WORST_CASE(Omega(n^1),O(n^2)) proof of input_NW5VRId6rE.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 2 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 150 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 5 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 661 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 298 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 540 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 227 ms] (32) CpxRNTS (33) FinalProof [FINISHED, 0 ms] (34) BOUNDS(1, n^2) (35) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CdtProblem (37) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxRelTRS (39) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxRelTRS (41) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (42) typed CpxTrs (43) OrderProof [LOWER BOUND(ID), 0 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 487 ms] (46) BEST (47) proven lower bound (48) LowerBoundPropagationProof [FINISHED, 0 ms] (49) BOUNDS(n^1, INF) (50) typed CpxTrs (51) RewriteLemmaProof [LOWER BOUND(ID), 72 ms] (52) typed CpxTrs (53) RewriteLemmaProof [LOWER BOUND(ID), 108 ms] (54) typed CpxTrs (55) RewriteLemmaProof [LOWER BOUND(ID), 523 ms] (56) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) U12(tt, M, N) -> s(plus(activate(N), activate(M))) U21(tt, M, N) -> U22(tt, activate(M), activate(N)) U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) plus(N, 0) -> N plus(N, s(M)) -> U11(tt, M, N) x(N, 0) -> 0 x(N, s(M)) -> U21(tt, M, N) activate(X) -> X S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) [1] U12(tt, M, N) -> s(plus(activate(N), activate(M))) [1] U21(tt, M, N) -> U22(tt, activate(M), activate(N)) [1] U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) [1] plus(N, 0) -> N [1] plus(N, s(M)) -> U11(tt, M, N) [1] x(N, 0) -> 0 [1] x(N, s(M)) -> U21(tt, M, N) [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) [1] U12(tt, M, N) -> s(plus(activate(N), activate(M))) [1] U21(tt, M, N) -> U22(tt, activate(M), activate(N)) [1] U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) [1] plus(N, 0) -> N [1] plus(N, s(M)) -> U11(tt, M, N) [1] x(N, 0) -> 0 [1] x(N, s(M)) -> U21(tt, M, N) [1] activate(X) -> X [1] The TRS has the following type information: U11 :: tt -> s:0 -> s:0 -> s:0 tt :: tt U12 :: tt -> s:0 -> s:0 -> s:0 activate :: s:0 -> s:0 s :: s:0 -> s:0 plus :: s:0 -> s:0 -> s:0 U21 :: tt -> s:0 -> s:0 -> s:0 U22 :: tt -> s:0 -> s:0 -> s:0 x :: s:0 -> s:0 -> s:0 0 :: s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: activate_1 x_2 U21_3 U22_3 plus_2 U11_3 U12_3 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) [1] U12(tt, M, N) -> s(plus(activate(N), activate(M))) [1] U21(tt, M, N) -> U22(tt, activate(M), activate(N)) [1] U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) [1] plus(N, 0) -> N [1] plus(N, s(M)) -> U11(tt, M, N) [1] x(N, 0) -> 0 [1] x(N, s(M)) -> U21(tt, M, N) [1] activate(X) -> X [1] The TRS has the following type information: U11 :: tt -> s:0 -> s:0 -> s:0 tt :: tt U12 :: tt -> s:0 -> s:0 -> s:0 activate :: s:0 -> s:0 s :: s:0 -> s:0 plus :: s:0 -> s:0 -> s:0 U21 :: tt -> s:0 -> s:0 -> s:0 U22 :: tt -> s:0 -> s:0 -> s:0 x :: s:0 -> s:0 -> s:0 0 :: s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, M, N) [3] U12(tt, M, N) -> s(plus(N, M)) [3] U21(tt, M, N) -> U22(tt, M, N) [3] U22(tt, M, N) -> plus(x(N, M), N) [4] plus(N, 0) -> N [1] plus(N, s(M)) -> U11(tt, M, N) [1] x(N, 0) -> 0 [1] x(N, s(M)) -> U21(tt, M, N) [1] activate(X) -> X [1] The TRS has the following type information: U11 :: tt -> s:0 -> s:0 -> s:0 tt :: tt U12 :: tt -> s:0 -> s:0 -> s:0 activate :: s:0 -> s:0 s :: s:0 -> s:0 plus :: s:0 -> s:0 -> s:0 U21 :: tt -> s:0 -> s:0 -> s:0 U22 :: tt -> s:0 -> s:0 -> s:0 x :: s:0 -> s:0 -> s:0 0 :: s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: tt => 0 0 => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 3 }-> U12(0, M, N) :|: z' = M, z = 0, z'' = N, M >= 0, N >= 0 U12(z, z', z'') -{ 3 }-> 1 + plus(N, M) :|: z' = M, z = 0, z'' = N, M >= 0, N >= 0 U21(z, z', z'') -{ 3 }-> U22(0, M, N) :|: z' = M, z = 0, z'' = N, M >= 0, N >= 0 U22(z, z', z'') -{ 4 }-> plus(x(N, M), N) :|: z' = M, z = 0, z'' = N, M >= 0, N >= 0 activate(z) -{ 1 }-> X :|: X >= 0, z = X plus(z, z') -{ 1 }-> N :|: z = N, z' = 0, N >= 0 plus(z, z') -{ 1 }-> U11(0, M, N) :|: z' = 1 + M, z = N, M >= 0, N >= 0 x(z, z') -{ 1 }-> U21(0, M, N) :|: z' = 1 + M, z = N, M >= 0, N >= 0 x(z, z') -{ 1 }-> 0 :|: z = N, z' = 0, N >= 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 3 }-> U12(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 3 }-> 1 + plus(z'', z') :|: z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 1 }-> U11(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { activate } { plus, U12, U11 } { U22, x, U21 } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 3 }-> U12(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 3 }-> 1 + plus(z'', z') :|: z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 1 }-> U11(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 Function symbols to be analyzed: {activate}, {plus,U12,U11}, {U22,x,U21} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 3 }-> U12(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 3 }-> 1 + plus(z'', z') :|: z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 1 }-> U11(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 Function symbols to be analyzed: {activate}, {plus,U12,U11}, {U22,x,U21} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 3 }-> U12(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 3 }-> 1 + plus(z'', z') :|: z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 1 }-> U11(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 Function symbols to be analyzed: {activate}, {plus,U12,U11}, {U22,x,U21} Previous analysis results are: activate: runtime: ?, size: O(n^1) [z] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 3 }-> U12(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 3 }-> 1 + plus(z'', z') :|: z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 1 }-> U11(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 Function symbols to be analyzed: {plus,U12,U11}, {U22,x,U21} Previous analysis results are: activate: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 3 }-> U12(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 3 }-> 1 + plus(z'', z') :|: z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 1 }-> U11(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 Function symbols to be analyzed: {plus,U12,U11}, {U22,x,U21} Previous analysis results are: activate: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' Computed SIZE bound using CoFloCo for: U12 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' + z'' Computed SIZE bound using CoFloCo for: U11 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' + z'' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 3 }-> U12(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 3 }-> 1 + plus(z'', z') :|: z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 1 }-> U11(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 Function symbols to be analyzed: {plus,U12,U11}, {U22,x,U21} Previous analysis results are: activate: runtime: O(1) [1], size: O(n^1) [z] plus: runtime: ?, size: O(n^1) [z + z'] U12: runtime: ?, size: O(n^1) [1 + z' + z''] U11: runtime: ?, size: O(n^1) [1 + z' + z''] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 11 + 7*z' Computed RUNTIME bound using CoFloCo for: U12 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 14 + 7*z' Computed RUNTIME bound using CoFloCo for: U11 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 17 + 7*z' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 3 }-> U12(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 3 }-> 1 + plus(z'', z') :|: z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 1 }-> U11(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 Function symbols to be analyzed: {U22,x,U21} Previous analysis results are: activate: runtime: O(1) [1], size: O(n^1) [z] plus: runtime: O(n^1) [11 + 7*z'], size: O(n^1) [z + z'] U12: runtime: O(n^1) [14 + 7*z'], size: O(n^1) [1 + z' + z''] U11: runtime: O(n^1) [17 + 7*z'], size: O(n^1) [1 + z' + z''] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 17 + 7*z' }-> s :|: s >= 0, s <= z' + z'' + 1, z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 14 + 7*z' }-> 1 + s' :|: s' >= 0, s' <= z'' + z', z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 11 + 7*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + z + 1, z' - 1 >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 Function symbols to be analyzed: {U22,x,U21} Previous analysis results are: activate: runtime: O(1) [1], size: O(n^1) [z] plus: runtime: O(n^1) [11 + 7*z'], size: O(n^1) [z + z'] U12: runtime: O(n^1) [14 + 7*z'], size: O(n^1) [1 + z' + z''] U11: runtime: O(n^1) [17 + 7*z'], size: O(n^1) [1 + z' + z''] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: U22 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z'*z'' + z'' Computed SIZE bound using KoAT for: x after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + z*z' Computed SIZE bound using KoAT for: U21 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z'*z'' + z'' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 17 + 7*z' }-> s :|: s >= 0, s <= z' + z'' + 1, z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 14 + 7*z' }-> 1 + s' :|: s' >= 0, s' <= z'' + z', z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 11 + 7*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + z + 1, z' - 1 >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 Function symbols to be analyzed: {U22,x,U21} Previous analysis results are: activate: runtime: O(1) [1], size: O(n^1) [z] plus: runtime: O(n^1) [11 + 7*z'], size: O(n^1) [z + z'] U12: runtime: O(n^1) [14 + 7*z'], size: O(n^1) [1 + z' + z''] U11: runtime: O(n^1) [17 + 7*z'], size: O(n^1) [1 + z' + z''] U22: runtime: ?, size: O(n^2) [z'*z'' + z''] x: runtime: ?, size: O(n^2) [z + z*z'] U21: runtime: ?, size: O(n^2) [z'*z'' + z''] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: U22 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 35 + 19*z' + 7*z'*z'' + 14*z'' Computed RUNTIME bound using KoAT for: x after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 40 + 14*z + 7*z*z' + 19*z' Computed RUNTIME bound using KoAT for: U21 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 38 + 19*z' + 7*z'*z'' + 14*z'' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: U11(z, z', z'') -{ 17 + 7*z' }-> s :|: s >= 0, s <= z' + z'' + 1, z = 0, z' >= 0, z'' >= 0 U12(z, z', z'') -{ 14 + 7*z' }-> 1 + s' :|: s' >= 0, s' <= z'' + z', z = 0, z' >= 0, z'' >= 0 U21(z, z', z'') -{ 3 }-> U22(0, z', z'') :|: z = 0, z' >= 0, z'' >= 0 U22(z, z', z'') -{ 4 }-> plus(x(z'', z'), z'') :|: z = 0, z' >= 0, z'' >= 0 activate(z) -{ 1 }-> z :|: z >= 0 plus(z, z') -{ 11 + 7*z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + z + 1, z' - 1 >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 x(z, z') -{ 1 }-> U21(0, z' - 1, z) :|: z' - 1 >= 0, z >= 0 x(z, z') -{ 1 }-> 0 :|: z' = 0, z >= 0 Function symbols to be analyzed: Previous analysis results are: activate: runtime: O(1) [1], size: O(n^1) [z] plus: runtime: O(n^1) [11 + 7*z'], size: O(n^1) [z + z'] U12: runtime: O(n^1) [14 + 7*z'], size: O(n^1) [1 + z' + z''] U11: runtime: O(n^1) [17 + 7*z'], size: O(n^1) [1 + z' + z''] U22: runtime: O(n^2) [35 + 19*z' + 7*z'*z'' + 14*z''], size: O(n^2) [z'*z'' + z''] x: runtime: O(n^2) [40 + 14*z + 7*z*z' + 19*z'], size: O(n^2) [z + z*z'] U21: runtime: O(n^2) [38 + 19*z' + 7*z'*z'' + 14*z''], size: O(n^2) [z'*z'' + z''] ---------------------------------------- (33) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (34) BOUNDS(1, n^2) ---------------------------------------- (35) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (36) Obligation: Complexity Dependency Tuples Problem Rules: U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0) -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0) -> 0 x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Tuples: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0) -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0) -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 S tuples: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0) -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0) -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 K tuples:none Defined Rule Symbols: U11_3, U12_3, U21_3, U22_3, plus_2, x_2, activate_1 Defined Pair Symbols: U11'_3, U12'_3, U21'_3, U22'_3, PLUS_2, X_2, ACTIVATE_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4_2, c5_2, c6_3, c7_3, c8_2, c9, c10_1, c11, c12_1, c13 ---------------------------------------- (37) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (38) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0) -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0) -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 The (relative) TRS S consists of the following rules: U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0) -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0) -> 0 x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (39) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (40) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 The (relative) TRS S consists of the following rules: U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (41) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (42) Obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s ---------------------------------------- (43) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: PLUS, x, X, plus They will be analysed ascendingly in the following order: PLUS < X x < X plus < x ---------------------------------------- (44) Obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s Generator Equations: gen_0':s10_14(0) <=> 0' gen_0':s10_14(+(x, 1)) <=> s(gen_0':s10_14(x)) The following defined symbols remain to be analysed: PLUS, x, X, plus They will be analysed ascendingly in the following order: PLUS < X x < X plus < x ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: PLUS(gen_0':s10_14(a), gen_0':s10_14(n12_14)) -> *11_14, rt in Omega(n12_14) Induction Base: PLUS(gen_0':s10_14(a), gen_0':s10_14(0)) Induction Step: PLUS(gen_0':s10_14(a), gen_0':s10_14(+(n12_14, 1))) ->_R^Omega(1) c10(U11'(tt, gen_0':s10_14(n12_14), gen_0':s10_14(a))) ->_R^Omega(1) c10(c(U12'(tt, activate(gen_0':s10_14(n12_14)), activate(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(0) c10(c(U12'(tt, gen_0':s10_14(n12_14), activate(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(0) c10(c(U12'(tt, gen_0':s10_14(n12_14), gen_0':s10_14(a)), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(1) c10(c(c2(PLUS(activate(gen_0':s10_14(a)), activate(gen_0':s10_14(n12_14))), ACTIVATE(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(0) c10(c(c2(PLUS(gen_0':s10_14(a), activate(gen_0':s10_14(n12_14))), ACTIVATE(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(0) c10(c(c2(PLUS(gen_0':s10_14(a), gen_0':s10_14(n12_14)), ACTIVATE(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_IH c10(c(c2(*11_14, ACTIVATE(gen_0':s10_14(a))), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(1) c10(c(c2(*11_14, c13), ACTIVATE(gen_0':s10_14(n12_14)))) ->_R^Omega(1) c10(c(c2(*11_14, c13), c13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (46) Complex Obligation (BEST) ---------------------------------------- (47) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s Generator Equations: gen_0':s10_14(0) <=> 0' gen_0':s10_14(+(x, 1)) <=> s(gen_0':s10_14(x)) The following defined symbols remain to be analysed: PLUS, x, X, plus They will be analysed ascendingly in the following order: PLUS < X x < X plus < x ---------------------------------------- (48) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (49) BOUNDS(n^1, INF) ---------------------------------------- (50) Obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s Lemmas: PLUS(gen_0':s10_14(a), gen_0':s10_14(n12_14)) -> *11_14, rt in Omega(n12_14) Generator Equations: gen_0':s10_14(0) <=> 0' gen_0':s10_14(+(x, 1)) <=> s(gen_0':s10_14(x)) The following defined symbols remain to be analysed: plus, x, X They will be analysed ascendingly in the following order: x < X plus < x ---------------------------------------- (51) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s10_14(a), gen_0':s10_14(n2625_14)) -> gen_0':s10_14(+(n2625_14, a)), rt in Omega(0) Induction Base: plus(gen_0':s10_14(a), gen_0':s10_14(0)) ->_R^Omega(0) gen_0':s10_14(a) Induction Step: plus(gen_0':s10_14(a), gen_0':s10_14(+(n2625_14, 1))) ->_R^Omega(0) U11(tt, gen_0':s10_14(n2625_14), gen_0':s10_14(a)) ->_R^Omega(0) U12(tt, activate(gen_0':s10_14(n2625_14)), activate(gen_0':s10_14(a))) ->_R^Omega(0) U12(tt, gen_0':s10_14(n2625_14), activate(gen_0':s10_14(a))) ->_R^Omega(0) U12(tt, gen_0':s10_14(n2625_14), gen_0':s10_14(a)) ->_R^Omega(0) s(plus(activate(gen_0':s10_14(a)), activate(gen_0':s10_14(n2625_14)))) ->_R^Omega(0) s(plus(gen_0':s10_14(a), activate(gen_0':s10_14(n2625_14)))) ->_R^Omega(0) s(plus(gen_0':s10_14(a), gen_0':s10_14(n2625_14))) ->_IH s(gen_0':s10_14(+(a, c2626_14))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (52) Obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s Lemmas: PLUS(gen_0':s10_14(a), gen_0':s10_14(n12_14)) -> *11_14, rt in Omega(n12_14) plus(gen_0':s10_14(a), gen_0':s10_14(n2625_14)) -> gen_0':s10_14(+(n2625_14, a)), rt in Omega(0) Generator Equations: gen_0':s10_14(0) <=> 0' gen_0':s10_14(+(x, 1)) <=> s(gen_0':s10_14(x)) The following defined symbols remain to be analysed: x, X They will be analysed ascendingly in the following order: x < X ---------------------------------------- (53) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: x(gen_0':s10_14(a), gen_0':s10_14(n4085_14)) -> gen_0':s10_14(*(n4085_14, a)), rt in Omega(0) Induction Base: x(gen_0':s10_14(a), gen_0':s10_14(0)) ->_R^Omega(0) 0' Induction Step: x(gen_0':s10_14(a), gen_0':s10_14(+(n4085_14, 1))) ->_R^Omega(0) U21(tt, gen_0':s10_14(n4085_14), gen_0':s10_14(a)) ->_R^Omega(0) U22(tt, activate(gen_0':s10_14(n4085_14)), activate(gen_0':s10_14(a))) ->_R^Omega(0) U22(tt, gen_0':s10_14(n4085_14), activate(gen_0':s10_14(a))) ->_R^Omega(0) U22(tt, gen_0':s10_14(n4085_14), gen_0':s10_14(a)) ->_R^Omega(0) plus(x(activate(gen_0':s10_14(a)), activate(gen_0':s10_14(n4085_14))), activate(gen_0':s10_14(a))) ->_R^Omega(0) plus(x(gen_0':s10_14(a), activate(gen_0':s10_14(n4085_14))), activate(gen_0':s10_14(a))) ->_R^Omega(0) plus(x(gen_0':s10_14(a), gen_0':s10_14(n4085_14)), activate(gen_0':s10_14(a))) ->_IH plus(gen_0':s10_14(*(c4086_14, a)), activate(gen_0':s10_14(a))) ->_R^Omega(0) plus(gen_0':s10_14(*(n4085_14, a)), gen_0':s10_14(a)) ->_L^Omega(0) gen_0':s10_14(+(a, *(n4085_14, a))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (54) Obligation: Innermost TRS: Rules: U11'(tt, z0, z1) -> c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U11'(tt, z0, z1) -> c1(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c2(PLUS(activate(z1), activate(z0)), ACTIVATE(z1)) U12'(tt, z0, z1) -> c3(PLUS(activate(z1), activate(z0)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c4(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z0)) U21'(tt, z0, z1) -> c5(U22'(tt, activate(z0), activate(z1)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c6(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1)) U22'(tt, z0, z1) -> c7(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z0)) U22'(tt, z0, z1) -> c8(PLUS(x(activate(z1), activate(z0)), activate(z1)), ACTIVATE(z1)) PLUS(z0, 0') -> c9 PLUS(z0, s(z1)) -> c10(U11'(tt, z1, z0)) X(z0, 0') -> c11 X(z0, s(z1)) -> c12(U21'(tt, z1, z0)) ACTIVATE(z0) -> c13 U11(tt, z0, z1) -> U12(tt, activate(z0), activate(z1)) U12(tt, z0, z1) -> s(plus(activate(z1), activate(z0))) U21(tt, z0, z1) -> U22(tt, activate(z0), activate(z1)) U22(tt, z0, z1) -> plus(x(activate(z1), activate(z0)), activate(z1)) plus(z0, 0') -> z0 plus(z0, s(z1)) -> U11(tt, z1, z0) x(z0, 0') -> 0' x(z0, s(z1)) -> U21(tt, z1, z0) activate(z0) -> z0 Types: U11' :: tt -> 0':s -> 0':s -> c:c1 tt :: tt c :: c2:c3 -> c13 -> c:c1 U12' :: tt -> 0':s -> 0':s -> c2:c3 activate :: 0':s -> 0':s ACTIVATE :: 0':s -> c13 c1 :: c2:c3 -> c13 -> c:c1 c2 :: c9:c10 -> c13 -> c2:c3 PLUS :: 0':s -> 0':s -> c9:c10 c3 :: c9:c10 -> c13 -> c2:c3 U21' :: tt -> 0':s -> 0':s -> c4:c5 c4 :: c6:c7:c8 -> c13 -> c4:c5 U22' :: tt -> 0':s -> 0':s -> c6:c7:c8 c5 :: c6:c7:c8 -> c13 -> c4:c5 c6 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 x :: 0':s -> 0':s -> 0':s X :: 0':s -> 0':s -> c11:c12 c7 :: c9:c10 -> c11:c12 -> c13 -> c6:c7:c8 c8 :: c9:c10 -> c13 -> c6:c7:c8 0' :: 0':s c9 :: c9:c10 s :: 0':s -> 0':s c10 :: c:c1 -> c9:c10 c11 :: c11:c12 c12 :: c4:c5 -> c11:c12 c13 :: c13 U11 :: tt -> 0':s -> 0':s -> 0':s U12 :: tt -> 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s U21 :: tt -> 0':s -> 0':s -> 0':s U22 :: tt -> 0':s -> 0':s -> 0':s hole_c:c11_14 :: c:c1 hole_tt2_14 :: tt hole_0':s3_14 :: 0':s hole_c2:c34_14 :: c2:c3 hole_c135_14 :: c13 hole_c9:c106_14 :: c9:c10 hole_c4:c57_14 :: c4:c5 hole_c6:c7:c88_14 :: c6:c7:c8 hole_c11:c129_14 :: c11:c12 gen_0':s10_14 :: Nat -> 0':s Lemmas: PLUS(gen_0':s10_14(a), gen_0':s10_14(n12_14)) -> *11_14, rt in Omega(n12_14) plus(gen_0':s10_14(a), gen_0':s10_14(n2625_14)) -> gen_0':s10_14(+(n2625_14, a)), rt in Omega(0) x(gen_0':s10_14(a), gen_0':s10_14(n4085_14)) -> gen_0':s10_14(*(n4085_14, a)), rt in Omega(0) Generator Equations: gen_0':s10_14(0) <=> 0' gen_0':s10_14(+(x, 1)) <=> s(gen_0':s10_14(x)) The following defined symbols remain to be analysed: X ---------------------------------------- (55) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: X(gen_0':s10_14(0), gen_0':s10_14(n6197_14)) -> *11_14, rt in Omega(n6197_14) Induction Base: X(gen_0':s10_14(0), gen_0':s10_14(0)) Induction Step: X(gen_0':s10_14(0), gen_0':s10_14(+(n6197_14, 1))) ->_R^Omega(1) c12(U21'(tt, gen_0':s10_14(n6197_14), gen_0':s10_14(0))) ->_R^Omega(1) c12(c4(U22'(tt, activate(gen_0':s10_14(n6197_14)), activate(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(U22'(tt, gen_0':s10_14(n6197_14), activate(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(U22'(tt, gen_0':s10_14(n6197_14), gen_0':s10_14(0)), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(1) c12(c4(c6(PLUS(x(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), activate(gen_0':s10_14(0))), X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(c6(PLUS(x(gen_0':s10_14(0), activate(gen_0':s10_14(n6197_14))), activate(gen_0':s10_14(0))), X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(c6(PLUS(x(gen_0':s10_14(0), gen_0':s10_14(n6197_14)), activate(gen_0':s10_14(0))), X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_L^Omega(0) c12(c4(c6(PLUS(gen_0':s10_14(*(n6197_14, 0)), activate(gen_0':s10_14(0))), X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(c6(PLUS(gen_0':s10_14(0), gen_0':s10_14(0)), X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(1) c12(c4(c6(c9, X(activate(gen_0':s10_14(0)), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(c6(c9, X(gen_0':s10_14(0), activate(gen_0':s10_14(n6197_14))), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(0) c12(c4(c6(c9, X(gen_0':s10_14(0), gen_0':s10_14(n6197_14)), ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_IH c12(c4(c6(c9, *11_14, ACTIVATE(gen_0':s10_14(0))), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(1) c12(c4(c6(c9, *11_14, c13), ACTIVATE(gen_0':s10_14(n6197_14)))) ->_R^Omega(1) c12(c4(c6(c9, *11_14, c13), c13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (56) BOUNDS(1, INF)