WORST_CASE(?,O(n^1)) proof of input_oDjZFXt0Uz.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (10) CpxTRS (11) CpxTrsMatchBoundsTAProof [FINISHED, 61 ms] (12) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: dx(X) -> one dx(a) -> zero dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA)) dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA))) dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA)) dx(neg(ALPHA)) -> neg(dx(ALPHA)) dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two)))) dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA)))) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: dx(z0) -> one dx(a) -> zero dx(plus(z0, z1)) -> plus(dx(z0), dx(z1)) dx(times(z0, z1)) -> plus(times(z1, dx(z0)), times(z0, dx(z1))) dx(minus(z0, z1)) -> minus(dx(z0), dx(z1)) dx(neg(z0)) -> neg(dx(z0)) dx(div(z0, z1)) -> minus(div(dx(z0), z1), times(z0, div(dx(z1), exp(z1, two)))) dx(ln(z0)) -> div(dx(z0), z0) dx(exp(z0, z1)) -> plus(times(z1, times(exp(z0, minus(z1, one)), dx(z0))), times(exp(z0, z1), times(ln(z0), dx(z1)))) Tuples: DX(z0) -> c DX(a) -> c1 DX(plus(z0, z1)) -> c2(DX(z0)) DX(plus(z0, z1)) -> c3(DX(z1)) DX(times(z0, z1)) -> c4(DX(z0)) DX(times(z0, z1)) -> c5(DX(z1)) DX(minus(z0, z1)) -> c6(DX(z0)) DX(minus(z0, z1)) -> c7(DX(z1)) DX(neg(z0)) -> c8(DX(z0)) DX(div(z0, z1)) -> c9(DX(z0)) DX(div(z0, z1)) -> c10(DX(z1)) DX(ln(z0)) -> c11(DX(z0)) DX(exp(z0, z1)) -> c12(DX(z0)) DX(exp(z0, z1)) -> c13(DX(z1)) S tuples: DX(z0) -> c DX(a) -> c1 DX(plus(z0, z1)) -> c2(DX(z0)) DX(plus(z0, z1)) -> c3(DX(z1)) DX(times(z0, z1)) -> c4(DX(z0)) DX(times(z0, z1)) -> c5(DX(z1)) DX(minus(z0, z1)) -> c6(DX(z0)) DX(minus(z0, z1)) -> c7(DX(z1)) DX(neg(z0)) -> c8(DX(z0)) DX(div(z0, z1)) -> c9(DX(z0)) DX(div(z0, z1)) -> c10(DX(z1)) DX(ln(z0)) -> c11(DX(z0)) DX(exp(z0, z1)) -> c12(DX(z0)) DX(exp(z0, z1)) -> c13(DX(z1)) K tuples:none Defined Rule Symbols: dx_1 Defined Pair Symbols: DX_1 Compound Symbols: c, c1, c2_1, c3_1, c4_1, c5_1, c6_1, c7_1, c8_1, c9_1, c10_1, c11_1, c12_1, c13_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: DX(z0) -> c DX(a) -> c1 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: dx(z0) -> one dx(a) -> zero dx(plus(z0, z1)) -> plus(dx(z0), dx(z1)) dx(times(z0, z1)) -> plus(times(z1, dx(z0)), times(z0, dx(z1))) dx(minus(z0, z1)) -> minus(dx(z0), dx(z1)) dx(neg(z0)) -> neg(dx(z0)) dx(div(z0, z1)) -> minus(div(dx(z0), z1), times(z0, div(dx(z1), exp(z1, two)))) dx(ln(z0)) -> div(dx(z0), z0) dx(exp(z0, z1)) -> plus(times(z1, times(exp(z0, minus(z1, one)), dx(z0))), times(exp(z0, z1), times(ln(z0), dx(z1)))) Tuples: DX(plus(z0, z1)) -> c2(DX(z0)) DX(plus(z0, z1)) -> c3(DX(z1)) DX(times(z0, z1)) -> c4(DX(z0)) DX(times(z0, z1)) -> c5(DX(z1)) DX(minus(z0, z1)) -> c6(DX(z0)) DX(minus(z0, z1)) -> c7(DX(z1)) DX(neg(z0)) -> c8(DX(z0)) DX(div(z0, z1)) -> c9(DX(z0)) DX(div(z0, z1)) -> c10(DX(z1)) DX(ln(z0)) -> c11(DX(z0)) DX(exp(z0, z1)) -> c12(DX(z0)) DX(exp(z0, z1)) -> c13(DX(z1)) S tuples: DX(plus(z0, z1)) -> c2(DX(z0)) DX(plus(z0, z1)) -> c3(DX(z1)) DX(times(z0, z1)) -> c4(DX(z0)) DX(times(z0, z1)) -> c5(DX(z1)) DX(minus(z0, z1)) -> c6(DX(z0)) DX(minus(z0, z1)) -> c7(DX(z1)) DX(neg(z0)) -> c8(DX(z0)) DX(div(z0, z1)) -> c9(DX(z0)) DX(div(z0, z1)) -> c10(DX(z1)) DX(ln(z0)) -> c11(DX(z0)) DX(exp(z0, z1)) -> c12(DX(z0)) DX(exp(z0, z1)) -> c13(DX(z1)) K tuples:none Defined Rule Symbols: dx_1 Defined Pair Symbols: DX_1 Compound Symbols: c2_1, c3_1, c4_1, c5_1, c6_1, c7_1, c8_1, c9_1, c10_1, c11_1, c12_1, c13_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: dx(z0) -> one dx(a) -> zero dx(plus(z0, z1)) -> plus(dx(z0), dx(z1)) dx(times(z0, z1)) -> plus(times(z1, dx(z0)), times(z0, dx(z1))) dx(minus(z0, z1)) -> minus(dx(z0), dx(z1)) dx(neg(z0)) -> neg(dx(z0)) dx(div(z0, z1)) -> minus(div(dx(z0), z1), times(z0, div(dx(z1), exp(z1, two)))) dx(ln(z0)) -> div(dx(z0), z0) dx(exp(z0, z1)) -> plus(times(z1, times(exp(z0, minus(z1, one)), dx(z0))), times(exp(z0, z1), times(ln(z0), dx(z1)))) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: DX(plus(z0, z1)) -> c2(DX(z0)) DX(plus(z0, z1)) -> c3(DX(z1)) DX(times(z0, z1)) -> c4(DX(z0)) DX(times(z0, z1)) -> c5(DX(z1)) DX(minus(z0, z1)) -> c6(DX(z0)) DX(minus(z0, z1)) -> c7(DX(z1)) DX(neg(z0)) -> c8(DX(z0)) DX(div(z0, z1)) -> c9(DX(z0)) DX(div(z0, z1)) -> c10(DX(z1)) DX(ln(z0)) -> c11(DX(z0)) DX(exp(z0, z1)) -> c12(DX(z0)) DX(exp(z0, z1)) -> c13(DX(z1)) S tuples: DX(plus(z0, z1)) -> c2(DX(z0)) DX(plus(z0, z1)) -> c3(DX(z1)) DX(times(z0, z1)) -> c4(DX(z0)) DX(times(z0, z1)) -> c5(DX(z1)) DX(minus(z0, z1)) -> c6(DX(z0)) DX(minus(z0, z1)) -> c7(DX(z1)) DX(neg(z0)) -> c8(DX(z0)) DX(div(z0, z1)) -> c9(DX(z0)) DX(div(z0, z1)) -> c10(DX(z1)) DX(ln(z0)) -> c11(DX(z0)) DX(exp(z0, z1)) -> c12(DX(z0)) DX(exp(z0, z1)) -> c13(DX(z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: DX_1 Compound Symbols: c2_1, c3_1, c4_1, c5_1, c6_1, c7_1, c8_1, c9_1, c10_1, c11_1, c12_1, c13_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: DX(plus(z0, z1)) -> c2(DX(z0)) DX(plus(z0, z1)) -> c3(DX(z1)) DX(times(z0, z1)) -> c4(DX(z0)) DX(times(z0, z1)) -> c5(DX(z1)) DX(minus(z0, z1)) -> c6(DX(z0)) DX(minus(z0, z1)) -> c7(DX(z1)) DX(neg(z0)) -> c8(DX(z0)) DX(div(z0, z1)) -> c9(DX(z0)) DX(div(z0, z1)) -> c10(DX(z1)) DX(ln(z0)) -> c11(DX(z0)) DX(exp(z0, z1)) -> c12(DX(z0)) DX(exp(z0, z1)) -> c13(DX(z1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: DX(plus(z0, z1)) -> c2(DX(z0)) DX(plus(z0, z1)) -> c3(DX(z1)) DX(times(z0, z1)) -> c4(DX(z0)) DX(times(z0, z1)) -> c5(DX(z1)) DX(minus(z0, z1)) -> c6(DX(z0)) DX(minus(z0, z1)) -> c7(DX(z1)) DX(neg(z0)) -> c8(DX(z0)) DX(div(z0, z1)) -> c9(DX(z0)) DX(div(z0, z1)) -> c10(DX(z1)) DX(ln(z0)) -> c11(DX(z0)) DX(exp(z0, z1)) -> c12(DX(z0)) DX(exp(z0, z1)) -> c13(DX(z1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1] transitions: plus0(0, 0) -> 0 c20(0) -> 0 c30(0) -> 0 times0(0, 0) -> 0 c40(0) -> 0 c50(0) -> 0 minus0(0, 0) -> 0 c60(0) -> 0 c70(0) -> 0 neg0(0) -> 0 c80(0) -> 0 div0(0, 0) -> 0 c90(0) -> 0 c100(0) -> 0 ln0(0) -> 0 c110(0) -> 0 exp0(0, 0) -> 0 c120(0) -> 0 c130(0) -> 0 DX0(0) -> 1 DX1(0) -> 2 c21(2) -> 1 DX1(0) -> 3 c31(3) -> 1 DX1(0) -> 4 c41(4) -> 1 DX1(0) -> 5 c51(5) -> 1 DX1(0) -> 6 c61(6) -> 1 DX1(0) -> 7 c71(7) -> 1 DX1(0) -> 8 c81(8) -> 1 DX1(0) -> 9 c91(9) -> 1 DX1(0) -> 10 c101(10) -> 1 DX1(0) -> 11 c111(11) -> 1 DX1(0) -> 12 c121(12) -> 1 DX1(0) -> 13 c131(13) -> 1 c21(2) -> 2 c21(2) -> 3 c21(2) -> 4 c21(2) -> 5 c21(2) -> 6 c21(2) -> 7 c21(2) -> 8 c21(2) -> 9 c21(2) -> 10 c21(2) -> 11 c21(2) -> 12 c21(2) -> 13 c31(3) -> 2 c31(3) -> 3 c31(3) -> 4 c31(3) -> 5 c31(3) -> 6 c31(3) -> 7 c31(3) -> 8 c31(3) -> 9 c31(3) -> 10 c31(3) -> 11 c31(3) -> 12 c31(3) -> 13 c41(4) -> 2 c41(4) -> 3 c41(4) -> 4 c41(4) -> 5 c41(4) -> 6 c41(4) -> 7 c41(4) -> 8 c41(4) -> 9 c41(4) -> 10 c41(4) -> 11 c41(4) -> 12 c41(4) -> 13 c51(5) -> 2 c51(5) -> 3 c51(5) -> 4 c51(5) -> 5 c51(5) -> 6 c51(5) -> 7 c51(5) -> 8 c51(5) -> 9 c51(5) -> 10 c51(5) -> 11 c51(5) -> 12 c51(5) -> 13 c61(6) -> 2 c61(6) -> 3 c61(6) -> 4 c61(6) -> 5 c61(6) -> 6 c61(6) -> 7 c61(6) -> 8 c61(6) -> 9 c61(6) -> 10 c61(6) -> 11 c61(6) -> 12 c61(6) -> 13 c71(7) -> 2 c71(7) -> 3 c71(7) -> 4 c71(7) -> 5 c71(7) -> 6 c71(7) -> 7 c71(7) -> 8 c71(7) -> 9 c71(7) -> 10 c71(7) -> 11 c71(7) -> 12 c71(7) -> 13 c81(8) -> 2 c81(8) -> 3 c81(8) -> 4 c81(8) -> 5 c81(8) -> 6 c81(8) -> 7 c81(8) -> 8 c81(8) -> 9 c81(8) -> 10 c81(8) -> 11 c81(8) -> 12 c81(8) -> 13 c91(9) -> 2 c91(9) -> 3 c91(9) -> 4 c91(9) -> 5 c91(9) -> 6 c91(9) -> 7 c91(9) -> 8 c91(9) -> 9 c91(9) -> 10 c91(9) -> 11 c91(9) -> 12 c91(9) -> 13 c101(10) -> 2 c101(10) -> 3 c101(10) -> 4 c101(10) -> 5 c101(10) -> 6 c101(10) -> 7 c101(10) -> 8 c101(10) -> 9 c101(10) -> 10 c101(10) -> 11 c101(10) -> 12 c101(10) -> 13 c111(11) -> 2 c111(11) -> 3 c111(11) -> 4 c111(11) -> 5 c111(11) -> 6 c111(11) -> 7 c111(11) -> 8 c111(11) -> 9 c111(11) -> 10 c111(11) -> 11 c111(11) -> 12 c111(11) -> 13 c121(12) -> 2 c121(12) -> 3 c121(12) -> 4 c121(12) -> 5 c121(12) -> 6 c121(12) -> 7 c121(12) -> 8 c121(12) -> 9 c121(12) -> 10 c121(12) -> 11 c121(12) -> 12 c121(12) -> 13 c131(13) -> 2 c131(13) -> 3 c131(13) -> 4 c131(13) -> 5 c131(13) -> 6 c131(13) -> 7 c131(13) -> 8 c131(13) -> 9 c131(13) -> 10 c131(13) -> 11 c131(13) -> 12 c131(13) -> 13 ---------------------------------------- (12) BOUNDS(1, n^1)