WORST_CASE(Omega(n^1),O(n^2)) proof of input_20w4EZG02g.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 202 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 101 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 98 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 888 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 429 ms] (32) CpxRNTS (33) FinalProof [FINISHED, 0 ms] (34) BOUNDS(1, n^2) (35) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CdtProblem (37) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxRelTRS (39) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxRelTRS (41) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (42) typed CpxTrs (43) OrderProof [LOWER BOUND(ID), 9 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 366 ms] (46) BEST (47) proven lower bound (48) LowerBoundPropagationProof [FINISHED, 0 ms] (49) BOUNDS(n^1, INF) (50) typed CpxTrs (51) RewriteLemmaProof [LOWER BOUND(ID), 37 ms] (52) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0 if(false, x, y) -> s(minus(p(x), y)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, y) -> if(le(x, y), x, y) [1] if(true, x, y) -> 0 [1] if(false, x, y) -> s(minus(p(x), y)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, y) -> if(le(x, y), x, y) [1] if(true, x, y) -> 0 [1] if(false, x, y) -> s(minus(p(x), y)) [1] The TRS has the following type information: p :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false minus :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: minus_2 if_3 (c) The following functions are completely defined: p_1 le_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, y) -> if(le(x, y), x, y) [1] if(true, x, y) -> 0 [1] if(false, x, y) -> s(minus(p(x), y)) [1] The TRS has the following type information: p :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false minus :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> if(true, 0, y) [2] minus(s(x'), 0) -> if(false, s(x'), 0) [2] minus(s(x''), s(y')) -> if(le(x'', y'), s(x''), s(y')) [2] if(true, x, y) -> 0 [1] if(false, 0, y) -> s(minus(0, y)) [2] if(false, s(x1), y) -> s(minus(x1, y)) [2] The TRS has the following type information: p :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false minus :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 1 false => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(x1, y) :|: x1 >= 0, z'' = y, y >= 0, z' = 1 + x1, z = 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, y) :|: z'' = y, y >= 0, z = 0, z' = 0 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x le(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y le(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 minus(z, z') -{ 2 }-> if(le(x'', y'), 1 + x'', 1 + y') :|: z = 1 + x'', y' >= 0, z' = 1 + y', x'' >= 0 minus(z, z') -{ 2 }-> if(1, 0, y) :|: y >= 0, z = 0, z' = y minus(z, z') -{ 2 }-> if(0, 1 + x', 0) :|: z = 1 + x', x' >= 0, z' = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> if(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { le } { p } { if, minus } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> if(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {le}, {p}, {if,minus} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> if(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {le}, {p}, {if,minus} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> if(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {le}, {p}, {if,minus} Previous analysis results are: le: runtime: ?, size: O(1) [1] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: le after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> if(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {if,minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {if,minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {if,minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {if,minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {if,minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' Computed SIZE bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {if,minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] if: runtime: ?, size: O(n^1) [1 + z'] minus: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 10 + 5*z' + z'*z'' + z'' Computed RUNTIME bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 37 + 10*z + z*z' + 3*z' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 2 }-> 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> if(1, 0, z') :|: z' >= 0, z = 0 minus(z, z') -{ 2 }-> if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] if: runtime: O(n^2) [10 + 5*z' + z'*z'' + z''], size: O(n^1) [1 + z'] minus: runtime: O(n^2) [37 + 10*z + z*z' + 3*z'], size: O(n^1) [1 + z] ---------------------------------------- (33) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (34) BOUNDS(1, n^2) ---------------------------------------- (35) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (36) Obligation: Complexity Dependency Tuples Problem Rules: p(0) -> 0 p(s(z0)) -> z0 le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) minus(z0, z1) -> if(le(z0, z1), z0, z1) if(true, z0, z1) -> 0 if(false, z0, z1) -> s(minus(p(z0), z1)) Tuples: P(0) -> c P(s(z0)) -> c1 LE(0, z0) -> c2 LE(s(z0), 0) -> c3 LE(s(z0), s(z1)) -> c4(LE(z0, z1)) MINUS(z0, z1) -> c5(IF(le(z0, z1), z0, z1), LE(z0, z1)) IF(true, z0, z1) -> c6 IF(false, z0, z1) -> c7(MINUS(p(z0), z1), P(z0)) S tuples: P(0) -> c P(s(z0)) -> c1 LE(0, z0) -> c2 LE(s(z0), 0) -> c3 LE(s(z0), s(z1)) -> c4(LE(z0, z1)) MINUS(z0, z1) -> c5(IF(le(z0, z1), z0, z1), LE(z0, z1)) IF(true, z0, z1) -> c6 IF(false, z0, z1) -> c7(MINUS(p(z0), z1), P(z0)) K tuples:none Defined Rule Symbols: p_1, le_2, minus_2, if_3 Defined Pair Symbols: P_1, LE_2, MINUS_2, IF_3 Compound Symbols: c, c1, c2, c3, c4_1, c5_2, c6, c7_2 ---------------------------------------- (37) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (38) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: P(0) -> c P(s(z0)) -> c1 LE(0, z0) -> c2 LE(s(z0), 0) -> c3 LE(s(z0), s(z1)) -> c4(LE(z0, z1)) MINUS(z0, z1) -> c5(IF(le(z0, z1), z0, z1), LE(z0, z1)) IF(true, z0, z1) -> c6 IF(false, z0, z1) -> c7(MINUS(p(z0), z1), P(z0)) The (relative) TRS S consists of the following rules: p(0) -> 0 p(s(z0)) -> z0 le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) minus(z0, z1) -> if(le(z0, z1), z0, z1) if(true, z0, z1) -> 0 if(false, z0, z1) -> s(minus(p(z0), z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (39) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (40) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: P(0') -> c P(s(z0)) -> c1 LE(0', z0) -> c2 LE(s(z0), 0') -> c3 LE(s(z0), s(z1)) -> c4(LE(z0, z1)) MINUS(z0, z1) -> c5(IF(le(z0, z1), z0, z1), LE(z0, z1)) IF(true, z0, z1) -> c6 IF(false, z0, z1) -> c7(MINUS(p(z0), z1), P(z0)) The (relative) TRS S consists of the following rules: p(0') -> 0' p(s(z0)) -> z0 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(z0, z1) -> if(le(z0, z1), z0, z1) if(true, z0, z1) -> 0' if(false, z0, z1) -> s(minus(p(z0), z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (41) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (42) Obligation: Innermost TRS: Rules: P(0') -> c P(s(z0)) -> c1 LE(0', z0) -> c2 LE(s(z0), 0') -> c3 LE(s(z0), s(z1)) -> c4(LE(z0, z1)) MINUS(z0, z1) -> c5(IF(le(z0, z1), z0, z1), LE(z0, z1)) IF(true, z0, z1) -> c6 IF(false, z0, z1) -> c7(MINUS(p(z0), z1), P(z0)) p(0') -> 0' p(s(z0)) -> z0 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(z0, z1) -> if(le(z0, z1), z0, z1) if(true, z0, z1) -> 0' if(false, z0, z1) -> s(minus(p(z0), z1)) Types: P :: 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 LE :: 0':s -> 0':s -> c2:c3:c4 c2 :: c2:c3:c4 c3 :: c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MINUS :: 0':s -> 0':s -> c5 c5 :: c6:c7 -> c2:c3:c4 -> c5 IF :: true:false -> 0':s -> 0':s -> c6:c7 le :: 0':s -> 0':s -> true:false true :: true:false c6 :: c6:c7 false :: true:false c7 :: c5 -> c:c1 -> c6:c7 p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c11_8 :: c:c1 hole_0':s2_8 :: 0':s hole_c2:c3:c43_8 :: c2:c3:c4 hole_c54_8 :: c5 hole_c6:c75_8 :: c6:c7 hole_true:false6_8 :: true:false gen_0':s7_8 :: Nat -> 0':s gen_c2:c3:c48_8 :: Nat -> c2:c3:c4 ---------------------------------------- (43) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: LE, MINUS, le, minus They will be analysed ascendingly in the following order: LE < MINUS le < MINUS le < minus ---------------------------------------- (44) Obligation: Innermost TRS: Rules: P(0') -> c P(s(z0)) -> c1 LE(0', z0) -> c2 LE(s(z0), 0') -> c3 LE(s(z0), s(z1)) -> c4(LE(z0, z1)) MINUS(z0, z1) -> c5(IF(le(z0, z1), z0, z1), LE(z0, z1)) IF(true, z0, z1) -> c6 IF(false, z0, z1) -> c7(MINUS(p(z0), z1), P(z0)) p(0') -> 0' p(s(z0)) -> z0 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(z0, z1) -> if(le(z0, z1), z0, z1) if(true, z0, z1) -> 0' if(false, z0, z1) -> s(minus(p(z0), z1)) Types: P :: 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 LE :: 0':s -> 0':s -> c2:c3:c4 c2 :: c2:c3:c4 c3 :: c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MINUS :: 0':s -> 0':s -> c5 c5 :: c6:c7 -> c2:c3:c4 -> c5 IF :: true:false -> 0':s -> 0':s -> c6:c7 le :: 0':s -> 0':s -> true:false true :: true:false c6 :: c6:c7 false :: true:false c7 :: c5 -> c:c1 -> c6:c7 p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c11_8 :: c:c1 hole_0':s2_8 :: 0':s hole_c2:c3:c43_8 :: c2:c3:c4 hole_c54_8 :: c5 hole_c6:c75_8 :: c6:c7 hole_true:false6_8 :: true:false gen_0':s7_8 :: Nat -> 0':s gen_c2:c3:c48_8 :: Nat -> c2:c3:c4 Generator Equations: gen_0':s7_8(0) <=> 0' gen_0':s7_8(+(x, 1)) <=> s(gen_0':s7_8(x)) gen_c2:c3:c48_8(0) <=> c2 gen_c2:c3:c48_8(+(x, 1)) <=> c4(gen_c2:c3:c48_8(x)) The following defined symbols remain to be analysed: LE, MINUS, le, minus They will be analysed ascendingly in the following order: LE < MINUS le < MINUS le < minus ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LE(gen_0':s7_8(n10_8), gen_0':s7_8(n10_8)) -> gen_c2:c3:c48_8(n10_8), rt in Omega(1 + n10_8) Induction Base: LE(gen_0':s7_8(0), gen_0':s7_8(0)) ->_R^Omega(1) c2 Induction Step: LE(gen_0':s7_8(+(n10_8, 1)), gen_0':s7_8(+(n10_8, 1))) ->_R^Omega(1) c4(LE(gen_0':s7_8(n10_8), gen_0':s7_8(n10_8))) ->_IH c4(gen_c2:c3:c48_8(c11_8)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (46) Complex Obligation (BEST) ---------------------------------------- (47) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: P(0') -> c P(s(z0)) -> c1 LE(0', z0) -> c2 LE(s(z0), 0') -> c3 LE(s(z0), s(z1)) -> c4(LE(z0, z1)) MINUS(z0, z1) -> c5(IF(le(z0, z1), z0, z1), LE(z0, z1)) IF(true, z0, z1) -> c6 IF(false, z0, z1) -> c7(MINUS(p(z0), z1), P(z0)) p(0') -> 0' p(s(z0)) -> z0 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(z0, z1) -> if(le(z0, z1), z0, z1) if(true, z0, z1) -> 0' if(false, z0, z1) -> s(minus(p(z0), z1)) Types: P :: 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 LE :: 0':s -> 0':s -> c2:c3:c4 c2 :: c2:c3:c4 c3 :: c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MINUS :: 0':s -> 0':s -> c5 c5 :: c6:c7 -> c2:c3:c4 -> c5 IF :: true:false -> 0':s -> 0':s -> c6:c7 le :: 0':s -> 0':s -> true:false true :: true:false c6 :: c6:c7 false :: true:false c7 :: c5 -> c:c1 -> c6:c7 p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c11_8 :: c:c1 hole_0':s2_8 :: 0':s hole_c2:c3:c43_8 :: c2:c3:c4 hole_c54_8 :: c5 hole_c6:c75_8 :: c6:c7 hole_true:false6_8 :: true:false gen_0':s7_8 :: Nat -> 0':s gen_c2:c3:c48_8 :: Nat -> c2:c3:c4 Generator Equations: gen_0':s7_8(0) <=> 0' gen_0':s7_8(+(x, 1)) <=> s(gen_0':s7_8(x)) gen_c2:c3:c48_8(0) <=> c2 gen_c2:c3:c48_8(+(x, 1)) <=> c4(gen_c2:c3:c48_8(x)) The following defined symbols remain to be analysed: LE, MINUS, le, minus They will be analysed ascendingly in the following order: LE < MINUS le < MINUS le < minus ---------------------------------------- (48) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (49) BOUNDS(n^1, INF) ---------------------------------------- (50) Obligation: Innermost TRS: Rules: P(0') -> c P(s(z0)) -> c1 LE(0', z0) -> c2 LE(s(z0), 0') -> c3 LE(s(z0), s(z1)) -> c4(LE(z0, z1)) MINUS(z0, z1) -> c5(IF(le(z0, z1), z0, z1), LE(z0, z1)) IF(true, z0, z1) -> c6 IF(false, z0, z1) -> c7(MINUS(p(z0), z1), P(z0)) p(0') -> 0' p(s(z0)) -> z0 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(z0, z1) -> if(le(z0, z1), z0, z1) if(true, z0, z1) -> 0' if(false, z0, z1) -> s(minus(p(z0), z1)) Types: P :: 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 LE :: 0':s -> 0':s -> c2:c3:c4 c2 :: c2:c3:c4 c3 :: c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MINUS :: 0':s -> 0':s -> c5 c5 :: c6:c7 -> c2:c3:c4 -> c5 IF :: true:false -> 0':s -> 0':s -> c6:c7 le :: 0':s -> 0':s -> true:false true :: true:false c6 :: c6:c7 false :: true:false c7 :: c5 -> c:c1 -> c6:c7 p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c11_8 :: c:c1 hole_0':s2_8 :: 0':s hole_c2:c3:c43_8 :: c2:c3:c4 hole_c54_8 :: c5 hole_c6:c75_8 :: c6:c7 hole_true:false6_8 :: true:false gen_0':s7_8 :: Nat -> 0':s gen_c2:c3:c48_8 :: Nat -> c2:c3:c4 Lemmas: LE(gen_0':s7_8(n10_8), gen_0':s7_8(n10_8)) -> gen_c2:c3:c48_8(n10_8), rt in Omega(1 + n10_8) Generator Equations: gen_0':s7_8(0) <=> 0' gen_0':s7_8(+(x, 1)) <=> s(gen_0':s7_8(x)) gen_c2:c3:c48_8(0) <=> c2 gen_c2:c3:c48_8(+(x, 1)) <=> c4(gen_c2:c3:c48_8(x)) The following defined symbols remain to be analysed: le, MINUS, minus They will be analysed ascendingly in the following order: le < MINUS le < minus ---------------------------------------- (51) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s7_8(n572_8), gen_0':s7_8(n572_8)) -> true, rt in Omega(0) Induction Base: le(gen_0':s7_8(0), gen_0':s7_8(0)) ->_R^Omega(0) true Induction Step: le(gen_0':s7_8(+(n572_8, 1)), gen_0':s7_8(+(n572_8, 1))) ->_R^Omega(0) le(gen_0':s7_8(n572_8), gen_0':s7_8(n572_8)) ->_IH true We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (52) Obligation: Innermost TRS: Rules: P(0') -> c P(s(z0)) -> c1 LE(0', z0) -> c2 LE(s(z0), 0') -> c3 LE(s(z0), s(z1)) -> c4(LE(z0, z1)) MINUS(z0, z1) -> c5(IF(le(z0, z1), z0, z1), LE(z0, z1)) IF(true, z0, z1) -> c6 IF(false, z0, z1) -> c7(MINUS(p(z0), z1), P(z0)) p(0') -> 0' p(s(z0)) -> z0 le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) minus(z0, z1) -> if(le(z0, z1), z0, z1) if(true, z0, z1) -> 0' if(false, z0, z1) -> s(minus(p(z0), z1)) Types: P :: 0':s -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s c1 :: c:c1 LE :: 0':s -> 0':s -> c2:c3:c4 c2 :: c2:c3:c4 c3 :: c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 MINUS :: 0':s -> 0':s -> c5 c5 :: c6:c7 -> c2:c3:c4 -> c5 IF :: true:false -> 0':s -> 0':s -> c6:c7 le :: 0':s -> 0':s -> true:false true :: true:false c6 :: c6:c7 false :: true:false c7 :: c5 -> c:c1 -> c6:c7 p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c11_8 :: c:c1 hole_0':s2_8 :: 0':s hole_c2:c3:c43_8 :: c2:c3:c4 hole_c54_8 :: c5 hole_c6:c75_8 :: c6:c7 hole_true:false6_8 :: true:false gen_0':s7_8 :: Nat -> 0':s gen_c2:c3:c48_8 :: Nat -> c2:c3:c4 Lemmas: LE(gen_0':s7_8(n10_8), gen_0':s7_8(n10_8)) -> gen_c2:c3:c48_8(n10_8), rt in Omega(1 + n10_8) le(gen_0':s7_8(n572_8), gen_0':s7_8(n572_8)) -> true, rt in Omega(0) Generator Equations: gen_0':s7_8(0) <=> 0' gen_0':s7_8(+(x, 1)) <=> s(gen_0':s7_8(x)) gen_c2:c3:c48_8(0) <=> c2 gen_c2:c3:c48_8(+(x, 1)) <=> c4(gen_c2:c3:c48_8(x)) The following defined symbols remain to be analysed: MINUS, minus