n__cons -> s:0' 0' :: s:0' length1 :: n__from:n__nil:n__cons -> s:0' nil :: n__from:n__nil:n__cons hole_c:c11_11 :: c:c1 hole_s:0'2_11 :: s:0' hole_c63_11 :: c6 hole_n__from:n__nil:n__cons4_11 :: n__from:n__nil:n__cons hole_c2:c35_11 :: c2:c3 hole_c46_11 :: c4 hole_c7:c8:c9:c107_11 :: c7:c8:c9:c10 hole_c58_11 :: c5 gen_s:0'9_11 :: Nat -> s:0' gen_n__from:n__nil:n__cons10_11 :: Nat -> n__from:n__nil:n__cons ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: LENGTH, LENGTH1, length, length1 They will be analysed ascendingly in the following order: LENGTH = LENGTH1 length = length1 ---------------------------------------- (14) Obligation: Innermost TRS: Rules: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0' length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Types: FROM :: s:0' -> c:c1 c :: c6 -> c:c1 CONS :: s:0' -> n__from:n__nil:n__cons -> c6 n__from :: s:0' -> n__from:n__nil:n__cons s :: s:0' -> s:0' c1 :: c:c1 LENGTH :: n__from:n__nil:n__cons -> c2:c3 n__nil :: n__from:n__nil:n__cons c2 :: c2:c3 n__cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons c3 :: c4 -> c7:c8:c9:c10 -> c2:c3 LENGTH1 :: n__from:n__nil:n__cons -> c4 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons ACTIVATE :: n__from:n__nil:n__cons -> c7:c8:c9:c10 c4 :: c2:c3 -> c7:c8:c9:c10 -> c4 NIL :: c5 c5 :: c5 c6 :: c6 c7 :: c:c1 -> c7:c8:c9:c10 c8 :: c5 -> c7:c8:c9:c10 c9 :: c6 -> c7:c8:c9:c10 c10 :: c7:c8:c9:c10 from :: s:0' -> n__from:n__nil:n__cons cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length :: n__from:n__nil:n__cons -> s:0' 0' :: s:0' length1 :: n__from:n__nil:n__cons -> s:0' nil :: n__from:n__nil:n__cons hole_c:c11_11 :: c:c1 hole_s:0'2_11 :: s:0' hole_c63_11 :: c6 hole_n__from:n__nil:n__cons4_11 :: n__from:n__nil:n__cons hole_c2:c35_11 :: c2:c3 hole_c46_11 :: c4 hole_c7:c8:c9:c107_11 :: c7:c8:c9:c10 hole_c58_11 :: c5 gen_s:0'9_11 :: Nat -> s:0' gen_n__from:n__nil:n__cons10_11 :: Nat -> n__from:n__nil:n__cons Generator Equations: gen_s:0'9_11(0) <=> 0' gen_s:0'9_11(+(x, 1)) <=> s(gen_s:0'9_11(x)) gen_n__from:n__nil:n__cons10_11(0) <=> n__from(0') gen_n__from:n__nil:n__cons10_11(+(x, 1)) <=> n__cons(0', gen_n__from:n__nil:n__cons10_11(x)) The following defined symbols remain to be analysed: length1, LENGTH, LENGTH1, length They will be analysed ascendingly in the following order: LENGTH = LENGTH1 length = length1 ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: length1(gen_n__from:n__nil:n__cons10_11(+(1, n12_11))) -> *11_11, rt in Omega(0) Induction Base: length1(gen_n__from:n__nil:n__cons10_11(+(1, 0))) Induction Step: length1(gen_n__from:n__nil:n__cons10_11(+(1, +(n12_11, 1)))) ->_R^Omega(0) length(activate(gen_n__from:n__nil:n__cons10_11(+(1, +(n12_11, 1))))) ->_R^Omega(0) length(gen_n__from:n__nil:n__cons10_11(+(2, n12_11))) ->_R^Omega(0) s(length1(activate(gen_n__from:n__nil:n__cons10_11(+(1, n12_11))))) ->_R^Omega(0) s(length1(gen_n__from:n__nil:n__cons10_11(+(1, n12_11)))) ->_IH s(*11_11) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (16) Obligation: Innermost TRS: Rules: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0' length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Types: FROM :: s:0' -> c:c1 c :: c6 -> c:c1 CONS :: s:0' -> n__from:n__nil:n__cons -> c6 n__from :: s:0' -> n__from:n__nil:n__cons s :: s:0' -> s:0' c1 :: c:c1 LENGTH :: n__from:n__nil:n__cons -> c2:c3 n__nil :: n__from:n__nil:n__cons c2 :: c2:c3 n__cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons c3 :: c4 -> c7:c8:c9:c10 -> c2:c3 LENGTH1 :: n__from:n__nil:n__cons -> c4 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons ACTIVATE :: n__from:n__nil:n__cons -> c7:c8:c9:c10 c4 :: c2:c3 -> c7:c8:c9:c10 -> c4 NIL :: c5 c5 :: c5 c6 :: c6 c7 :: c:c1 -> c7:c8:c9:c10 c8 :: c5 -> c7:c8:c9:c10 c9 :: c6 -> c7:c8:c9:c10 c10 :: c7:c8:c9:c10 from :: s:0' -> n__from:n__nil:n__cons cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length :: n__from:n__nil:n__cons -> s:0' 0' :: s:0' length1 :: n__from:n__nil:n__cons -> s:0' nil :: n__from:n__nil:n__cons hole_c:c11_11 :: c:c1 hole_s:0'2_11 :: s:0' hole_c63_11 :: c6 hole_n__from:n__nil:n__cons4_11 :: n__from:n__nil:n__cons hole_c2:c35_11 :: c2:c3 hole_c46_11 :: c4 hole_c7:c8:c9:c107_11 :: c7:c8:c9:c10 hole_c58_11 :: c5 gen_s:0'9_11 :: Nat -> s:0' gen_n__from:n__nil:n__cons10_11 :: Nat -> n__from:n__nil:n__cons Lemmas: length1(gen_n__from:n__nil:n__cons10_11(+(1, n12_11))) -> *11_11, rt in Omega(0) Generator Equations: gen_s:0'9_11(0) <=> 0' gen_s:0'9_11(+(x, 1)) <=> s(gen_s:0'9_11(x)) gen_n__from:n__nil:n__cons10_11(0) <=> n__from(0') gen_n__from:n__nil:n__cons10_11(+(x, 1)) <=> n__cons(0', gen_n__from:n__nil:n__cons10_11(x)) The following defined symbols remain to be analysed: length, LENGTH, LENGTH1 They will be analysed ascendingly in the following order: LENGTH = LENGTH1 length = length1 ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: length(gen_n__from:n__nil:n__cons10_11(+(1, n3980_11))) -> *11_11, rt in Omega(0) Induction Base: length(gen_n__from:n__nil:n__cons10_11(+(1, 0))) Induction Step: length(gen_n__from:n__nil:n__cons10_11(+(1, +(n3980_11, 1)))) ->_R^Omega(0) s(length1(activate(gen_n__from:n__nil:n__cons10_11(+(1, n3980_11))))) ->_R^Omega(0) s(length1(gen_n__from:n__nil:n__cons10_11(+(1, n3980_11)))) ->_R^Omega(0) s(length(activate(gen_n__from:n__nil:n__cons10_11(+(1, n3980_11))))) ->_R^Omega(0) s(length(gen_n__from:n__nil:n__cons10_11(+(1, n3980_11)))) ->_IH s(*11_11) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) Obligation: Innermost TRS: Rules: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0' length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Types: FROM :: s:0' -> c:c1 c :: c6 -> c:c1 CONS :: s:0' -> n__from:n__nil:n__cons -> c6 n__from :: s:0' -> n__from:n__nil:n__cons s :: s:0' -> s:0' c1 :: c:c1 LENGTH :: n__from:n__nil:n__cons -> c2:c3 n__nil :: n__from:n__nil:n__cons c2 :: c2:c3 n__cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons c3 :: c4 -> c7:c8:c9:c10 -> c2:c3 LENGTH1 :: n__from:n__nil:n__cons -> c4 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons ACTIVATE :: n__from:n__nil:n__cons -> c7:c8:c9:c10 c4 :: c2:c3 -> c7:c8:c9:c10 -> c4 NIL :: c5 c5 :: c5 c6 :: c6 c7 :: c:c1 -> c7:c8:c9:c10 c8 :: c5 -> c7:c8:c9:c10 c9 :: c6 -> c7:c8:c9:c10 c10 :: c7:c8:c9:c10 from :: s:0' -> n__from:n__nil:n__cons cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length :: n__from:n__nil:n__cons -> s:0' 0' :: s:0' length1 :: n__from:n__nil:n__cons -> s:0' nil :: n__from:n__nil:n__cons hole_c:c11_11 :: c:c1 hole_s:0'2_11 :: s:0' hole_c63_11 :: c6 hole_n__from:n__nil:n__cons4_11 :: n__from:n__nil:n__cons hole_c2:c35_11 :: c2:c3 hole_c46_11 :: c4 hole_c7:c8:c9:c107_11 :: c7:c8:c9:c10 hole_c58_11 :: c5 gen_s:0'9_11 :: Nat -> s:0' gen_n__from:n__nil:n__cons10_11 :: Nat -> n__from:n__nil:n__cons Lemmas: length1(gen_n__from:n__nil:n__cons10_11(+(1, n12_11))) -> *11_11, rt in Omega(0) length(gen_n__from:n__nil:n__cons10_11(+(1, n3980_11))) -> *11_11, rt in Omega(0) Generator Equations: gen_s:0'9_11(0) <=> 0' gen_s:0'9_11(+(x, 1)) <=> s(gen_s:0'9_11(x)) gen_n__from:n__nil:n__cons10_11(0) <=> n__from(0') gen_n__from:n__nil:n__cons10_11(+(x, 1)) <=> n__cons(0', gen_n__from:n__nil:n__cons10_11(x)) The following defined symbols remain to be analysed: length1, LENGTH, LENGTH1 They will be analysed ascendingly in the following order: LENGTH = LENGTH1 length = length1 ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: length1(gen_n__from:n__nil:n__cons10_11(+(1, n8390_11))) -> *11_11, rt in Omega(0) Induction Base: length1(gen_n__from:n__nil:n__cons10_11(+(1, 0))) Induction Step: length1(gen_n__from:n__nil:n__cons10_11(+(1, +(n8390_11, 1)))) ->_R^Omega(0) length(activate(gen_n__from:n__nil:n__cons10_11(+(1, +(n8390_11, 1))))) ->_R^Omega(0) length(gen_n__from:n__nil:n__cons10_11(+(2, n8390_11))) ->_R^Omega(0) s(length1(activate(gen_n__from:n__nil:n__cons10_11(+(1, n8390_11))))) ->_R^Omega(0) s(length1(gen_n__from:n__nil:n__cons10_11(+(1, n8390_11)))) ->_IH s(*11_11) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0' length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Types: FROM :: s:0' -> c:c1 c :: c6 -> c:c1 CONS :: s:0' -> n__from:n__nil:n__cons -> c6 n__from :: s:0' -> n__from:n__nil:n__cons s :: s:0' -> s:0' c1 :: c:c1 LENGTH :: n__from:n__nil:n__cons -> c2:c3 n__nil :: n__from:n__nil:n__cons c2 :: c2:c3 n__cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons c3 :: c4 -> c7:c8:c9:c10 -> c2:c3 LENGTH1 :: n__from:n__nil:n__cons -> c4 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons ACTIVATE :: n__from:n__nil:n__cons -> c7:c8:c9:c10 c4 :: c2:c3 -> c7:c8:c9:c10 -> c4 NIL :: c5 c5 :: c5 c6 :: c6 c7 :: c:c1 -> c7:c8:c9:c10 c8 :: c5 -> c7:c8:c9:c10 c9 :: c6 -> c7:c8:c9:c10 c10 :: c7:c8:c9:c10 from :: s:0' -> n__from:n__nil:n__cons cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length :: n__from:n__nil:n__cons -> s:0' 0' :: s:0' length1 :: n__from:n__nil:n__cons -> s:0' nil :: n__from:n__nil:n__cons hole_c:c11_11 :: c:c1 hole_s:0'2_11 :: s:0' hole_c63_11 :: c6 hole_n__from:n__nil:n__cons4_11 :: n__from:n__nil:n__cons hole_c2:c35_11 :: c2:c3 hole_c46_11 :: c4 hole_c7:c8:c9:c107_11 :: c7:c8:c9:c10 hole_c58_11 :: c5 gen_s:0'9_11 :: Nat -> s:0' gen_n__from:n__nil:n__cons10_11 :: Nat -> n__from:n__nil:n__cons Lemmas: length1(gen_n__from:n__nil:n__cons10_11(+(1, n8390_11))) -> *11_11, rt in Omega(0) length(gen_n__from:n__nil:n__cons10_11(+(1, n3980_11))) -> *11_11, rt in Omega(0) Generator Equations: gen_s:0'9_11(0) <=> 0' gen_s:0'9_11(+(x, 1)) <=> s(gen_s:0'9_11(x)) gen_n__from:n__nil:n__cons10_11(0) <=> n__from(0') gen_n__from:n__nil:n__cons10_11(+(x, 1)) <=> n__cons(0', gen_n__from:n__nil:n__cons10_11(x)) The following defined symbols remain to be analysed: LENGTH1, LENGTH They will be analysed ascendingly in the following order: LENGTH = LENGTH1 ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, n16176_11))) -> *11_11, rt in Omega(n16176_11) Induction Base: LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, 0))) Induction Step: LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, +(n16176_11, 1)))) ->_R^Omega(1) c4(LENGTH(activate(gen_n__from:n__nil:n__cons10_11(+(1, +(n16176_11, 1))))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, +(n16176_11, 1))))) ->_R^Omega(0) c4(LENGTH(gen_n__from:n__nil:n__cons10_11(+(2, n16176_11))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(2, n16176_11)))) ->_R^Omega(1) c4(c3(LENGTH1(activate(gen_n__from:n__nil:n__cons10_11(+(1, n16176_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n16176_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(2, n16176_11)))) ->_R^Omega(0) c4(c3(LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, n16176_11))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n16176_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(2, n16176_11)))) ->_IH c4(c3(*11_11, ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n16176_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(2, n16176_11)))) ->_R^Omega(1) c4(c3(*11_11, c10), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(2, n16176_11)))) ->_R^Omega(1) c4(c3(*11_11, c10), c10) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Complex Obligation (BEST) ---------------------------------------- (23) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0' length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Types: FROM :: s:0' -> c:c1 c :: c6 -> c:c1 CONS :: s:0' -> n__from:n__nil:n__cons -> c6 n__from :: s:0' -> n__from:n__nil:n__cons s :: s:0' -> s:0' c1 :: c:c1 LENGTH :: n__from:n__nil:n__cons -> c2:c3 n__nil :: n__from:n__nil:n__cons c2 :: c2:c3 n__cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons c3 :: c4 -> c7:c8:c9:c10 -> c2:c3 LENGTH1 :: n__from:n__nil:n__cons -> c4 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons ACTIVATE :: n__from:n__nil:n__cons -> c7:c8:c9:c10 c4 :: c2:c3 -> c7:c8:c9:c10 -> c4 NIL :: c5 c5 :: c5 c6 :: c6 c7 :: c:c1 -> c7:c8:c9:c10 c8 :: c5 -> c7:c8:c9:c10 c9 :: c6 -> c7:c8:c9:c10 c10 :: c7:c8:c9:c10 from :: s:0' -> n__from:n__nil:n__cons cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length :: n__from:n__nil:n__cons -> s:0' 0' :: s:0' length1 :: n__from:n__nil:n__cons -> s:0' nil :: n__from:n__nil:n__cons hole_c:c11_11 :: c:c1 hole_s:0'2_11 :: s:0' hole_c63_11 :: c6 hole_n__from:n__nil:n__cons4_11 :: n__from:n__nil:n__cons hole_c2:c35_11 :: c2:c3 hole_c46_11 :: c4 hole_c7:c8:c9:c107_11 :: c7:c8:c9:c10 hole_c58_11 :: c5 gen_s:0'9_11 :: Nat -> s:0' gen_n__from:n__nil:n__cons10_11 :: Nat -> n__from:n__nil:n__cons Lemmas: length1(gen_n__from:n__nil:n__cons10_11(+(1, n8390_11))) -> *11_11, rt in Omega(0) length(gen_n__from:n__nil:n__cons10_11(+(1, n3980_11))) -> *11_11, rt in Omega(0) Generator Equations: gen_s:0'9_11(0) <=> 0' gen_s:0'9_11(+(x, 1)) <=> s(gen_s:0'9_11(x)) gen_n__from:n__nil:n__cons10_11(0) <=> n__from(0') gen_n__from:n__nil:n__cons10_11(+(x, 1)) <=> n__cons(0', gen_n__from:n__nil:n__cons10_11(x)) The following defined symbols remain to be analysed: LENGTH1, LENGTH They will be analysed ascendingly in the following order: LENGTH = LENGTH1 ---------------------------------------- (24) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (25) BOUNDS(n^1, INF) ---------------------------------------- (26) Obligation: Innermost TRS: Rules: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0' length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Types: FROM :: s:0' -> c:c1 c :: c6 -> c:c1 CONS :: s:0' -> n__from:n__nil:n__cons -> c6 n__from :: s:0' -> n__from:n__nil:n__cons s :: s:0' -> s:0' c1 :: c:c1 LENGTH :: n__from:n__nil:n__cons -> c2:c3 n__nil :: n__from:n__nil:n__cons c2 :: c2:c3 n__cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons c3 :: c4 -> c7:c8:c9:c10 -> c2:c3 LENGTH1 :: n__from:n__nil:n__cons -> c4 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons ACTIVATE :: n__from:n__nil:n__cons -> c7:c8:c9:c10 c4 :: c2:c3 -> c7:c8:c9:c10 -> c4 NIL :: c5 c5 :: c5 c6 :: c6 c7 :: c:c1 -> c7:c8:c9:c10 c8 :: c5 -> c7:c8:c9:c10 c9 :: c6 -> c7:c8:c9:c10 c10 :: c7:c8:c9:c10 from :: s:0' -> n__from:n__nil:n__cons cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length :: n__from:n__nil:n__cons -> s:0' 0' :: s:0' length1 :: n__from:n__nil:n__cons -> s:0' nil :: n__from:n__nil:n__cons hole_c:c11_11 :: c:c1 hole_s:0'2_11 :: s:0' hole_c63_11 :: c6 hole_n__from:n__nil:n__cons4_11 :: n__from:n__nil:n__cons hole_c2:c35_11 :: c2:c3 hole_c46_11 :: c4 hole_c7:c8:c9:c107_11 :: c7:c8:c9:c10 hole_c58_11 :: c5 gen_s:0'9_11 :: Nat -> s:0' gen_n__from:n__nil:n__cons10_11 :: Nat -> n__from:n__nil:n__cons Lemmas: length1(gen_n__from:n__nil:n__cons10_11(+(1, n8390_11))) -> *11_11, rt in Omega(0) length(gen_n__from:n__nil:n__cons10_11(+(1, n3980_11))) -> *11_11, rt in Omega(0) LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, n16176_11))) -> *11_11, rt in Omega(n16176_11) Generator Equations: gen_s:0'9_11(0) <=> 0' gen_s:0'9_11(+(x, 1)) <=> s(gen_s:0'9_11(x)) gen_n__from:n__nil:n__cons10_11(0) <=> n__from(0') gen_n__from:n__nil:n__cons10_11(+(x, 1)) <=> n__cons(0', gen_n__from:n__nil:n__cons10_11(x)) The following defined symbols remain to be analysed: LENGTH They will be analysed ascendingly in the following order: LENGTH = LENGTH1 ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LENGTH(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11))) -> *11_11, rt in Omega(n36375_11) Induction Base: LENGTH(gen_n__from:n__nil:n__cons10_11(+(1, 0))) Induction Step: LENGTH(gen_n__from:n__nil:n__cons10_11(+(1, +(n36375_11, 1)))) ->_R^Omega(1) c3(LENGTH1(activate(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))) ->_R^Omega(0) c3(LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))) ->_R^Omega(1) c3(c4(LENGTH(activate(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))) ->_R^Omega(0) c3(c4(LENGTH(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))) ->_IH c3(c4(*11_11, ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))) ->_R^Omega(1) c3(c4(*11_11, c10), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11)))) ->_R^Omega(1) c3(c4(*11_11, c10), c10) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Obligation: Innermost TRS: Rules: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0' length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Types: FROM :: s:0' -> c:c1 c :: c6 -> c:c1 CONS :: s:0' -> n__from:n__nil:n__cons -> c6 n__from :: s:0' -> n__from:n__nil:n__cons s :: s:0' -> s:0' c1 :: c:c1 LENGTH :: n__from:n__nil:n__cons -> c2:c3 n__nil :: n__from:n__nil:n__cons c2 :: c2:c3 n__cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons c3 :: c4 -> c7:c8:c9:c10 -> c2:c3 LENGTH1 :: n__from:n__nil:n__cons -> c4 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons ACTIVATE :: n__from:n__nil:n__cons -> c7:c8:c9:c10 c4 :: c2:c3 -> c7:c8:c9:c10 -> c4 NIL :: c5 c5 :: c5 c6 :: c6 c7 :: c:c1 -> c7:c8:c9:c10 c8 :: c5 -> c7:c8:c9:c10 c9 :: c6 -> c7:c8:c9:c10 c10 :: c7:c8:c9:c10 from :: s:0' -> n__from:n__nil:n__cons cons :: s:0' -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length :: n__from:n__nil:n__cons -> s:0' 0' :: s:0' length1 :: n__from:n__nil:n__cons -> s:0' nil :: n__from:n__nil:n__cons hole_c:c11_11 :: c:c1 hole_s:0'2_11 :: s:0' hole_c63_11 :: c6 hole_n__from:n__nil:n__cons4_11 :: n__from:n__nil:n__cons hole_c2:c35_11 :: c2:c3 hole_c46_11 :: c4 hole_c7:c8:c9:c107_11 :: c7:c8:c9:c10 hole_c58_11 :: c5 gen_s:0'9_11 :: Nat -> s:0' gen_n__from:n__nil:n__cons10_11 :: Nat -> n__from:n__nil:n__cons Lemmas: length1(gen_n__from:n__nil:n__cons10_11(+(1, n8390_11))) -> *11_11, rt in Omega(0) length(gen_n__from:n__nil:n__cons10_11(+(1, n3980_11))) -> *11_11, rt in Omega(0) LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, n16176_11))) -> *11_11, rt in Omega(n16176_11) LENGTH(gen_n__from:n__nil:n__cons10_11(+(1, n36375_11))) -> *11_11, rt in Omega(n36375_11) Generator Equations: gen_s:0'9_11(0) <=> 0' gen_s:0'9_11(+(x, 1)) <=> s(gen_s:0'9_11(x)) gen_n__from:n__nil:n__cons10_11(0) <=> n__from(0') gen_n__from:n__nil:n__cons10_11(+(x, 1)) <=> n__cons(0', gen_n__from:n__nil:n__cons10_11(x)) The following defined symbols remain to be analysed: LENGTH1 They will be analysed ascendingly in the following order: LENGTH = LENGTH1 ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, n47941_11))) -> *11_11, rt in Omega(n47941_11) Induction Base: LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, 0))) Induction Step: LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, +(n47941_11, 1)))) ->_R^Omega(1) c4(LENGTH(activate(gen_n__from:n__nil:n__cons10_11(+(1, +(n47941_11, 1))))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, +(n47941_11, 1))))) ->_R^Omega(0) c4(LENGTH(gen_n__from:n__nil:n__cons10_11(+(2, n47941_11))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(2, n47941_11)))) ->_R^Omega(1) c4(c3(LENGTH1(activate(gen_n__from:n__nil:n__cons10_11(+(1, n47941_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n47941_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(2, n47941_11)))) ->_R^Omega(0) c4(c3(LENGTH1(gen_n__from:n__nil:n__cons10_11(+(1, n47941_11))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n47941_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(2, n47941_11)))) ->_IH c4(c3(*11_11, ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(1, n47941_11)))), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(2, n47941_11)))) ->_R^Omega(1) c4(c3(*11_11, c10), ACTIVATE(gen_n__from:n__nil:n__cons10_11(+(2, n47941_11)))) ->_R^Omega(1) c4(c3(*11_11, c10), c10) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (30) BOUNDS(1, INF) ---------------------------------------- (31) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (32) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0 length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Tuples: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 S tuples: FROM(z0) -> c(CONS(z0, n__from(s(z0)))) FROM(z0) -> c1 LENGTH(n__nil) -> c2 LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) NIL -> c5 CONS(z0, z1) -> c6 ACTIVATE(n__from(z0)) -> c7(FROM(z0)) ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) ACTIVATE(z0) -> c10 K tuples:none Defined Rule Symbols: from_1, length_1, length1_1, nil, cons_2, activate_1 Defined Pair Symbols: FROM_1, LENGTH_1, LENGTH1_1, NIL, CONS_2, ACTIVATE_1 Compound Symbols: c_1, c1, c2, c3_2, c4_2, c5, c6, c7_1, c8_1, c9_1, c10 ---------------------------------------- (33) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 9 trailing nodes: ACTIVATE(n__nil) -> c8(NIL) ACTIVATE(n__from(z0)) -> c7(FROM(z0)) LENGTH(n__nil) -> c2 FROM(z0) -> c1 ACTIVATE(n__cons(z0, z1)) -> c9(CONS(z0, z1)) FROM(z0) -> c(CONS(z0, n__from(s(z0)))) ACTIVATE(z0) -> c10 NIL -> c5 CONS(z0, z1) -> c6 ---------------------------------------- (34) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0 length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Tuples: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) S tuples: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1)), ACTIVATE(z1)) LENGTH1(z0) -> c4(LENGTH(activate(z0)), ACTIVATE(z0)) K tuples:none Defined Rule Symbols: from_1, length_1, length1_1, nil, cons_2, activate_1 Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_2, c4_2 ---------------------------------------- (35) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (36) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) length(n__nil) -> 0 length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 Tuples: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) LENGTH1(z0) -> c4(LENGTH(activate(z0))) S tuples: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) LENGTH1(z0) -> c4(LENGTH(activate(z0))) K tuples:none Defined Rule Symbols: from_1, length_1, length1_1, nil, cons_2, activate_1 Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (37) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: length(n__nil) -> 0 length(n__cons(z0, z1)) -> s(length1(activate(z1))) length1(z0) -> length(activate(z0)) ---------------------------------------- (38) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil Tuples: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) LENGTH1(z0) -> c4(LENGTH(activate(z0))) S tuples: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) LENGTH1(z0) -> c4(LENGTH(activate(z0))) K tuples:none Defined Rule Symbols: activate_1, from_1, cons_2, nil Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (39) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (40) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) LENGTH1(z0) -> c4(LENGTH(activate(z0))) The (relative) TRS S consists of the following rules: activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil Rewrite Strategy: INNERMOST ---------------------------------------- (41) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (42) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) LENGTH1(z0) -> c4(LENGTH(activate(z0))) activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (43) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (44) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) [1] LENGTH1(z0) -> c4(LENGTH(activate(z0))) [1] activate(n__from(z0)) -> from(z0) [0] activate(n__nil) -> nil [0] activate(n__cons(z0, z1)) -> cons(z0, z1) [0] activate(z0) -> z0 [0] from(z0) -> cons(z0, n__from(s(z0))) [0] from(z0) -> n__from(z0) [0] cons(z0, z1) -> n__cons(z0, z1) [0] nil -> n__nil [0] Rewrite Strategy: INNERMOST ---------------------------------------- (45) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (46) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) [1] LENGTH1(z0) -> c4(LENGTH(activate(z0))) [1] activate(n__from(z0)) -> from(z0) [0] activate(n__nil) -> nil [0] activate(n__cons(z0, z1)) -> cons(z0, z1) [0] activate(z0) -> z0 [0] from(z0) -> cons(z0, n__from(s(z0))) [0] from(z0) -> n__from(z0) [0] cons(z0, z1) -> n__cons(z0, z1) [0] nil -> n__nil [0] The TRS has the following type information: LENGTH :: n__cons:n__from:n__nil -> c3 n__cons :: s -> n__cons:n__from:n__nil -> n__cons:n__from:n__nil c3 :: c4 -> c3 LENGTH1 :: n__cons:n__from:n__nil -> c4 activate :: n__cons:n__from:n__nil -> n__cons:n__from:n__nil c4 :: c3 -> c4 n__from :: s -> n__cons:n__from:n__nil from :: s -> n__cons:n__from:n__nil n__nil :: n__cons:n__from:n__nil nil :: n__cons:n__from:n__nil cons :: s -> n__cons:n__from:n__nil -> n__cons:n__from:n__nil s :: s -> s Rewrite Strategy: INNERMOST ---------------------------------------- (47) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: LENGTH_1 LENGTH1_1 (c) The following functions are completely defined: activate_1 from_1 cons_2 nil Due to the following rules being added: activate(v0) -> n__nil [0] from(v0) -> n__nil [0] cons(v0, v1) -> n__nil [0] nil -> n__nil [0] And the following fresh constants: const, const1, const2 ---------------------------------------- (48) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) [1] LENGTH1(z0) -> c4(LENGTH(activate(z0))) [1] activate(n__from(z0)) -> from(z0) [0] activate(n__nil) -> nil [0] activate(n__cons(z0, z1)) -> cons(z0, z1) [0] activate(z0) -> z0 [0] from(z0) -> cons(z0, n__from(s(z0))) [0] from(z0) -> n__from(z0) [0] cons(z0, z1) -> n__cons(z0, z1) [0] nil -> n__nil [0] activate(v0) -> n__nil [0] from(v0) -> n__nil [0] cons(v0, v1) -> n__nil [0] nil -> n__nil [0] The TRS has the following type information: LENGTH :: n__cons:n__from:n__nil -> c3 n__cons :: s -> n__cons:n__from:n__nil -> n__cons:n__from:n__nil c3 :: c4 -> c3 LENGTH1 :: n__cons:n__from:n__nil -> c4 activate :: n__cons:n__from:n__nil -> n__cons:n__from:n__nil c4 :: c3 -> c4 n__from :: s -> n__cons:n__from:n__nil from :: s -> n__cons:n__from:n__nil n__nil :: n__cons:n__from:n__nil nil :: n__cons:n__from:n__nil cons :: s -> n__cons:n__from:n__nil -> n__cons:n__from:n__nil s :: s -> s const :: c3 const1 :: s const2 :: c4 Rewrite Strategy: INNERMOST ---------------------------------------- (49) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (50) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LENGTH(n__cons(z0, n__from(z0'))) -> c3(LENGTH1(from(z0'))) [1] LENGTH(n__cons(z0, n__nil)) -> c3(LENGTH1(nil)) [1] LENGTH(n__cons(z0, n__cons(z0'', z1'))) -> c3(LENGTH1(cons(z0'', z1'))) [1] LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(z1)) [1] LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(n__nil)) [1] LENGTH1(n__from(z01)) -> c4(LENGTH(from(z01))) [1] LENGTH1(n__nil) -> c4(LENGTH(nil)) [1] LENGTH1(n__cons(z02, z1'')) -> c4(LENGTH(cons(z02, z1''))) [1] LENGTH1(z0) -> c4(LENGTH(z0)) [1] LENGTH1(z0) -> c4(LENGTH(n__nil)) [1] activate(n__from(z0)) -> from(z0) [0] activate(n__nil) -> nil [0] activate(n__cons(z0, z1)) -> cons(z0, z1) [0] activate(z0) -> z0 [0] from(z0) -> cons(z0, n__from(s(z0))) [0] from(z0) -> n__from(z0) [0] cons(z0, z1) -> n__cons(z0, z1) [0] nil -> n__nil [0] activate(v0) -> n__nil [0] from(v0) -> n__nil [0] cons(v0, v1) -> n__nil [0] nil -> n__nil [0] The TRS has the following type information: LENGTH :: n__cons:n__from:n__nil -> c3 n__cons :: s -> n__cons:n__from:n__nil -> n__cons:n__from:n__nil c3 :: c4 -> c3 LENGTH1 :: n__cons:n__from:n__nil -> c4 activate :: n__cons:n__from:n__nil -> n__cons:n__from:n__nil c4 :: c3 -> c4 n__from :: s -> n__cons:n__from:n__nil from :: s -> n__cons:n__from:n__nil n__nil :: n__cons:n__from:n__nil nil :: n__cons:n__from:n__nil cons :: s -> n__cons:n__from:n__nil -> n__cons:n__from:n__nil s :: s -> s const :: c3 const1 :: s const2 :: c4 Rewrite Strategy: INNERMOST ---------------------------------------- (51) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: n__nil => 0 const => 0 const1 => 0 const2 => 0 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(nil) :|: z0 >= 0, z = 1 + z0 + 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(from(z0')) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', z1')) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z0) :|: z = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(nil) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(from(z01)) :|: z01 >= 0, z = 1 + z01 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z02, z1'')) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> nil :|: z = 0 activate(z) -{ 0 }-> from(z0) :|: z = 1 + z0, z0 >= 0 activate(z) -{ 0 }-> cons(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 cons(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 cons(z, z') -{ 0 }-> 1 + z0 + z1 :|: z = z0, z1 >= 0, z' = z1, z0 >= 0 from(z) -{ 0 }-> cons(z0, 1 + (1 + z0)) :|: z = z0, z0 >= 0 from(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 from(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 nil -{ 0 }-> 0 :|: ---------------------------------------- (53) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: cons(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 cons(z, z') -{ 0 }-> 1 + z0 + z1 :|: z = z0, z1 >= 0, z' = z1, z0 >= 0 nil -{ 0 }-> 0 :|: from(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 from(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 from(z) -{ 0 }-> cons(z0, 1 + (1 + z0)) :|: z = z0, z0 >= 0 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0 >= 0, z = 1 + z0 + 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z0) :|: z = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z01 >= 0, z = 1 + z01, z01 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z01 >= 0, z = 1 + z01, v0 >= 0, z01 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z01 >= 0, z = 1 + z01, z01 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z = 1 + z0, z0 >= 0, z0 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z = 1 + z0, z0 >= 0, v0 >= 0, z0 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z = 1 + z0, z0 >= 0, z0 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 cons(z, z') -{ 0 }-> 1 + z0 + z1 :|: z = z0, z1 >= 0, z' = z1, z0 >= 0 from(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 from(z) -{ 0 }-> 0 :|: z = z0, z0 >= 0, v0 >= 0, v1 >= 0, z0 = v0, 1 + (1 + z0) = v1 from(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 from(z) -{ 0 }-> 1 + z0' + z1 :|: z = z0, z0 >= 0, z0 = z0', z1 >= 0, 1 + (1 + z0) = z1, z0' >= 0 nil -{ 0 }-> 0 :|: ---------------------------------------- (55) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: ---------------------------------------- (57) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { nil } { from } { cons } { activate } { LENGTH, LENGTH1 } ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {nil}, {from}, {cons}, {activate}, {LENGTH,LENGTH1} ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {nil}, {from}, {cons}, {activate}, {LENGTH,LENGTH1} ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: nil after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {nil}, {from}, {cons}, {activate}, {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: ?, size: O(1) [0] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: nil after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {from}, {cons}, {activate}, {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {from}, {cons}, {activate}, {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {from}, {cons}, {activate}, {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: ?, size: O(n^1) [3 + 2*z] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {cons}, {activate}, {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] ---------------------------------------- (71) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {cons}, {activate}, {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cons after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z + z' ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {cons}, {activate}, {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] cons: runtime: ?, size: O(n^1) [1 + z + z'] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cons after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(cons(z0'', 1 + (1 + z0''))) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(cons(z0, 1 + (1 + z0))) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> cons(z0', 1 + (1 + z0')) :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {activate}, {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [0], size: O(n^1) [1 + z + z'] ---------------------------------------- (77) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(s) :|: s >= 0, s <= z0'' + (1 + (1 + z0'')) + 1, z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(s') :|: s' >= 0, s' <= z0 + (1 + (1 + z0)) + 1, z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= z0' + (1 + (1 + z0')) + 1, z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {activate}, {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [0], size: O(n^1) [1 + z + z'] ---------------------------------------- (79) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (80) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(s) :|: s >= 0, s <= z0'' + (1 + (1 + z0'')) + 1, z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(s') :|: s' >= 0, s' <= z0 + (1 + (1 + z0)) + 1, z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= z0' + (1 + (1 + z0')) + 1, z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {activate}, {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [0], size: O(n^1) [1 + z + z'] activate: runtime: ?, size: O(n^1) [1 + 2*z] ---------------------------------------- (81) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(s) :|: s >= 0, s <= z0'' + (1 + (1 + z0'')) + 1, z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(s') :|: s' >= 0, s' <= z0 + (1 + (1 + z0)) + 1, z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= z0' + (1 + (1 + z0')) + 1, z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [0], size: O(n^1) [1 + z + z'] activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] ---------------------------------------- (83) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(s) :|: s >= 0, s <= z0'' + (1 + (1 + z0'')) + 1, z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(s') :|: s' >= 0, s' <= z0 + (1 + (1 + z0)) + 1, z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= z0' + (1 + (1 + z0')) + 1, z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [0], size: O(n^1) [1 + z + z'] activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] ---------------------------------------- (85) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: LENGTH after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: LENGTH1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (86) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(s) :|: s >= 0, s <= z0'' + (1 + (1 + z0'')) + 1, z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(s') :|: s' >= 0, s' <= z0 + (1 + (1 + z0)) + 1, z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= z0' + (1 + (1 + z0')) + 1, z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [0], size: O(n^1) [1 + z + z'] activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] LENGTH: runtime: ?, size: O(1) [0] LENGTH1: runtime: ?, size: O(1) [1] ---------------------------------------- (87) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: LENGTH after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (88) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 1 }-> 1 + LENGTH1(s) :|: s >= 0, s <= z0'' + (1 + (1 + z0'')) + 1, z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, v0 >= 0, v1 >= 0, z0'' = v0, z1' = v1 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z - 1 >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(0) :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, v0 >= 0, z0' = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0'') :|: z0' >= 0, z = 1 + z0 + (1 + z0'), z0 >= 0, z0' = z0'', z0'' >= 0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(1 + z0' + z1) :|: z = 1 + z0 + (1 + z0'' + z1'), z1' >= 0, z0 >= 0, z0'' >= 0, z0'' = z0', z1 >= 0, z1' = z1, z0' >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(s') :|: s' >= 0, s' <= z0 + (1 + (1 + z0)) + 1, z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(z) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, v0 >= 0, v1 >= 0, z02 = v0, z1'' = v1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z = 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(0) :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0) :|: z - 1 >= 0, z - 1 = z0, z0 >= 0 LENGTH1(z) -{ 1 }-> 1 + LENGTH(1 + z0 + z1) :|: z02 >= 0, z = 1 + z02 + z1'', z1'' >= 0, z02 = z0, z1 >= 0, z1'' = z1, z0 >= 0 activate(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= z0' + (1 + (1 + z0')) + 1, z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, v0 >= 0, v1 >= 0, z0 = v0, z1 = v1 activate(z) -{ 0 }-> 0 :|: z = 0 activate(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, z - 1 = v0 activate(z) -{ 0 }-> 1 + z0' :|: z - 1 >= 0, z - 1 = z0', z0' >= 0 activate(z) -{ 0 }-> 1 + z0' + z1' :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z0 = z0', z1' >= 0, z1 = z1', z0' >= 0 cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cons(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0 from(z) -{ 0 }-> 0 :|: z >= 0, v1 >= 0, 1 + (1 + z) = v1 from(z) -{ 0 }-> 1 + z :|: z >= 0 from(z) -{ 0 }-> 1 + z + z1 :|: z >= 0, z1 >= 0, 1 + (1 + z) = z1 nil -{ 0 }-> 0 :|: Function symbols to be analyzed: {LENGTH,LENGTH1} Previous analysis results are: nil: runtime: O(1) [0], size: O(1) [0] from: runtime: O(1) [0], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [0], size: O(n^1) [1 + z + z'] activate: runtime: O(1) [0], size: O(n^1) [1 + 2*z] LENGTH: runtime: INF, size: O(1) [0] LENGTH1: runtime: ?, size: O(1) [1] ---------------------------------------- (89) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: activate(v0) -> null_activate [0] from(v0) -> null_from [0] cons(v0, v1) -> null_cons [0] nil -> null_nil [0] LENGTH(v0) -> null_LENGTH [0] And the following fresh constants: null_activate, null_from, null_cons, null_nil, null_LENGTH, const, const1 ---------------------------------------- (90) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) [1] LENGTH1(z0) -> c4(LENGTH(activate(z0))) [1] activate(n__from(z0)) -> from(z0) [0] activate(n__nil) -> nil [0] activate(n__cons(z0, z1)) -> cons(z0, z1) [0] activate(z0) -> z0 [0] from(z0) -> cons(z0, n__from(s(z0))) [0] from(z0) -> n__from(z0) [0] cons(z0, z1) -> n__cons(z0, z1) [0] nil -> n__nil [0] activate(v0) -> null_activate [0] from(v0) -> null_from [0] cons(v0, v1) -> null_cons [0] nil -> null_nil [0] LENGTH(v0) -> null_LENGTH [0] The TRS has the following type information: LENGTH :: n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil -> c3:null_LENGTH n__cons :: s -> n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil -> n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil c3 :: c4 -> c3:null_LENGTH LENGTH1 :: n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil -> c4 activate :: n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil -> n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil c4 :: c3:null_LENGTH -> c4 n__from :: s -> n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil from :: s -> n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil n__nil :: n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil nil :: n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil cons :: s -> n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil -> n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil s :: s -> s null_activate :: n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil null_from :: n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil null_cons :: n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil null_nil :: n__cons:n__from:n__nil:null_activate:null_from:null_cons:null_nil null_LENGTH :: c3:null_LENGTH const :: s const1 :: c4 Rewrite Strategy: INNERMOST ---------------------------------------- (91) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: n__nil => 0 null_activate => 0 null_from => 0 null_cons => 0 null_nil => 0 null_LENGTH => 0 const => 0 const1 => 0 ---------------------------------------- (92) Obligation: Complexity RNTS consisting of the following rules: LENGTH(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH1(activate(z1)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 LENGTH1(z) -{ 1 }-> 1 + LENGTH(activate(z0)) :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> nil :|: z = 0 activate(z) -{ 0 }-> from(z0) :|: z = 1 + z0, z0 >= 0 activate(z) -{ 0 }-> cons(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 cons(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 cons(z, z') -{ 0 }-> 1 + z0 + z1 :|: z = z0, z1 >= 0, z' = z1, z0 >= 0 from(z) -{ 0 }-> cons(z0, 1 + (1 + z0)) :|: z = z0, z0 >= 0 from(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 from(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 nil -{ 0 }-> 0 :|: Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (93) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH(n__cons(z0, z1)) -> c3(LENGTH1(activate(z1))) by LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) ---------------------------------------- (94) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil Tuples: LENGTH1(z0) -> c4(LENGTH(activate(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) S tuples: LENGTH1(z0) -> c4(LENGTH(activate(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) K tuples:none Defined Rule Symbols: activate_1, from_1, cons_2, nil Defined Pair Symbols: LENGTH1_1, LENGTH_1 Compound Symbols: c4_1, c3_1 ---------------------------------------- (95) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH1(z0) -> c4(LENGTH(activate(z0))) by LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) ---------------------------------------- (96) Obligation: Complexity Dependency Tuples Problem Rules: activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) K tuples:none Defined Rule Symbols: activate_1, from_1, cons_2, nil Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (97) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: activate(n__from(z0)) -> from(z0) activate(n__nil) -> nil activate(n__cons(z0, z1)) -> cons(z0, z1) activate(z0) -> z0 ---------------------------------------- (98) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) K tuples:none Defined Rule Symbols: from_1, cons_2, nil Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (99) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(from(z0))) by LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) ---------------------------------------- (100) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil Tuples: LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) S tuples: LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) K tuples:none Defined Rule Symbols: from_1, cons_2, nil Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (101) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(nil)) by LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) ---------------------------------------- (102) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil Tuples: LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) S tuples: LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) K tuples:none Defined Rule Symbols: from_1, cons_2, nil Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (103) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(cons(z0, z1))) by LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) ---------------------------------------- (104) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) K tuples:none Defined Rule Symbols: from_1, cons_2, nil Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (105) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH1(n__from(z0)) -> c4(LENGTH(from(z0))) by LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__from(z0))) ---------------------------------------- (106) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__from(z0))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__from(z0))) K tuples:none Defined Rule Symbols: from_1, cons_2, nil Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (107) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: LENGTH1(n__from(z0)) -> c4(LENGTH(n__from(z0))) ---------------------------------------- (108) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) cons(z0, z1) -> n__cons(z0, z1) nil -> n__nil Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) K tuples:none Defined Rule Symbols: from_1, cons_2, nil Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (109) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) ---------------------------------------- (110) Obligation: Complexity Dependency Tuples Problem Rules: nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__nil) -> c4(LENGTH(nil)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) K tuples:none Defined Rule Symbols: nil, cons_2 Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (111) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH1(n__nil) -> c4(LENGTH(nil)) by LENGTH1(n__nil) -> c4(LENGTH(n__nil)) ---------------------------------------- (112) Obligation: Complexity Dependency Tuples Problem Rules: nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) LENGTH1(n__nil) -> c4(LENGTH(n__nil)) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) LENGTH1(n__nil) -> c4(LENGTH(n__nil)) K tuples:none Defined Rule Symbols: nil, cons_2 Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (113) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: LENGTH1(n__nil) -> c4(LENGTH(n__nil)) ---------------------------------------- (114) Obligation: Complexity Dependency Tuples Problem Rules: nil -> n__nil cons(z0, z1) -> n__cons(z0, z1) Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) K tuples:none Defined Rule Symbols: nil, cons_2 Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (115) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: nil -> n__nil ---------------------------------------- (116) Obligation: Complexity Dependency Tuples Problem Rules: cons(z0, z1) -> n__cons(z0, z1) Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) K tuples:none Defined Rule Symbols: cons_2 Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (117) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(cons(z0, z1))) by LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) ---------------------------------------- (118) Obligation: Complexity Dependency Tuples Problem Rules: cons(z0, z1) -> n__cons(z0, z1) Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) K tuples:none Defined Rule Symbols: cons_2 Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (119) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(cons(z0, n__from(s(z0))))) by LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) ---------------------------------------- (120) Obligation: Complexity Dependency Tuples Problem Rules: cons(z0, z1) -> n__cons(z0, z1) Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) K tuples:none Defined Rule Symbols: cons_2 Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (121) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace LENGTH1(n__from(z0)) -> c4(LENGTH(cons(z0, n__from(s(z0))))) by LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) ---------------------------------------- (122) Obligation: Complexity Dependency Tuples Problem Rules: cons(z0, z1) -> n__cons(z0, z1) Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) K tuples:none Defined Rule Symbols: cons_2 Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (123) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: cons(z0, z1) -> n__cons(z0, z1) ---------------------------------------- (124) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH1(z0) -> c4(LENGTH(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (125) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH1(z0) -> c4(LENGTH(z0)) by LENGTH1(n__cons(y0, y1)) -> c4(LENGTH(n__cons(y0, y1))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__nil)) -> c4(LENGTH(n__cons(y0, n__nil))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) ---------------------------------------- (126) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__nil)) -> c4(LENGTH(n__cons(y0, n__nil))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__nil)) -> c4(LENGTH(n__cons(y0, n__nil))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (127) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: LENGTH(n__cons(x0, n__nil)) -> c3(LENGTH1(n__nil)) ---------------------------------------- (128) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__nil)) -> c4(LENGTH(n__cons(y0, n__nil))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) S tuples: LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__nil)) -> c4(LENGTH(n__cons(y0, n__nil))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (129) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH(n__cons(x0, z0)) -> c3(LENGTH1(z0)) by LENGTH(n__cons(z0, n__cons(y0, y1))) -> c3(LENGTH1(n__cons(y0, y1))) LENGTH(n__cons(z0, n__from(y0))) -> c3(LENGTH1(n__from(y0))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__nil))) -> c3(LENGTH1(n__cons(y0, n__nil))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) ---------------------------------------- (130) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__nil)) -> c4(LENGTH(n__cons(y0, n__nil))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__nil))) -> c3(LENGTH1(n__cons(y0, n__nil))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__nil)) -> c4(LENGTH(n__cons(y0, n__nil))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__nil))) -> c3(LENGTH1(n__cons(y0, n__nil))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (131) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: LENGTH1(n__cons(y0, n__nil)) -> c4(LENGTH(n__cons(y0, n__nil))) ---------------------------------------- (132) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__nil))) -> c3(LENGTH1(n__cons(y0, n__nil))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__nil))) -> c3(LENGTH1(n__cons(y0, n__nil))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (133) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) by LENGTH1(n__cons(z0, n__from(y1))) -> c4(LENGTH(n__cons(z0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(z0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) ---------------------------------------- (134) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH1(n__cons(z0, z1)) -> c4(LENGTH(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__nil))) -> c3(LENGTH1(n__cons(y0, n__nil))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__nil))) -> c3(LENGTH1(n__cons(y0, n__nil))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (135) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH1(n__cons(y0, y1)) -> c4(LENGTH(n__cons(y0, y1))) by LENGTH1(n__cons(z0, n__from(y1))) -> c4(LENGTH(n__cons(z0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(z0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) ---------------------------------------- (136) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__nil))) -> c3(LENGTH1(n__cons(y0, n__nil))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__nil))) -> c3(LENGTH1(n__cons(y0, n__nil))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (137) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: LENGTH(n__cons(z0, n__cons(y0, n__nil))) -> c3(LENGTH1(n__cons(y0, n__nil))) ---------------------------------------- (138) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (139) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) by LENGTH(n__cons(z0, n__cons(z1, n__from(y1)))) -> c3(LENGTH1(n__cons(z1, n__from(y1)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) ---------------------------------------- (140) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__cons(z0, z1))) -> c3(LENGTH1(n__cons(z0, z1))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (141) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH(n__cons(z0, n__cons(y0, y1))) -> c3(LENGTH1(n__cons(y0, y1))) by LENGTH(n__cons(z0, n__cons(z1, n__from(y1)))) -> c3(LENGTH1(n__cons(z1, n__from(y1)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) ---------------------------------------- (142) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (143) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: LENGTH1(n__cons(z0, n__cons(y1, n__nil))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__nil)))) ---------------------------------------- (144) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (145) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) by LENGTH1(n__cons(z0, n__cons(z1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) ---------------------------------------- (146) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (147) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH1(n__cons(z0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(z0, n__cons(y1, y2)))) by LENGTH1(n__cons(z0, n__cons(z1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) ---------------------------------------- (148) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(y0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(y0, n__cons(y1, y2)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (149) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH1(n__cons(z0, n__cons(y1, y2))) -> c4(LENGTH(n__cons(z0, n__cons(y1, y2)))) by LENGTH1(n__cons(z0, n__cons(z1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) ---------------------------------------- (150) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (151) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__nil)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__nil)))) ---------------------------------------- (152) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (153) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) by LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) ---------------------------------------- (154) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (155) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, y2)))) by LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) ---------------------------------------- (156) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(y0, n__cons(y1, y2)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (157) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, y2)))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, y2)))) by LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) ---------------------------------------- (158) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (159) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__nil)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__nil))))) ---------------------------------------- (160) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (161) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) by LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4))))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5))))))) ---------------------------------------- (162) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4))))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5))))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4))))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5))))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (163) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) We considered the (Usable) Rules:none And the Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4))))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5))))))) The order we found is given by the following interpretation: Matrix interpretation [MATRO]: Non-tuple symbols: <<< M( s_1(x_1) ) = [[2], [0]] + [[1, 2], [0, 0]] * x_1 >>> <<< M( n__nil ) = [[0], [1]] >>> <<< M( n__from_1(x_1) ) = [[1], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< M( n__cons_2(x_1, x_2) ) = [[1], [1]] + [[0, 0], [0, 0]] * x_1 + [[0, 2], [0, 1]] * x_2 >>> Tuple symbols: <<< M( LENGTH_1(x_1) ) = [[0], [0]] + [[0, 2], [0, 0]] * x_1 >>> <<< M( LENGTH1_1(x_1) ) = [[1], [4]] + [[1, 0], [0, 0]] * x_1 >>> <<< M( c3_1(x_1) ) = [[0], [0]] + [[1, 0], [0, 0]] * x_1 >>> <<< M( c4_1(x_1) ) = [[0], [0]] + [[1, 0], [0, 0]] * x_1 >>> Matrix type: We used a basic matrix type which is not further parametrizeable. As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order. ---------------------------------------- (164) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4))))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5))))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4))))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5))))))) K tuples: LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (165) CdtKnowledgeProof (BOTH BOUNDS(ID, ID)) The following tuples could be moved from S to K by knowledge propagation: LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(z1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(z1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(z1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4))))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5))))))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(z1, n__from(y1)))) -> c3(LENGTH1(n__cons(z1, n__from(y1)))) LENGTH(n__cons(z0, n__cons(z1, n__from(y1)))) -> c3(LENGTH1(n__cons(z1, n__from(y1)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) ---------------------------------------- (166) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(y1, n__cons(y2, y3)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4))))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5))))))) S tuples: LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__from(z0))) LENGTH(n__cons(x0, n__from(z0))) -> c3(LENGTH1(n__cons(z0, n__from(s(z0))))) LENGTH1(n__from(z0)) -> c4(LENGTH(n__cons(z0, n__from(s(z0))))) LENGTH1(n__cons(y0, n__from(y1))) -> c4(LENGTH(n__cons(y0, n__from(y1)))) K tuples: LENGTH(n__cons(z0, n__cons(y0, n__from(y1)))) -> c3(LENGTH1(n__cons(y0, n__from(y1)))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__from(y2))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__from(y2))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(y1, n__cons(y2, y3))))) -> c3(LENGTH1(n__cons(z1, n__cons(y1, n__cons(y2, y3))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__from(y3)))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__nil))))) LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) -> c3(LENGTH1(n__cons(z1, n__cons(z2, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(y1, n__from(y2)))) -> c4(LENGTH(n__cons(z0, n__cons(y1, n__from(y2))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__from(y3)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(y2, n__cons(y3, y4)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__from(y4))))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__nil)))))) LENGTH1(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5)))))) -> c4(LENGTH(n__cons(z0, n__cons(z1, n__cons(z2, n__cons(y3, n__cons(y4, y5))))))) Defined Rule Symbols:none Defined Pair Symbols: LENGTH_1, LENGTH1_1 Compound Symbols: c3_1, c4_1 ---------------------------------------- (167) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (168) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) [1] length(n__nil) -> 0 [1] length(n__cons(X, Y)) -> s(length1(activate(Y))) [1] length1(X) -> length(activate(X)) [1] from(X) -> n__from(X) [1] nil -> n__nil [1] cons(X1, X2) -> n__cons(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(n__nil) -> nil [1] activate(n__cons(X1, X2)) -> cons(X1, X2) [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (169) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (170) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) [1] length(n__nil) -> 0 [1] length(n__cons(X, Y)) -> s(length1(activate(Y))) [1] length1(X) -> length(activate(X)) [1] from(X) -> n__from(X) [1] nil -> n__nil [1] cons(X1, X2) -> n__cons(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(n__nil) -> nil [1] activate(n__cons(X1, X2)) -> cons(X1, X2) [1] activate(X) -> X [1] The TRS has the following type information: from :: s:0 -> n__from:n__nil:n__cons cons :: s:0 -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons n__from :: s:0 -> n__from:n__nil:n__cons s :: s:0 -> s:0 length :: n__from:n__nil:n__cons -> s:0 n__nil :: n__from:n__nil:n__cons 0 :: s:0 n__cons :: s:0 -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length1 :: n__from:n__nil:n__cons -> s:0 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons nil :: n__from:n__nil:n__cons Rewrite Strategy: INNERMOST ---------------------------------------- (171) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: length_1 length1_1 (c) The following functions are completely defined: activate_1 nil from_1 cons_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (172) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) [1] length(n__nil) -> 0 [1] length(n__cons(X, Y)) -> s(length1(activate(Y))) [1] length1(X) -> length(activate(X)) [1] from(X) -> n__from(X) [1] nil -> n__nil [1] cons(X1, X2) -> n__cons(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(n__nil) -> nil [1] activate(n__cons(X1, X2)) -> cons(X1, X2) [1] activate(X) -> X [1] The TRS has the following type information: from :: s:0 -> n__from:n__nil:n__cons cons :: s:0 -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons n__from :: s:0 -> n__from:n__nil:n__cons s :: s:0 -> s:0 length :: n__from:n__nil:n__cons -> s:0 n__nil :: n__from:n__nil:n__cons 0 :: s:0 n__cons :: s:0 -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length1 :: n__from:n__nil:n__cons -> s:0 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons nil :: n__from:n__nil:n__cons Rewrite Strategy: INNERMOST ---------------------------------------- (173) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (174) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) [1] length(n__nil) -> 0 [1] length(n__cons(X, n__from(X'))) -> s(length1(from(X'))) [2] length(n__cons(X, n__nil)) -> s(length1(nil)) [2] length(n__cons(X, n__cons(X1', X2'))) -> s(length1(cons(X1', X2'))) [2] length(n__cons(X, Y)) -> s(length1(Y)) [2] length1(n__from(X'')) -> length(from(X'')) [2] length1(n__nil) -> length(nil) [2] length1(n__cons(X1'', X2'')) -> length(cons(X1'', X2'')) [2] length1(X) -> length(X) [2] from(X) -> n__from(X) [1] nil -> n__nil [1] cons(X1, X2) -> n__cons(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(n__nil) -> nil [1] activate(n__cons(X1, X2)) -> cons(X1, X2) [1] activate(X) -> X [1] The TRS has the following type information: from :: s:0 -> n__from:n__nil:n__cons cons :: s:0 -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons n__from :: s:0 -> n__from:n__nil:n__cons s :: s:0 -> s:0 length :: n__from:n__nil:n__cons -> s:0 n__nil :: n__from:n__nil:n__cons 0 :: s:0 n__cons :: s:0 -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length1 :: n__from:n__nil:n__cons -> s:0 activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons nil :: n__from:n__nil:n__cons Rewrite Strategy: INNERMOST ---------------------------------------- (175) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: n__nil => 0 0 => 0 ---------------------------------------- (176) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> nil :|: z = 0 activate(z) -{ 1 }-> from(X) :|: z = 1 + X, X >= 0 activate(z) -{ 1 }-> cons(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 cons(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 from(z) -{ 1 }-> cons(X, 1 + (1 + X)) :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 2 }-> 1 + length1(nil) :|: z = 1 + X + 0, X >= 0 length(z) -{ 2 }-> 1 + length1(from(X')) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0 length(z) -{ 2 }-> 1 + length1(cons(X1', X2')) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2') length1(z) -{ 2 }-> length(X) :|: X >= 0, z = X length1(z) -{ 2 }-> length(nil) :|: z = 0 length1(z) -{ 2 }-> length(from(X'')) :|: z = 1 + X'', X'' >= 0 length1(z) -{ 2 }-> length(cons(X1'', X2'')) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0 nil -{ 1 }-> 0 :|: ---------------------------------------- (177) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: nil -{ 1 }-> 0 :|: cons(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 from(z) -{ 1 }-> cons(X, 1 + (1 + X)) :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X ---------------------------------------- (178) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X from(z) -{ 2 }-> 1 + X1 + X2 :|: X >= 0, z = X, X1 >= 0, X2 >= 0, X = X1, 1 + (1 + X) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z = 1 + X + 0, X >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(X) :|: X >= 0, z = X length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z = 1 + X'', X'' >= 0, X >= 0, X'' = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z = 1 + X'', X'' >= 0, X >= 0, X'' = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: ---------------------------------------- (179) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (180) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: ---------------------------------------- (181) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { nil } { from } { cons } { activate } { length1, length } ---------------------------------------- (182) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {nil}, {from}, {cons}, {activate}, {length1,length} ---------------------------------------- (183) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (184) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {nil}, {from}, {cons}, {activate}, {length1,length} ---------------------------------------- (185) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: nil after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (186) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {nil}, {from}, {cons}, {activate}, {length1,length} Previous analysis results are: nil: runtime: ?, size: O(1) [0] ---------------------------------------- (187) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: nil after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (188) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {from}, {cons}, {activate}, {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (189) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (190) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {from}, {cons}, {activate}, {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (191) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (192) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {from}, {cons}, {activate}, {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: ?, size: O(n^1) [3 + 2*z] ---------------------------------------- (193) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (194) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {cons}, {activate}, {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: O(1) [2], size: O(n^1) [3 + 2*z] ---------------------------------------- (195) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (196) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {cons}, {activate}, {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: O(1) [2], size: O(n^1) [3 + 2*z] ---------------------------------------- (197) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cons after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z + z' ---------------------------------------- (198) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {cons}, {activate}, {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: O(1) [2], size: O(n^1) [3 + 2*z] cons: runtime: ?, size: O(n^1) [1 + z + z'] ---------------------------------------- (199) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cons after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (200) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> cons(X', 1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 3 }-> 1 + length1(cons(X'', 1 + (1 + X''))) :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(cons(X, 1 + (1 + X))) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {activate}, {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: O(1) [2], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [1], size: O(n^1) [1 + z + z'] ---------------------------------------- (201) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (202) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 3 }-> s'' :|: s'' >= 0, s'' <= X' + (1 + (1 + X')) + 1, z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 4 }-> 1 + length1(s) :|: s >= 0, s <= X'' + (1 + (1 + X'')) + 1, z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 4 }-> length(s') :|: s' >= 0, s' <= X + (1 + (1 + X)) + 1, z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {activate}, {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: O(1) [2], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [1], size: O(n^1) [1 + z + z'] ---------------------------------------- (203) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (204) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 3 }-> s'' :|: s'' >= 0, s'' <= X' + (1 + (1 + X')) + 1, z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 4 }-> 1 + length1(s) :|: s >= 0, s <= X'' + (1 + (1 + X'')) + 1, z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 4 }-> length(s') :|: s' >= 0, s' <= X + (1 + (1 + X)) + 1, z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {activate}, {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: O(1) [2], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [1], size: O(n^1) [1 + z + z'] activate: runtime: ?, size: O(n^1) [1 + 2*z] ---------------------------------------- (205) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 10 ---------------------------------------- (206) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 3 }-> s'' :|: s'' >= 0, s'' <= X' + (1 + (1 + X')) + 1, z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 4 }-> 1 + length1(s) :|: s >= 0, s <= X'' + (1 + (1 + X'')) + 1, z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 4 }-> length(s') :|: s' >= 0, s' <= X + (1 + (1 + X)) + 1, z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: O(1) [2], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [1], size: O(n^1) [1 + z + z'] activate: runtime: O(1) [10], size: O(n^1) [1 + 2*z] ---------------------------------------- (207) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (208) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 3 }-> s'' :|: s'' >= 0, s'' <= X' + (1 + (1 + X')) + 1, z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 4 }-> 1 + length1(s) :|: s >= 0, s <= X'' + (1 + (1 + X'')) + 1, z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 4 }-> length(s') :|: s' >= 0, s' <= X + (1 + (1 + X)) + 1, z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: O(1) [2], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [1], size: O(n^1) [1 + z + z'] activate: runtime: O(1) [10], size: O(n^1) [1 + 2*z] ---------------------------------------- (209) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: length1 after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? Computed SIZE bound using CoFloCo for: length after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (210) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 3 }-> s'' :|: s'' >= 0, s'' <= X' + (1 + (1 + X')) + 1, z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 4 }-> 1 + length1(s) :|: s >= 0, s <= X'' + (1 + (1 + X'')) + 1, z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 4 }-> length(s') :|: s' >= 0, s' <= X + (1 + (1 + X)) + 1, z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: O(1) [2], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [1], size: O(n^1) [1 + z + z'] activate: runtime: O(1) [10], size: O(n^1) [1 + 2*z] length1: runtime: ?, size: INF length: runtime: ?, size: INF ---------------------------------------- (211) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: length1 after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (212) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 3 }-> s'' :|: s'' >= 0, s'' <= X' + (1 + (1 + X')) + 1, z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 0 :|: z = 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X1' + X2' :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2, X1' >= 0, X2' >= 0, X1 = X1', X2 = X2' cons(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 2 }-> 1 + z + X2 :|: z >= 0, X2 >= 0, 1 + (1 + z) = X2 length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 2 }-> 1 + length1(Y) :|: Y >= 0, z = 1 + X + Y, X >= 0 length(z) -{ 4 }-> 1 + length1(s) :|: s >= 0, s <= X'' + (1 + (1 + X'')) + 1, z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(0) :|: z - 1 >= 0 length(z) -{ 3 }-> 1 + length1(1 + X'') :|: z = 1 + X + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' length(z) -{ 3 }-> 1 + length1(1 + X1 + X2) :|: X2' >= 0, X1' >= 0, X >= 0, z = 1 + X + (1 + X1' + X2'), X1 >= 0, X2 >= 0, X1' = X1, X2' = X2 length1(z) -{ 4 }-> length(s') :|: s' >= 0, s' <= X + (1 + (1 + X)) + 1, z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 2 }-> length(z) :|: z >= 0 length1(z) -{ 3 }-> length(0) :|: z = 0 length1(z) -{ 3 }-> length(1 + X) :|: z - 1 >= 0, X >= 0, z - 1 = X length1(z) -{ 3 }-> length(1 + X1 + X2) :|: X1'' >= 0, z = 1 + X1'' + X2'', X2'' >= 0, X1 >= 0, X2 >= 0, X1'' = X1, X2'' = X2 nil -{ 1 }-> 0 :|: Function symbols to be analyzed: {length1,length} Previous analysis results are: nil: runtime: O(1) [1], size: O(1) [0] from: runtime: O(1) [2], size: O(n^1) [3 + 2*z] cons: runtime: O(1) [1], size: O(n^1) [1 + z + z'] activate: runtime: O(1) [10], size: O(n^1) [1 + 2*z] length1: runtime: INF, size: INF length: runtime: ?, size: INF ---------------------------------------- (213) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: length(v0) -> null_length [0] And the following fresh constants: null_length ---------------------------------------- (214) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) [1] length(n__nil) -> 0 [1] length(n__cons(X, Y)) -> s(length1(activate(Y))) [1] length1(X) -> length(activate(X)) [1] from(X) -> n__from(X) [1] nil -> n__nil [1] cons(X1, X2) -> n__cons(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(n__nil) -> nil [1] activate(n__cons(X1, X2)) -> cons(X1, X2) [1] activate(X) -> X [1] length(v0) -> null_length [0] The TRS has the following type information: from :: s:0:null_length -> n__from:n__nil:n__cons cons :: s:0:null_length -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons n__from :: s:0:null_length -> n__from:n__nil:n__cons s :: s:0:null_length -> s:0:null_length length :: n__from:n__nil:n__cons -> s:0:null_length n__nil :: n__from:n__nil:n__cons 0 :: s:0:null_length n__cons :: s:0:null_length -> n__from:n__nil:n__cons -> n__from:n__nil:n__cons length1 :: n__from:n__nil:n__cons -> s:0:null_length activate :: n__from:n__nil:n__cons -> n__from:n__nil:n__cons nil :: n__from:n__nil:n__cons null_length :: s:0:null_length Rewrite Strategy: INNERMOST ---------------------------------------- (215) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: n__nil => 0 0 => 0 null_length => 0 ---------------------------------------- (216) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> nil :|: z = 0 activate(z) -{ 1 }-> from(X) :|: z = 1 + X, X >= 0 activate(z) -{ 1 }-> cons(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 cons(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 from(z) -{ 1 }-> cons(X, 1 + (1 + X)) :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X length(z) -{ 1 }-> 0 :|: z = 0 length(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 length(z) -{ 1 }-> 1 + length1(activate(Y)) :|: Y >= 0, z = 1 + X + Y, X >= 0 length1(z) -{ 1 }-> length(activate(X)) :|: X >= 0, z = X nil -{ 1 }-> 0 :|: Only complete derivations are relevant for the runtime complexity.