WORST_CASE(Omega(n^1),O(n^2)) proof of input_j76vOTytrg.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 224 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 108 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 529 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 289 ms] (26) CpxRNTS (27) FinalProof [FINISHED, 0 ms] (28) BOUNDS(1, n^2) (29) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CdtProblem (31) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (32) CpxRelTRS (33) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxRelTRS (35) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (36) typed CpxTrs (37) OrderProof [LOWER BOUND(ID), 3 ms] (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 305 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 35 ms] (42) BEST (43) proven lower bound (44) LowerBoundPropagationProof [FINISHED, 0 ms] (45) BOUNDS(n^1, INF) (46) typed CpxTrs (47) RewriteLemmaProof [LOWER BOUND(ID), 233 ms] (48) typed CpxTrs (49) RewriteLemmaProof [LOWER BOUND(ID), 200 ms] (50) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) [1] The TRS has the following type information: quot :: 0:s -> 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: quot_3 (c) The following functions are completely defined: plus_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) [1] The TRS has the following type information: quot :: 0:s -> 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(0)) -> s(quot(x, s(0), s(0))) [2] quot(x, 0, s(s(x'))) -> s(quot(x, s(plus(x', s(0))), s(s(x')))) [2] The TRS has the following type information: quot :: 0:s -> 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 quot(z', z'', z1) -{ 1 }-> quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y quot(z', z'', z1) -{ 1 }-> 0 :|: z >= 0, y >= 0, z'' = 1 + y, z1 = 1 + z, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(x, 1 + plus(x', 1 + 0), 1 + (1 + x')) :|: z'' = 0, z' = x, x >= 0, x' >= 0, z1 = 1 + (1 + x') quot(z', z'', z1) -{ 2 }-> 1 + quot(x, 1 + 0, 1 + 0) :|: z'' = 0, z' = x, z1 = 1 + 0, x >= 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { plus } { quot } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {plus}, {quot} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {plus}, {quot} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {plus}, {quot} Previous analysis results are: plus: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {quot} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 + z1 }-> 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= z1 - 2 + (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {quot} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 + z1 }-> 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= z1 - 2 + (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {quot} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: ?, size: O(n^1) [2 + 2*z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 5 + 5*z' + z'*z1 + z1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 + z1 }-> 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= z1 - 2 + (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [5 + 5*z' + z'*z1 + z1], size: O(n^1) [2 + 2*z'] ---------------------------------------- (27) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (28) BOUNDS(1, n^2) ---------------------------------------- (29) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (30) Obligation: Complexity Dependency Tuples Problem Rules: quot(0, s(z0), s(z1)) -> 0 quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0, s(z1)) -> s(quot(z0, plus(z1, s(0)), s(z1))) plus(0, z0) -> z0 plus(s(z0), z1) -> s(plus(z0, z1)) Tuples: QUOT(0, s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, plus(z1, s(0)), s(z1)), PLUS(z1, s(0))) PLUS(0, z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, z1)) S tuples: QUOT(0, s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, plus(z1, s(0)), s(z1)), PLUS(z1, s(0))) PLUS(0, z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, z1)) K tuples:none Defined Rule Symbols: quot_3, plus_2 Defined Pair Symbols: QUOT_3, PLUS_2 Compound Symbols: c, c1_1, c2_2, c3, c4_1 ---------------------------------------- (31) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (32) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: QUOT(0, s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, plus(z1, s(0)), s(z1)), PLUS(z1, s(0))) PLUS(0, z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, z1)) The (relative) TRS S consists of the following rules: quot(0, s(z0), s(z1)) -> 0 quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0, s(z1)) -> s(quot(z0, plus(z1, s(0)), s(z1))) plus(0, z0) -> z0 plus(s(z0), z1) -> s(plus(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (33) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (34) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: QUOT(0', s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0', s(z1)) -> c2(QUOT(z0, plus(z1, s(0')), s(z1)), PLUS(z1, s(0'))) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, z1)) The (relative) TRS S consists of the following rules: quot(0', s(z0), s(z1)) -> 0' quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0', s(z1)) -> s(quot(z0, plus(z1, s(0')), s(z1))) plus(0', z0) -> z0 plus(s(z0), z1) -> s(plus(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (35) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (36) Obligation: Innermost TRS: Rules: QUOT(0', s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0', s(z1)) -> c2(QUOT(z0, plus(z1, s(0')), s(z1)), PLUS(z1, s(0'))) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, z1)) quot(0', s(z0), s(z1)) -> 0' quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0', s(z1)) -> s(quot(z0, plus(z1, s(0')), s(z1))) plus(0', z0) -> z0 plus(s(z0), z1) -> s(plus(z0, z1)) Types: QUOT :: 0':s -> 0':s -> 0':s -> c:c1:c2 0' :: 0':s s :: 0':s -> 0':s c :: c:c1:c2 c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c3:c4 -> c:c1:c2 plus :: 0':s -> 0':s -> 0':s PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 quot :: 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_5 :: c:c1:c2 hole_0':s2_5 :: 0':s hole_c3:c43_5 :: c3:c4 gen_c:c1:c24_5 :: Nat -> c:c1:c2 gen_0':s5_5 :: Nat -> 0':s gen_c3:c46_5 :: Nat -> c3:c4 ---------------------------------------- (37) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: QUOT, plus, PLUS, quot They will be analysed ascendingly in the following order: plus < QUOT PLUS < QUOT plus < quot ---------------------------------------- (38) Obligation: Innermost TRS: Rules: QUOT(0', s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0', s(z1)) -> c2(QUOT(z0, plus(z1, s(0')), s(z1)), PLUS(z1, s(0'))) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, z1)) quot(0', s(z0), s(z1)) -> 0' quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0', s(z1)) -> s(quot(z0, plus(z1, s(0')), s(z1))) plus(0', z0) -> z0 plus(s(z0), z1) -> s(plus(z0, z1)) Types: QUOT :: 0':s -> 0':s -> 0':s -> c:c1:c2 0' :: 0':s s :: 0':s -> 0':s c :: c:c1:c2 c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c3:c4 -> c:c1:c2 plus :: 0':s -> 0':s -> 0':s PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 quot :: 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_5 :: c:c1:c2 hole_0':s2_5 :: 0':s hole_c3:c43_5 :: c3:c4 gen_c:c1:c24_5 :: Nat -> c:c1:c2 gen_0':s5_5 :: Nat -> 0':s gen_c3:c46_5 :: Nat -> c3:c4 Generator Equations: gen_c:c1:c24_5(0) <=> c gen_c:c1:c24_5(+(x, 1)) <=> c1(gen_c:c1:c24_5(x)) gen_0':s5_5(0) <=> 0' gen_0':s5_5(+(x, 1)) <=> s(gen_0':s5_5(x)) gen_c3:c46_5(0) <=> c3 gen_c3:c46_5(+(x, 1)) <=> c4(gen_c3:c46_5(x)) The following defined symbols remain to be analysed: plus, QUOT, PLUS, quot They will be analysed ascendingly in the following order: plus < QUOT PLUS < QUOT plus < quot ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s5_5(n8_5), gen_0':s5_5(b)) -> gen_0':s5_5(+(n8_5, b)), rt in Omega(0) Induction Base: plus(gen_0':s5_5(0), gen_0':s5_5(b)) ->_R^Omega(0) gen_0':s5_5(b) Induction Step: plus(gen_0':s5_5(+(n8_5, 1)), gen_0':s5_5(b)) ->_R^Omega(0) s(plus(gen_0':s5_5(n8_5), gen_0':s5_5(b))) ->_IH s(gen_0':s5_5(+(b, c9_5))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (40) Obligation: Innermost TRS: Rules: QUOT(0', s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0', s(z1)) -> c2(QUOT(z0, plus(z1, s(0')), s(z1)), PLUS(z1, s(0'))) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, z1)) quot(0', s(z0), s(z1)) -> 0' quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0', s(z1)) -> s(quot(z0, plus(z1, s(0')), s(z1))) plus(0', z0) -> z0 plus(s(z0), z1) -> s(plus(z0, z1)) Types: QUOT :: 0':s -> 0':s -> 0':s -> c:c1:c2 0' :: 0':s s :: 0':s -> 0':s c :: c:c1:c2 c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c3:c4 -> c:c1:c2 plus :: 0':s -> 0':s -> 0':s PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 quot :: 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_5 :: c:c1:c2 hole_0':s2_5 :: 0':s hole_c3:c43_5 :: c3:c4 gen_c:c1:c24_5 :: Nat -> c:c1:c2 gen_0':s5_5 :: Nat -> 0':s gen_c3:c46_5 :: Nat -> c3:c4 Lemmas: plus(gen_0':s5_5(n8_5), gen_0':s5_5(b)) -> gen_0':s5_5(+(n8_5, b)), rt in Omega(0) Generator Equations: gen_c:c1:c24_5(0) <=> c gen_c:c1:c24_5(+(x, 1)) <=> c1(gen_c:c1:c24_5(x)) gen_0':s5_5(0) <=> 0' gen_0':s5_5(+(x, 1)) <=> s(gen_0':s5_5(x)) gen_c3:c46_5(0) <=> c3 gen_c3:c46_5(+(x, 1)) <=> c4(gen_c3:c46_5(x)) The following defined symbols remain to be analysed: PLUS, QUOT, quot They will be analysed ascendingly in the following order: PLUS < QUOT ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: PLUS(gen_0':s5_5(n859_5), gen_0':s5_5(b)) -> gen_c3:c46_5(n859_5), rt in Omega(1 + n859_5) Induction Base: PLUS(gen_0':s5_5(0), gen_0':s5_5(b)) ->_R^Omega(1) c3 Induction Step: PLUS(gen_0':s5_5(+(n859_5, 1)), gen_0':s5_5(b)) ->_R^Omega(1) c4(PLUS(gen_0':s5_5(n859_5), gen_0':s5_5(b))) ->_IH c4(gen_c3:c46_5(c860_5)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) Complex Obligation (BEST) ---------------------------------------- (43) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: QUOT(0', s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0', s(z1)) -> c2(QUOT(z0, plus(z1, s(0')), s(z1)), PLUS(z1, s(0'))) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, z1)) quot(0', s(z0), s(z1)) -> 0' quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0', s(z1)) -> s(quot(z0, plus(z1, s(0')), s(z1))) plus(0', z0) -> z0 plus(s(z0), z1) -> s(plus(z0, z1)) Types: QUOT :: 0':s -> 0':s -> 0':s -> c:c1:c2 0' :: 0':s s :: 0':s -> 0':s c :: c:c1:c2 c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c3:c4 -> c:c1:c2 plus :: 0':s -> 0':s -> 0':s PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 quot :: 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_5 :: c:c1:c2 hole_0':s2_5 :: 0':s hole_c3:c43_5 :: c3:c4 gen_c:c1:c24_5 :: Nat -> c:c1:c2 gen_0':s5_5 :: Nat -> 0':s gen_c3:c46_5 :: Nat -> c3:c4 Lemmas: plus(gen_0':s5_5(n8_5), gen_0':s5_5(b)) -> gen_0':s5_5(+(n8_5, b)), rt in Omega(0) Generator Equations: gen_c:c1:c24_5(0) <=> c gen_c:c1:c24_5(+(x, 1)) <=> c1(gen_c:c1:c24_5(x)) gen_0':s5_5(0) <=> 0' gen_0':s5_5(+(x, 1)) <=> s(gen_0':s5_5(x)) gen_c3:c46_5(0) <=> c3 gen_c3:c46_5(+(x, 1)) <=> c4(gen_c3:c46_5(x)) The following defined symbols remain to be analysed: PLUS, QUOT, quot They will be analysed ascendingly in the following order: PLUS < QUOT ---------------------------------------- (44) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (45) BOUNDS(n^1, INF) ---------------------------------------- (46) Obligation: Innermost TRS: Rules: QUOT(0', s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0', s(z1)) -> c2(QUOT(z0, plus(z1, s(0')), s(z1)), PLUS(z1, s(0'))) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, z1)) quot(0', s(z0), s(z1)) -> 0' quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0', s(z1)) -> s(quot(z0, plus(z1, s(0')), s(z1))) plus(0', z0) -> z0 plus(s(z0), z1) -> s(plus(z0, z1)) Types: QUOT :: 0':s -> 0':s -> 0':s -> c:c1:c2 0' :: 0':s s :: 0':s -> 0':s c :: c:c1:c2 c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c3:c4 -> c:c1:c2 plus :: 0':s -> 0':s -> 0':s PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 quot :: 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_5 :: c:c1:c2 hole_0':s2_5 :: 0':s hole_c3:c43_5 :: c3:c4 gen_c:c1:c24_5 :: Nat -> c:c1:c2 gen_0':s5_5 :: Nat -> 0':s gen_c3:c46_5 :: Nat -> c3:c4 Lemmas: plus(gen_0':s5_5(n8_5), gen_0':s5_5(b)) -> gen_0':s5_5(+(n8_5, b)), rt in Omega(0) PLUS(gen_0':s5_5(n859_5), gen_0':s5_5(b)) -> gen_c3:c46_5(n859_5), rt in Omega(1 + n859_5) Generator Equations: gen_c:c1:c24_5(0) <=> c gen_c:c1:c24_5(+(x, 1)) <=> c1(gen_c:c1:c24_5(x)) gen_0':s5_5(0) <=> 0' gen_0':s5_5(+(x, 1)) <=> s(gen_0':s5_5(x)) gen_c3:c46_5(0) <=> c3 gen_c3:c46_5(+(x, 1)) <=> c4(gen_c3:c46_5(x)) The following defined symbols remain to be analysed: QUOT, quot ---------------------------------------- (47) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: QUOT(gen_0':s5_5(n1321_5), gen_0':s5_5(+(1, n1321_5)), gen_0':s5_5(1)) -> gen_c:c1:c24_5(n1321_5), rt in Omega(1 + n1321_5) Induction Base: QUOT(gen_0':s5_5(0), gen_0':s5_5(+(1, 0)), gen_0':s5_5(1)) ->_R^Omega(1) c Induction Step: QUOT(gen_0':s5_5(+(n1321_5, 1)), gen_0':s5_5(+(1, +(n1321_5, 1))), gen_0':s5_5(1)) ->_R^Omega(1) c1(QUOT(gen_0':s5_5(n1321_5), gen_0':s5_5(+(1, n1321_5)), gen_0':s5_5(1))) ->_IH c1(gen_c:c1:c24_5(c1322_5)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (48) Obligation: Innermost TRS: Rules: QUOT(0', s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0', s(z1)) -> c2(QUOT(z0, plus(z1, s(0')), s(z1)), PLUS(z1, s(0'))) PLUS(0', z0) -> c3 PLUS(s(z0), z1) -> c4(PLUS(z0, z1)) quot(0', s(z0), s(z1)) -> 0' quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0', s(z1)) -> s(quot(z0, plus(z1, s(0')), s(z1))) plus(0', z0) -> z0 plus(s(z0), z1) -> s(plus(z0, z1)) Types: QUOT :: 0':s -> 0':s -> 0':s -> c:c1:c2 0' :: 0':s s :: 0':s -> 0':s c :: c:c1:c2 c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c3:c4 -> c:c1:c2 plus :: 0':s -> 0':s -> 0':s PLUS :: 0':s -> 0':s -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 quot :: 0':s -> 0':s -> 0':s -> 0':s hole_c:c1:c21_5 :: c:c1:c2 hole_0':s2_5 :: 0':s hole_c3:c43_5 :: c3:c4 gen_c:c1:c24_5 :: Nat -> c:c1:c2 gen_0':s5_5 :: Nat -> 0':s gen_c3:c46_5 :: Nat -> c3:c4 Lemmas: plus(gen_0':s5_5(n8_5), gen_0':s5_5(b)) -> gen_0':s5_5(+(n8_5, b)), rt in Omega(0) PLUS(gen_0':s5_5(n859_5), gen_0':s5_5(b)) -> gen_c3:c46_5(n859_5), rt in Omega(1 + n859_5) QUOT(gen_0':s5_5(n1321_5), gen_0':s5_5(+(1, n1321_5)), gen_0':s5_5(1)) -> gen_c:c1:c24_5(n1321_5), rt in Omega(1 + n1321_5) Generator Equations: gen_c:c1:c24_5(0) <=> c gen_c:c1:c24_5(+(x, 1)) <=> c1(gen_c:c1:c24_5(x)) gen_0':s5_5(0) <=> 0' gen_0':s5_5(+(x, 1)) <=> s(gen_0':s5_5(x)) gen_c3:c46_5(0) <=> c3 gen_c3:c46_5(+(x, 1)) <=> c4(gen_c3:c46_5(x)) The following defined symbols remain to be analysed: quot ---------------------------------------- (49) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quot(gen_0':s5_5(n3408_5), gen_0':s5_5(+(1, n3408_5)), gen_0':s5_5(1)) -> gen_0':s5_5(0), rt in Omega(0) Induction Base: quot(gen_0':s5_5(0), gen_0':s5_5(+(1, 0)), gen_0':s5_5(1)) ->_R^Omega(0) 0' Induction Step: quot(gen_0':s5_5(+(n3408_5, 1)), gen_0':s5_5(+(1, +(n3408_5, 1))), gen_0':s5_5(1)) ->_R^Omega(0) quot(gen_0':s5_5(n3408_5), gen_0':s5_5(+(1, n3408_5)), gen_0':s5_5(1)) ->_IH gen_0':s5_5(0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (50) BOUNDS(1, INF)