WORST_CASE(Omega(n^1),O(n^1)) proof of input_yyAJfhDrI1.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 26 ms] (4) BOUNDS(1, n^1) (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 10 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 465 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 125 ms] (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(s(X)) -> f(X) g(cons(0, Y)) -> g(Y) g(cons(s(X), Y)) -> s(X) h(cons(X, Y)) -> h(g(cons(X, Y))) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(X)) -> f(X) g(cons(0, Y)) -> g(Y) g(cons(s(X), Y)) -> s(X) h(cons(X, Y)) -> h(g(cons(X, Y))) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3] transitions: s0(0) -> 0 cons0(0, 0) -> 0 00() -> 0 f0(0) -> 1 g0(0) -> 2 h0(0) -> 3 f1(0) -> 1 g1(0) -> 2 s1(0) -> 2 cons1(0, 0) -> 5 g1(5) -> 4 h1(4) -> 3 g1(0) -> 4 s1(0) -> 4 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(s(z0)) -> f(z0) g(cons(0, z0)) -> g(z0) g(cons(s(z0), z1)) -> s(z0) h(cons(z0, z1)) -> h(g(cons(z0, z1))) Tuples: F(s(z0)) -> c(F(z0)) G(cons(0, z0)) -> c1(G(z0)) G(cons(s(z0), z1)) -> c2 H(cons(z0, z1)) -> c3(H(g(cons(z0, z1))), G(cons(z0, z1))) S tuples: F(s(z0)) -> c(F(z0)) G(cons(0, z0)) -> c1(G(z0)) G(cons(s(z0), z1)) -> c2 H(cons(z0, z1)) -> c3(H(g(cons(z0, z1))), G(cons(z0, z1))) K tuples:none Defined Rule Symbols: f_1, g_1, h_1 Defined Pair Symbols: F_1, G_1, H_1 Compound Symbols: c_1, c1_1, c2, c3_2 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(s(z0)) -> c(F(z0)) G(cons(0, z0)) -> c1(G(z0)) G(cons(s(z0), z1)) -> c2 H(cons(z0, z1)) -> c3(H(g(cons(z0, z1))), G(cons(z0, z1))) The (relative) TRS S consists of the following rules: f(s(z0)) -> f(z0) g(cons(0, z0)) -> g(z0) g(cons(s(z0), z1)) -> s(z0) h(cons(z0, z1)) -> h(g(cons(z0, z1))) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(s(z0)) -> c(F(z0)) G(cons(0', z0)) -> c1(G(z0)) G(cons(s(z0), z1)) -> c2 H(cons(z0, z1)) -> c3(H(g(cons(z0, z1))), G(cons(z0, z1))) The (relative) TRS S consists of the following rules: f(s(z0)) -> f(z0) g(cons(0', z0)) -> g(z0) g(cons(s(z0), z1)) -> s(z0) h(cons(z0, z1)) -> h(g(cons(z0, z1))) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: F(s(z0)) -> c(F(z0)) G(cons(0', z0)) -> c1(G(z0)) G(cons(s(z0), z1)) -> c2 H(cons(z0, z1)) -> c3(H(g(cons(z0, z1))), G(cons(z0, z1))) f(s(z0)) -> f(z0) g(cons(0', z0)) -> g(z0) g(cons(s(z0), z1)) -> s(z0) h(cons(z0, z1)) -> h(g(cons(z0, z1))) Types: F :: s:0':cons -> c s :: s:0':cons -> s:0':cons c :: c -> c G :: s:0':cons -> c1:c2 cons :: s:0':cons -> s:0':cons -> s:0':cons 0' :: s:0':cons c1 :: c1:c2 -> c1:c2 c2 :: c1:c2 H :: s:0':cons -> c3 c3 :: c3 -> c1:c2 -> c3 g :: s:0':cons -> s:0':cons f :: s:0':cons -> f h :: s:0':cons -> h hole_c1_4 :: c hole_s:0':cons2_4 :: s:0':cons hole_c1:c23_4 :: c1:c2 hole_c34_4 :: c3 hole_f5_4 :: f hole_h6_4 :: h gen_c7_4 :: Nat -> c gen_s:0':cons8_4 :: Nat -> s:0':cons gen_c1:c29_4 :: Nat -> c1:c2 gen_c310_4 :: Nat -> c3 ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: F, G, H, g, f, h They will be analysed ascendingly in the following order: G < H g < H g < h ---------------------------------------- (14) Obligation: Innermost TRS: Rules: F(s(z0)) -> c(F(z0)) G(cons(0', z0)) -> c1(G(z0)) G(cons(s(z0), z1)) -> c2 H(cons(z0, z1)) -> c3(H(g(cons(z0, z1))), G(cons(z0, z1))) f(s(z0)) -> f(z0) g(cons(0', z0)) -> g(z0) g(cons(s(z0), z1)) -> s(z0) h(cons(z0, z1)) -> h(g(cons(z0, z1))) Types: F :: s:0':cons -> c s :: s:0':cons -> s:0':cons c :: c -> c G :: s:0':cons -> c1:c2 cons :: s:0':cons -> s:0':cons -> s:0':cons 0' :: s:0':cons c1 :: c1:c2 -> c1:c2 c2 :: c1:c2 H :: s:0':cons -> c3 c3 :: c3 -> c1:c2 -> c3 g :: s:0':cons -> s:0':cons f :: s:0':cons -> f h :: s:0':cons -> h hole_c1_4 :: c hole_s:0':cons2_4 :: s:0':cons hole_c1:c23_4 :: c1:c2 hole_c34_4 :: c3 hole_f5_4 :: f hole_h6_4 :: h gen_c7_4 :: Nat -> c gen_s:0':cons8_4 :: Nat -> s:0':cons gen_c1:c29_4 :: Nat -> c1:c2 gen_c310_4 :: Nat -> c3 Generator Equations: gen_c7_4(0) <=> hole_c1_4 gen_c7_4(+(x, 1)) <=> c(gen_c7_4(x)) gen_s:0':cons8_4(0) <=> 0' gen_s:0':cons8_4(+(x, 1)) <=> s(gen_s:0':cons8_4(x)) gen_c1:c29_4(0) <=> c2 gen_c1:c29_4(+(x, 1)) <=> c1(gen_c1:c29_4(x)) gen_c310_4(0) <=> hole_c34_4 gen_c310_4(+(x, 1)) <=> c3(gen_c310_4(x), c2) The following defined symbols remain to be analysed: F, G, H, g, f, h They will be analysed ascendingly in the following order: G < H g < H g < h ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: F(gen_s:0':cons8_4(+(1, n12_4))) -> *11_4, rt in Omega(n12_4) Induction Base: F(gen_s:0':cons8_4(+(1, 0))) Induction Step: F(gen_s:0':cons8_4(+(1, +(n12_4, 1)))) ->_R^Omega(1) c(F(gen_s:0':cons8_4(+(1, n12_4)))) ->_IH c(*11_4) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: F(s(z0)) -> c(F(z0)) G(cons(0', z0)) -> c1(G(z0)) G(cons(s(z0), z1)) -> c2 H(cons(z0, z1)) -> c3(H(g(cons(z0, z1))), G(cons(z0, z1))) f(s(z0)) -> f(z0) g(cons(0', z0)) -> g(z0) g(cons(s(z0), z1)) -> s(z0) h(cons(z0, z1)) -> h(g(cons(z0, z1))) Types: F :: s:0':cons -> c s :: s:0':cons -> s:0':cons c :: c -> c G :: s:0':cons -> c1:c2 cons :: s:0':cons -> s:0':cons -> s:0':cons 0' :: s:0':cons c1 :: c1:c2 -> c1:c2 c2 :: c1:c2 H :: s:0':cons -> c3 c3 :: c3 -> c1:c2 -> c3 g :: s:0':cons -> s:0':cons f :: s:0':cons -> f h :: s:0':cons -> h hole_c1_4 :: c hole_s:0':cons2_4 :: s:0':cons hole_c1:c23_4 :: c1:c2 hole_c34_4 :: c3 hole_f5_4 :: f hole_h6_4 :: h gen_c7_4 :: Nat -> c gen_s:0':cons8_4 :: Nat -> s:0':cons gen_c1:c29_4 :: Nat -> c1:c2 gen_c310_4 :: Nat -> c3 Generator Equations: gen_c7_4(0) <=> hole_c1_4 gen_c7_4(+(x, 1)) <=> c(gen_c7_4(x)) gen_s:0':cons8_4(0) <=> 0' gen_s:0':cons8_4(+(x, 1)) <=> s(gen_s:0':cons8_4(x)) gen_c1:c29_4(0) <=> c2 gen_c1:c29_4(+(x, 1)) <=> c1(gen_c1:c29_4(x)) gen_c310_4(0) <=> hole_c34_4 gen_c310_4(+(x, 1)) <=> c3(gen_c310_4(x), c2) The following defined symbols remain to be analysed: F, G, H, g, f, h They will be analysed ascendingly in the following order: G < H g < H g < h ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Innermost TRS: Rules: F(s(z0)) -> c(F(z0)) G(cons(0', z0)) -> c1(G(z0)) G(cons(s(z0), z1)) -> c2 H(cons(z0, z1)) -> c3(H(g(cons(z0, z1))), G(cons(z0, z1))) f(s(z0)) -> f(z0) g(cons(0', z0)) -> g(z0) g(cons(s(z0), z1)) -> s(z0) h(cons(z0, z1)) -> h(g(cons(z0, z1))) Types: F :: s:0':cons -> c s :: s:0':cons -> s:0':cons c :: c -> c G :: s:0':cons -> c1:c2 cons :: s:0':cons -> s:0':cons -> s:0':cons 0' :: s:0':cons c1 :: c1:c2 -> c1:c2 c2 :: c1:c2 H :: s:0':cons -> c3 c3 :: c3 -> c1:c2 -> c3 g :: s:0':cons -> s:0':cons f :: s:0':cons -> f h :: s:0':cons -> h hole_c1_4 :: c hole_s:0':cons2_4 :: s:0':cons hole_c1:c23_4 :: c1:c2 hole_c34_4 :: c3 hole_f5_4 :: f hole_h6_4 :: h gen_c7_4 :: Nat -> c gen_s:0':cons8_4 :: Nat -> s:0':cons gen_c1:c29_4 :: Nat -> c1:c2 gen_c310_4 :: Nat -> c3 Lemmas: F(gen_s:0':cons8_4(+(1, n12_4))) -> *11_4, rt in Omega(n12_4) Generator Equations: gen_c7_4(0) <=> hole_c1_4 gen_c7_4(+(x, 1)) <=> c(gen_c7_4(x)) gen_s:0':cons8_4(0) <=> 0' gen_s:0':cons8_4(+(x, 1)) <=> s(gen_s:0':cons8_4(x)) gen_c1:c29_4(0) <=> c2 gen_c1:c29_4(+(x, 1)) <=> c1(gen_c1:c29_4(x)) gen_c310_4(0) <=> hole_c34_4 gen_c310_4(+(x, 1)) <=> c3(gen_c310_4(x), c2) The following defined symbols remain to be analysed: G, H, g, f, h They will be analysed ascendingly in the following order: G < H g < H g < h ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_s:0':cons8_4(+(1, n222_4))) -> *11_4, rt in Omega(0) Induction Base: f(gen_s:0':cons8_4(+(1, 0))) Induction Step: f(gen_s:0':cons8_4(+(1, +(n222_4, 1)))) ->_R^Omega(0) f(gen_s:0':cons8_4(+(1, n222_4))) ->_IH *11_4 We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) Obligation: Innermost TRS: Rules: F(s(z0)) -> c(F(z0)) G(cons(0', z0)) -> c1(G(z0)) G(cons(s(z0), z1)) -> c2 H(cons(z0, z1)) -> c3(H(g(cons(z0, z1))), G(cons(z0, z1))) f(s(z0)) -> f(z0) g(cons(0', z0)) -> g(z0) g(cons(s(z0), z1)) -> s(z0) h(cons(z0, z1)) -> h(g(cons(z0, z1))) Types: F :: s:0':cons -> c s :: s:0':cons -> s:0':cons c :: c -> c G :: s:0':cons -> c1:c2 cons :: s:0':cons -> s:0':cons -> s:0':cons 0' :: s:0':cons c1 :: c1:c2 -> c1:c2 c2 :: c1:c2 H :: s:0':cons -> c3 c3 :: c3 -> c1:c2 -> c3 g :: s:0':cons -> s:0':cons f :: s:0':cons -> f h :: s:0':cons -> h hole_c1_4 :: c hole_s:0':cons2_4 :: s:0':cons hole_c1:c23_4 :: c1:c2 hole_c34_4 :: c3 hole_f5_4 :: f hole_h6_4 :: h gen_c7_4 :: Nat -> c gen_s:0':cons8_4 :: Nat -> s:0':cons gen_c1:c29_4 :: Nat -> c1:c2 gen_c310_4 :: Nat -> c3 Lemmas: F(gen_s:0':cons8_4(+(1, n12_4))) -> *11_4, rt in Omega(n12_4) f(gen_s:0':cons8_4(+(1, n222_4))) -> *11_4, rt in Omega(0) Generator Equations: gen_c7_4(0) <=> hole_c1_4 gen_c7_4(+(x, 1)) <=> c(gen_c7_4(x)) gen_s:0':cons8_4(0) <=> 0' gen_s:0':cons8_4(+(x, 1)) <=> s(gen_s:0':cons8_4(x)) gen_c1:c29_4(0) <=> c2 gen_c1:c29_4(+(x, 1)) <=> c1(gen_c1:c29_4(x)) gen_c310_4(0) <=> hole_c34_4 gen_c310_4(+(x, 1)) <=> c3(gen_c310_4(x), c2) The following defined symbols remain to be analysed: h