WORST_CASE(Omega(n^1),O(n^1)) proof of input_DvBwPlu1cz.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 207 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 45 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 262 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 100 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 54 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 150 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (40) CpxRNTS (41) FinalProof [FINISHED, 0 ms] (42) BOUNDS(1, n^1) (43) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CdtProblem (45) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CpxRelTRS (47) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CpxRelTRS (49) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (50) typed CpxTrs (51) OrderProof [LOWER BOUND(ID), 13 ms] (52) typed CpxTrs (53) RewriteLemmaProof [LOWER BOUND(ID), 1917 ms] (54) BEST (55) proven lower bound (56) LowerBoundPropagationProof [FINISHED, 0 ms] (57) BOUNDS(n^1, INF) (58) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: +(X, 0) -> X +(X, s(Y)) -> s(+(X, Y)) double(X) -> +(X, X) f(0, s(0), X) -> f(X, double(X), X) g(X, Y) -> X g(X, Y) -> Y S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: +(X, 0) -> X [1] +(X, s(Y)) -> s(+(X, Y)) [1] double(X) -> +(X, X) [1] f(0, s(0), X) -> f(X, double(X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: + => plus ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] double(X) -> plus(X, X) [1] f(0, s(0), X) -> f(X, double(X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] double(X) -> plus(X, X) [1] f(0, s(0), X) -> f(X, double(X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s double :: 0:s -> 0:s f :: 0:s -> 0:s -> 0:s -> f g :: g -> g -> g Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: f_3 g_2 (c) The following functions are completely defined: double_1 plus_2 Due to the following rules being added: none And the following fresh constants: const, const1 ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] double(X) -> plus(X, X) [1] f(0, s(0), X) -> f(X, double(X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s double :: 0:s -> 0:s f :: 0:s -> 0:s -> 0:s -> f g :: g -> g -> g const :: f const1 :: g Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] double(X) -> plus(X, X) [1] f(0, s(0), X) -> f(X, plus(X, X), X) [2] g(X, Y) -> X [1] g(X, Y) -> Y [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s double :: 0:s -> 0:s f :: 0:s -> 0:s -> 0:s -> f g :: g -> g -> g const :: f const1 :: g Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const => 0 const1 => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(X, X) :|: X >= 0, z = X f(z, z', z'') -{ 2 }-> f(X, plus(X, X), X) :|: z'' = X, X >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> X :|: z' = Y, Y >= 0, X >= 0, z = X g(z, z') -{ 1 }-> Y :|: z' = Y, Y >= 0, X >= 0, z = X plus(z, z') -{ 1 }-> X :|: X >= 0, z = X, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(X, Y) :|: Y >= 0, z' = 1 + Y, X >= 0, z = X ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g } { plus } { f } { double } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {plus}, {f}, {double} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {plus}, {f}, {double} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {plus}, {f}, {double} Previous analysis results are: g: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 3 + z'' }-> f(z'', s'', z'') :|: s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 3 + z'' }-> f(z'', s'', z'') :|: s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: ?, size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z'' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 3 + z'' }-> f(z'', s'', z'') :|: s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [3 + z''], size: O(1) [0] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 6 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [3 + z''], size: O(1) [0] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: double after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 6 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [3 + z''], size: O(1) [0] double: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: double after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 6 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [3 + z''], size: O(1) [0] double: runtime: O(n^1) [2 + z], size: O(n^1) [2*z] ---------------------------------------- (41) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (42) BOUNDS(1, n^1) ---------------------------------------- (43) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (44) Obligation: Complexity Dependency Tuples Problem Rules: +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) double(z0) -> +(z0, z0) f(0, s(0), z0) -> f(z0, double(z0), z0) g(z0, z1) -> z0 g(z0, z1) -> z1 Tuples: +'(z0, 0) -> c +'(z0, s(z1)) -> c1(+'(z0, z1)) DOUBLE(z0) -> c2(+'(z0, z0)) F(0, s(0), z0) -> c3(F(z0, double(z0), z0), DOUBLE(z0)) G(z0, z1) -> c4 G(z0, z1) -> c5 S tuples: +'(z0, 0) -> c +'(z0, s(z1)) -> c1(+'(z0, z1)) DOUBLE(z0) -> c2(+'(z0, z0)) F(0, s(0), z0) -> c3(F(z0, double(z0), z0), DOUBLE(z0)) G(z0, z1) -> c4 G(z0, z1) -> c5 K tuples:none Defined Rule Symbols: +_2, double_1, f_3, g_2 Defined Pair Symbols: +'_2, DOUBLE_1, F_3, G_2 Compound Symbols: c, c1_1, c2_1, c3_2, c4, c5 ---------------------------------------- (45) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (46) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(z0, 0) -> c +'(z0, s(z1)) -> c1(+'(z0, z1)) DOUBLE(z0) -> c2(+'(z0, z0)) F(0, s(0), z0) -> c3(F(z0, double(z0), z0), DOUBLE(z0)) G(z0, z1) -> c4 G(z0, z1) -> c5 The (relative) TRS S consists of the following rules: +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) double(z0) -> +(z0, z0) f(0, s(0), z0) -> f(z0, double(z0), z0) g(z0, z1) -> z0 g(z0, z1) -> z1 Rewrite Strategy: INNERMOST ---------------------------------------- (47) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (48) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(z0, 0') -> c +'(z0, s(z1)) -> c1(+'(z0, z1)) DOUBLE(z0) -> c2(+'(z0, z0)) F(0', s(0'), z0) -> c3(F(z0, double(z0), z0), DOUBLE(z0)) G(z0, z1) -> c4 G(z0, z1) -> c5 The (relative) TRS S consists of the following rules: +'(z0, 0') -> z0 +'(z0, s(z1)) -> s(+'(z0, z1)) double(z0) -> +'(z0, z0) f(0', s(0'), z0) -> f(z0, double(z0), z0) g(z0, z1) -> z0 g(z0, z1) -> z1 Rewrite Strategy: INNERMOST ---------------------------------------- (49) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (50) Obligation: Innermost TRS: Rules: +'(z0, 0') -> c +'(z0, s(z1)) -> c1(+'(z0, z1)) DOUBLE(z0) -> c2(+'(z0, z0)) F(0', s(0'), z0) -> c3(F(z0, double(z0), z0), DOUBLE(z0)) G(z0, z1) -> c4 G(z0, z1) -> c5 +'(z0, 0') -> z0 +'(z0, s(z1)) -> s(+'(z0, z1)) double(z0) -> +'(z0, z0) f(0', s(0'), z0) -> f(z0, double(z0), z0) g(z0, z1) -> z0 g(z0, z1) -> z1 Types: +' :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 0' :: 0':c:s:c1 c :: 0':c:s:c1 s :: 0':c:s:c1 -> 0':c:s:c1 c1 :: 0':c:s:c1 -> 0':c:s:c1 DOUBLE :: 0':c:s:c1 -> c2 c2 :: 0':c:s:c1 -> c2 F :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 -> c3 c3 :: c3 -> c2 -> c3 double :: 0':c:s:c1 -> 0':c:s:c1 G :: a -> b -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 f :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 -> f g :: g -> g -> g hole_0':c:s:c11_6 :: 0':c:s:c1 hole_c22_6 :: c2 hole_c33_6 :: c3 hole_c4:c54_6 :: c4:c5 hole_a5_6 :: a hole_b6_6 :: b hole_f7_6 :: f hole_g8_6 :: g gen_0':c:s:c19_6 :: Nat -> 0':c:s:c1 gen_c310_6 :: Nat -> c3 ---------------------------------------- (51) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +', F, f ---------------------------------------- (52) Obligation: Innermost TRS: Rules: +'(z0, 0') -> c +'(z0, s(z1)) -> c1(+'(z0, z1)) DOUBLE(z0) -> c2(+'(z0, z0)) F(0', s(0'), z0) -> c3(F(z0, double(z0), z0), DOUBLE(z0)) G(z0, z1) -> c4 G(z0, z1) -> c5 +'(z0, 0') -> z0 +'(z0, s(z1)) -> s(+'(z0, z1)) double(z0) -> +'(z0, z0) f(0', s(0'), z0) -> f(z0, double(z0), z0) g(z0, z1) -> z0 g(z0, z1) -> z1 Types: +' :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 0' :: 0':c:s:c1 c :: 0':c:s:c1 s :: 0':c:s:c1 -> 0':c:s:c1 c1 :: 0':c:s:c1 -> 0':c:s:c1 DOUBLE :: 0':c:s:c1 -> c2 c2 :: 0':c:s:c1 -> c2 F :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 -> c3 c3 :: c3 -> c2 -> c3 double :: 0':c:s:c1 -> 0':c:s:c1 G :: a -> b -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 f :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 -> f g :: g -> g -> g hole_0':c:s:c11_6 :: 0':c:s:c1 hole_c22_6 :: c2 hole_c33_6 :: c3 hole_c4:c54_6 :: c4:c5 hole_a5_6 :: a hole_b6_6 :: b hole_f7_6 :: f hole_g8_6 :: g gen_0':c:s:c19_6 :: Nat -> 0':c:s:c1 gen_c310_6 :: Nat -> c3 Generator Equations: gen_0':c:s:c19_6(0) <=> 0' gen_0':c:s:c19_6(+(x, 1)) <=> s(gen_0':c:s:c19_6(x)) gen_c310_6(0) <=> hole_c33_6 gen_c310_6(+(x, 1)) <=> c3(gen_c310_6(x), c2(0')) The following defined symbols remain to be analysed: +', F, f ---------------------------------------- (53) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':c:s:c19_6(a), gen_0':c:s:c19_6(+(1, n12_6))) -> *11_6, rt in Omega(n12_6) Induction Base: +'(gen_0':c:s:c19_6(a), gen_0':c:s:c19_6(+(1, 0))) Induction Step: +'(gen_0':c:s:c19_6(a), gen_0':c:s:c19_6(+(1, +(n12_6, 1)))) ->_R^Omega(1) c1(+'(gen_0':c:s:c19_6(a), gen_0':c:s:c19_6(+(1, n12_6)))) ->_IH c1(*11_6) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (54) Complex Obligation (BEST) ---------------------------------------- (55) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: +'(z0, 0') -> c +'(z0, s(z1)) -> c1(+'(z0, z1)) DOUBLE(z0) -> c2(+'(z0, z0)) F(0', s(0'), z0) -> c3(F(z0, double(z0), z0), DOUBLE(z0)) G(z0, z1) -> c4 G(z0, z1) -> c5 +'(z0, 0') -> z0 +'(z0, s(z1)) -> s(+'(z0, z1)) double(z0) -> +'(z0, z0) f(0', s(0'), z0) -> f(z0, double(z0), z0) g(z0, z1) -> z0 g(z0, z1) -> z1 Types: +' :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 0' :: 0':c:s:c1 c :: 0':c:s:c1 s :: 0':c:s:c1 -> 0':c:s:c1 c1 :: 0':c:s:c1 -> 0':c:s:c1 DOUBLE :: 0':c:s:c1 -> c2 c2 :: 0':c:s:c1 -> c2 F :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 -> c3 c3 :: c3 -> c2 -> c3 double :: 0':c:s:c1 -> 0':c:s:c1 G :: a -> b -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 f :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 -> f g :: g -> g -> g hole_0':c:s:c11_6 :: 0':c:s:c1 hole_c22_6 :: c2 hole_c33_6 :: c3 hole_c4:c54_6 :: c4:c5 hole_a5_6 :: a hole_b6_6 :: b hole_f7_6 :: f hole_g8_6 :: g gen_0':c:s:c19_6 :: Nat -> 0':c:s:c1 gen_c310_6 :: Nat -> c3 Generator Equations: gen_0':c:s:c19_6(0) <=> 0' gen_0':c:s:c19_6(+(x, 1)) <=> s(gen_0':c:s:c19_6(x)) gen_c310_6(0) <=> hole_c33_6 gen_c310_6(+(x, 1)) <=> c3(gen_c310_6(x), c2(0')) The following defined symbols remain to be analysed: +', F, f ---------------------------------------- (56) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (57) BOUNDS(n^1, INF) ---------------------------------------- (58) Obligation: Innermost TRS: Rules: +'(z0, 0') -> c +'(z0, s(z1)) -> c1(+'(z0, z1)) DOUBLE(z0) -> c2(+'(z0, z0)) F(0', s(0'), z0) -> c3(F(z0, double(z0), z0), DOUBLE(z0)) G(z0, z1) -> c4 G(z0, z1) -> c5 +'(z0, 0') -> z0 +'(z0, s(z1)) -> s(+'(z0, z1)) double(z0) -> +'(z0, z0) f(0', s(0'), z0) -> f(z0, double(z0), z0) g(z0, z1) -> z0 g(z0, z1) -> z1 Types: +' :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 0' :: 0':c:s:c1 c :: 0':c:s:c1 s :: 0':c:s:c1 -> 0':c:s:c1 c1 :: 0':c:s:c1 -> 0':c:s:c1 DOUBLE :: 0':c:s:c1 -> c2 c2 :: 0':c:s:c1 -> c2 F :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 -> c3 c3 :: c3 -> c2 -> c3 double :: 0':c:s:c1 -> 0':c:s:c1 G :: a -> b -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 f :: 0':c:s:c1 -> 0':c:s:c1 -> 0':c:s:c1 -> f g :: g -> g -> g hole_0':c:s:c11_6 :: 0':c:s:c1 hole_c22_6 :: c2 hole_c33_6 :: c3 hole_c4:c54_6 :: c4:c5 hole_a5_6 :: a hole_b6_6 :: b hole_f7_6 :: f hole_g8_6 :: g gen_0':c:s:c19_6 :: Nat -> 0':c:s:c1 gen_c310_6 :: Nat -> c3 Lemmas: +'(gen_0':c:s:c19_6(a), gen_0':c:s:c19_6(+(1, n12_6))) -> *11_6, rt in Omega(n12_6) Generator Equations: gen_0':c:s:c19_6(0) <=> 0' gen_0':c:s:c19_6(+(x, 1)) <=> s(gen_0':c:s:c19_6(x)) gen_c310_6(0) <=> hole_c33_6 gen_c310_6(+(x, 1)) <=> c3(gen_c310_6(x), c2(0')) The following defined symbols remain to be analysed: F, f