WORST_CASE(Omega(n^1),?) proof of input_OMqDOzMaHU.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CdtProblem (3) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 15 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 322 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 165 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 68 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 34 ms] (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, s(y)) -> d(x, s(y), 0) d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0 ge(u, 0) -> true ge(0, s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: div(z0, s(z1)) -> d(z0, s(z1), 0) d(z0, s(z1), z2) -> cond(ge(z0, z2), z0, z1, z2) cond(true, z0, z1, z2) -> s(d(z0, s(z1), plus(s(z1), z2))) cond(false, z0, z1, z2) -> 0 ge(z0, 0) -> true ge(0, s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) plus(z0, 0) -> z0 plus(z0, s(z1)) -> s(plus(z0, z1)) Tuples: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0)) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0) -> c4 GE(0, s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0) -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) S tuples: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0)) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0) -> c4 GE(0, s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0) -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) K tuples:none Defined Rule Symbols: div_2, d_3, cond_4, ge_2, plus_2 Defined Pair Symbols: DIV_2, D_3, COND_4, GE_2, PLUS_2 Compound Symbols: c_1, c1_2, c2_2, c3, c4, c5, c6_1, c7, c8_1 ---------------------------------------- (3) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0)) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0) -> c4 GE(0, s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0) -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) The (relative) TRS S consists of the following rules: div(z0, s(z1)) -> d(z0, s(z1), 0) d(z0, s(z1), z2) -> cond(ge(z0, z2), z0, z1, z2) cond(true, z0, z1, z2) -> s(d(z0, s(z1), plus(s(z1), z2))) cond(false, z0, z1, z2) -> 0 ge(z0, 0) -> true ge(0, s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) plus(z0, 0) -> z0 plus(z0, s(z1)) -> s(plus(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0')) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0') -> c4 GE(0', s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0') -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) The (relative) TRS S consists of the following rules: div(z0, s(z1)) -> d(z0, s(z1), 0') d(z0, s(z1), z2) -> cond(ge(z0, z2), z0, z1, z2) cond(true, z0, z1, z2) -> s(d(z0, s(z1), plus(s(z1), z2))) cond(false, z0, z1, z2) -> 0' ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) plus(z0, 0') -> z0 plus(z0, s(z1)) -> s(plus(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0')) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0') -> c4 GE(0', s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0') -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) div(z0, s(z1)) -> d(z0, s(z1), 0') d(z0, s(z1), z2) -> cond(ge(z0, z2), z0, z1, z2) cond(true, z0, z1, z2) -> s(d(z0, s(z1), plus(s(z1), z2))) cond(false, z0, z1, z2) -> 0' ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) plus(z0, 0') -> z0 plus(z0, s(z1)) -> s(plus(z0, z1)) Types: DIV :: s:0' -> s:0' -> c s :: s:0' -> s:0' c :: c1 -> c D :: s:0' -> s:0' -> s:0' -> c1 0' :: s:0' c1 :: c2:c3 -> c4:c5:c6 -> c1 COND :: true:false -> s:0' -> s:0' -> s:0' -> c2:c3 ge :: s:0' -> s:0' -> true:false GE :: s:0' -> s:0' -> c4:c5:c6 true :: true:false c2 :: c1 -> c7:c8 -> c2:c3 plus :: s:0' -> s:0' -> s:0' PLUS :: s:0' -> s:0' -> c7:c8 false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 div :: s:0' -> s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' hole_c1_9 :: c hole_s:0'2_9 :: s:0' hole_c13_9 :: c1 hole_c2:c34_9 :: c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_true:false6_9 :: true:false hole_c7:c87_9 :: c7:c8 gen_s:0'8_9 :: Nat -> s:0' gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 gen_c7:c810_9 :: Nat -> c7:c8 ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: D, ge, GE, plus, PLUS, d They will be analysed ascendingly in the following order: ge < D GE < D plus < D PLUS < D ge < d plus < d ---------------------------------------- (10) Obligation: Innermost TRS: Rules: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0')) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0') -> c4 GE(0', s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0') -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) div(z0, s(z1)) -> d(z0, s(z1), 0') d(z0, s(z1), z2) -> cond(ge(z0, z2), z0, z1, z2) cond(true, z0, z1, z2) -> s(d(z0, s(z1), plus(s(z1), z2))) cond(false, z0, z1, z2) -> 0' ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) plus(z0, 0') -> z0 plus(z0, s(z1)) -> s(plus(z0, z1)) Types: DIV :: s:0' -> s:0' -> c s :: s:0' -> s:0' c :: c1 -> c D :: s:0' -> s:0' -> s:0' -> c1 0' :: s:0' c1 :: c2:c3 -> c4:c5:c6 -> c1 COND :: true:false -> s:0' -> s:0' -> s:0' -> c2:c3 ge :: s:0' -> s:0' -> true:false GE :: s:0' -> s:0' -> c4:c5:c6 true :: true:false c2 :: c1 -> c7:c8 -> c2:c3 plus :: s:0' -> s:0' -> s:0' PLUS :: s:0' -> s:0' -> c7:c8 false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 div :: s:0' -> s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' hole_c1_9 :: c hole_s:0'2_9 :: s:0' hole_c13_9 :: c1 hole_c2:c34_9 :: c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_true:false6_9 :: true:false hole_c7:c87_9 :: c7:c8 gen_s:0'8_9 :: Nat -> s:0' gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 gen_c7:c810_9 :: Nat -> c7:c8 Generator Equations: gen_s:0'8_9(0) <=> 0' gen_s:0'8_9(+(x, 1)) <=> s(gen_s:0'8_9(x)) gen_c4:c5:c69_9(0) <=> c4 gen_c4:c5:c69_9(+(x, 1)) <=> c6(gen_c4:c5:c69_9(x)) gen_c7:c810_9(0) <=> c7 gen_c7:c810_9(+(x, 1)) <=> c8(gen_c7:c810_9(x)) The following defined symbols remain to be analysed: ge, D, GE, plus, PLUS, d They will be analysed ascendingly in the following order: ge < D GE < D plus < D PLUS < D ge < d plus < d ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_s:0'8_9(n12_9), gen_s:0'8_9(n12_9)) -> true, rt in Omega(0) Induction Base: ge(gen_s:0'8_9(0), gen_s:0'8_9(0)) ->_R^Omega(0) true Induction Step: ge(gen_s:0'8_9(+(n12_9, 1)), gen_s:0'8_9(+(n12_9, 1))) ->_R^Omega(0) ge(gen_s:0'8_9(n12_9), gen_s:0'8_9(n12_9)) ->_IH true We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (12) Obligation: Innermost TRS: Rules: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0')) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0') -> c4 GE(0', s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0') -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) div(z0, s(z1)) -> d(z0, s(z1), 0') d(z0, s(z1), z2) -> cond(ge(z0, z2), z0, z1, z2) cond(true, z0, z1, z2) -> s(d(z0, s(z1), plus(s(z1), z2))) cond(false, z0, z1, z2) -> 0' ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) plus(z0, 0') -> z0 plus(z0, s(z1)) -> s(plus(z0, z1)) Types: DIV :: s:0' -> s:0' -> c s :: s:0' -> s:0' c :: c1 -> c D :: s:0' -> s:0' -> s:0' -> c1 0' :: s:0' c1 :: c2:c3 -> c4:c5:c6 -> c1 COND :: true:false -> s:0' -> s:0' -> s:0' -> c2:c3 ge :: s:0' -> s:0' -> true:false GE :: s:0' -> s:0' -> c4:c5:c6 true :: true:false c2 :: c1 -> c7:c8 -> c2:c3 plus :: s:0' -> s:0' -> s:0' PLUS :: s:0' -> s:0' -> c7:c8 false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 div :: s:0' -> s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' hole_c1_9 :: c hole_s:0'2_9 :: s:0' hole_c13_9 :: c1 hole_c2:c34_9 :: c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_true:false6_9 :: true:false hole_c7:c87_9 :: c7:c8 gen_s:0'8_9 :: Nat -> s:0' gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 gen_c7:c810_9 :: Nat -> c7:c8 Lemmas: ge(gen_s:0'8_9(n12_9), gen_s:0'8_9(n12_9)) -> true, rt in Omega(0) Generator Equations: gen_s:0'8_9(0) <=> 0' gen_s:0'8_9(+(x, 1)) <=> s(gen_s:0'8_9(x)) gen_c4:c5:c69_9(0) <=> c4 gen_c4:c5:c69_9(+(x, 1)) <=> c6(gen_c4:c5:c69_9(x)) gen_c7:c810_9(0) <=> c7 gen_c7:c810_9(+(x, 1)) <=> c8(gen_c7:c810_9(x)) The following defined symbols remain to be analysed: GE, D, plus, PLUS, d They will be analysed ascendingly in the following order: GE < D plus < D PLUS < D plus < d ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: GE(gen_s:0'8_9(n350_9), gen_s:0'8_9(n350_9)) -> gen_c4:c5:c69_9(n350_9), rt in Omega(1 + n350_9) Induction Base: GE(gen_s:0'8_9(0), gen_s:0'8_9(0)) ->_R^Omega(1) c4 Induction Step: GE(gen_s:0'8_9(+(n350_9, 1)), gen_s:0'8_9(+(n350_9, 1))) ->_R^Omega(1) c6(GE(gen_s:0'8_9(n350_9), gen_s:0'8_9(n350_9))) ->_IH c6(gen_c4:c5:c69_9(c351_9)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0')) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0') -> c4 GE(0', s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0') -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) div(z0, s(z1)) -> d(z0, s(z1), 0') d(z0, s(z1), z2) -> cond(ge(z0, z2), z0, z1, z2) cond(true, z0, z1, z2) -> s(d(z0, s(z1), plus(s(z1), z2))) cond(false, z0, z1, z2) -> 0' ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) plus(z0, 0') -> z0 plus(z0, s(z1)) -> s(plus(z0, z1)) Types: DIV :: s:0' -> s:0' -> c s :: s:0' -> s:0' c :: c1 -> c D :: s:0' -> s:0' -> s:0' -> c1 0' :: s:0' c1 :: c2:c3 -> c4:c5:c6 -> c1 COND :: true:false -> s:0' -> s:0' -> s:0' -> c2:c3 ge :: s:0' -> s:0' -> true:false GE :: s:0' -> s:0' -> c4:c5:c6 true :: true:false c2 :: c1 -> c7:c8 -> c2:c3 plus :: s:0' -> s:0' -> s:0' PLUS :: s:0' -> s:0' -> c7:c8 false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 div :: s:0' -> s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' hole_c1_9 :: c hole_s:0'2_9 :: s:0' hole_c13_9 :: c1 hole_c2:c34_9 :: c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_true:false6_9 :: true:false hole_c7:c87_9 :: c7:c8 gen_s:0'8_9 :: Nat -> s:0' gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 gen_c7:c810_9 :: Nat -> c7:c8 Lemmas: ge(gen_s:0'8_9(n12_9), gen_s:0'8_9(n12_9)) -> true, rt in Omega(0) Generator Equations: gen_s:0'8_9(0) <=> 0' gen_s:0'8_9(+(x, 1)) <=> s(gen_s:0'8_9(x)) gen_c4:c5:c69_9(0) <=> c4 gen_c4:c5:c69_9(+(x, 1)) <=> c6(gen_c4:c5:c69_9(x)) gen_c7:c810_9(0) <=> c7 gen_c7:c810_9(+(x, 1)) <=> c8(gen_c7:c810_9(x)) The following defined symbols remain to be analysed: GE, D, plus, PLUS, d They will be analysed ascendingly in the following order: GE < D plus < D PLUS < D plus < d ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0')) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0') -> c4 GE(0', s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0') -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) div(z0, s(z1)) -> d(z0, s(z1), 0') d(z0, s(z1), z2) -> cond(ge(z0, z2), z0, z1, z2) cond(true, z0, z1, z2) -> s(d(z0, s(z1), plus(s(z1), z2))) cond(false, z0, z1, z2) -> 0' ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) plus(z0, 0') -> z0 plus(z0, s(z1)) -> s(plus(z0, z1)) Types: DIV :: s:0' -> s:0' -> c s :: s:0' -> s:0' c :: c1 -> c D :: s:0' -> s:0' -> s:0' -> c1 0' :: s:0' c1 :: c2:c3 -> c4:c5:c6 -> c1 COND :: true:false -> s:0' -> s:0' -> s:0' -> c2:c3 ge :: s:0' -> s:0' -> true:false GE :: s:0' -> s:0' -> c4:c5:c6 true :: true:false c2 :: c1 -> c7:c8 -> c2:c3 plus :: s:0' -> s:0' -> s:0' PLUS :: s:0' -> s:0' -> c7:c8 false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 div :: s:0' -> s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' hole_c1_9 :: c hole_s:0'2_9 :: s:0' hole_c13_9 :: c1 hole_c2:c34_9 :: c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_true:false6_9 :: true:false hole_c7:c87_9 :: c7:c8 gen_s:0'8_9 :: Nat -> s:0' gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 gen_c7:c810_9 :: Nat -> c7:c8 Lemmas: ge(gen_s:0'8_9(n12_9), gen_s:0'8_9(n12_9)) -> true, rt in Omega(0) GE(gen_s:0'8_9(n350_9), gen_s:0'8_9(n350_9)) -> gen_c4:c5:c69_9(n350_9), rt in Omega(1 + n350_9) Generator Equations: gen_s:0'8_9(0) <=> 0' gen_s:0'8_9(+(x, 1)) <=> s(gen_s:0'8_9(x)) gen_c4:c5:c69_9(0) <=> c4 gen_c4:c5:c69_9(+(x, 1)) <=> c6(gen_c4:c5:c69_9(x)) gen_c7:c810_9(0) <=> c7 gen_c7:c810_9(+(x, 1)) <=> c8(gen_c7:c810_9(x)) The following defined symbols remain to be analysed: plus, D, PLUS, d They will be analysed ascendingly in the following order: plus < D PLUS < D plus < d ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_s:0'8_9(a), gen_s:0'8_9(n948_9)) -> gen_s:0'8_9(+(n948_9, a)), rt in Omega(0) Induction Base: plus(gen_s:0'8_9(a), gen_s:0'8_9(0)) ->_R^Omega(0) gen_s:0'8_9(a) Induction Step: plus(gen_s:0'8_9(a), gen_s:0'8_9(+(n948_9, 1))) ->_R^Omega(0) s(plus(gen_s:0'8_9(a), gen_s:0'8_9(n948_9))) ->_IH s(gen_s:0'8_9(+(a, c949_9))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0')) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0') -> c4 GE(0', s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0') -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) div(z0, s(z1)) -> d(z0, s(z1), 0') d(z0, s(z1), z2) -> cond(ge(z0, z2), z0, z1, z2) cond(true, z0, z1, z2) -> s(d(z0, s(z1), plus(s(z1), z2))) cond(false, z0, z1, z2) -> 0' ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) plus(z0, 0') -> z0 plus(z0, s(z1)) -> s(plus(z0, z1)) Types: DIV :: s:0' -> s:0' -> c s :: s:0' -> s:0' c :: c1 -> c D :: s:0' -> s:0' -> s:0' -> c1 0' :: s:0' c1 :: c2:c3 -> c4:c5:c6 -> c1 COND :: true:false -> s:0' -> s:0' -> s:0' -> c2:c3 ge :: s:0' -> s:0' -> true:false GE :: s:0' -> s:0' -> c4:c5:c6 true :: true:false c2 :: c1 -> c7:c8 -> c2:c3 plus :: s:0' -> s:0' -> s:0' PLUS :: s:0' -> s:0' -> c7:c8 false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 div :: s:0' -> s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' hole_c1_9 :: c hole_s:0'2_9 :: s:0' hole_c13_9 :: c1 hole_c2:c34_9 :: c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_true:false6_9 :: true:false hole_c7:c87_9 :: c7:c8 gen_s:0'8_9 :: Nat -> s:0' gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 gen_c7:c810_9 :: Nat -> c7:c8 Lemmas: ge(gen_s:0'8_9(n12_9), gen_s:0'8_9(n12_9)) -> true, rt in Omega(0) GE(gen_s:0'8_9(n350_9), gen_s:0'8_9(n350_9)) -> gen_c4:c5:c69_9(n350_9), rt in Omega(1 + n350_9) plus(gen_s:0'8_9(a), gen_s:0'8_9(n948_9)) -> gen_s:0'8_9(+(n948_9, a)), rt in Omega(0) Generator Equations: gen_s:0'8_9(0) <=> 0' gen_s:0'8_9(+(x, 1)) <=> s(gen_s:0'8_9(x)) gen_c4:c5:c69_9(0) <=> c4 gen_c4:c5:c69_9(+(x, 1)) <=> c6(gen_c4:c5:c69_9(x)) gen_c7:c810_9(0) <=> c7 gen_c7:c810_9(+(x, 1)) <=> c8(gen_c7:c810_9(x)) The following defined symbols remain to be analysed: PLUS, D, d They will be analysed ascendingly in the following order: PLUS < D ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: PLUS(gen_s:0'8_9(a), gen_s:0'8_9(n1887_9)) -> gen_c7:c810_9(n1887_9), rt in Omega(1 + n1887_9) Induction Base: PLUS(gen_s:0'8_9(a), gen_s:0'8_9(0)) ->_R^Omega(1) c7 Induction Step: PLUS(gen_s:0'8_9(a), gen_s:0'8_9(+(n1887_9, 1))) ->_R^Omega(1) c8(PLUS(gen_s:0'8_9(a), gen_s:0'8_9(n1887_9))) ->_IH c8(gen_c7:c810_9(c1888_9)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: Innermost TRS: Rules: DIV(z0, s(z1)) -> c(D(z0, s(z1), 0')) D(z0, s(z1), z2) -> c1(COND(ge(z0, z2), z0, z1, z2), GE(z0, z2)) COND(true, z0, z1, z2) -> c2(D(z0, s(z1), plus(s(z1), z2)), PLUS(s(z1), z2)) COND(false, z0, z1, z2) -> c3 GE(z0, 0') -> c4 GE(0', s(z0)) -> c5 GE(s(z0), s(z1)) -> c6(GE(z0, z1)) PLUS(z0, 0') -> c7 PLUS(z0, s(z1)) -> c8(PLUS(z0, z1)) div(z0, s(z1)) -> d(z0, s(z1), 0') d(z0, s(z1), z2) -> cond(ge(z0, z2), z0, z1, z2) cond(true, z0, z1, z2) -> s(d(z0, s(z1), plus(s(z1), z2))) cond(false, z0, z1, z2) -> 0' ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) plus(z0, 0') -> z0 plus(z0, s(z1)) -> s(plus(z0, z1)) Types: DIV :: s:0' -> s:0' -> c s :: s:0' -> s:0' c :: c1 -> c D :: s:0' -> s:0' -> s:0' -> c1 0' :: s:0' c1 :: c2:c3 -> c4:c5:c6 -> c1 COND :: true:false -> s:0' -> s:0' -> s:0' -> c2:c3 ge :: s:0' -> s:0' -> true:false GE :: s:0' -> s:0' -> c4:c5:c6 true :: true:false c2 :: c1 -> c7:c8 -> c2:c3 plus :: s:0' -> s:0' -> s:0' PLUS :: s:0' -> s:0' -> c7:c8 false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 div :: s:0' -> s:0' -> s:0' d :: s:0' -> s:0' -> s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' -> s:0' hole_c1_9 :: c hole_s:0'2_9 :: s:0' hole_c13_9 :: c1 hole_c2:c34_9 :: c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_true:false6_9 :: true:false hole_c7:c87_9 :: c7:c8 gen_s:0'8_9 :: Nat -> s:0' gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 gen_c7:c810_9 :: Nat -> c7:c8 Lemmas: ge(gen_s:0'8_9(n12_9), gen_s:0'8_9(n12_9)) -> true, rt in Omega(0) GE(gen_s:0'8_9(n350_9), gen_s:0'8_9(n350_9)) -> gen_c4:c5:c69_9(n350_9), rt in Omega(1 + n350_9) plus(gen_s:0'8_9(a), gen_s:0'8_9(n948_9)) -> gen_s:0'8_9(+(n948_9, a)), rt in Omega(0) PLUS(gen_s:0'8_9(a), gen_s:0'8_9(n1887_9)) -> gen_c7:c810_9(n1887_9), rt in Omega(1 + n1887_9) Generator Equations: gen_s:0'8_9(0) <=> 0' gen_s:0'8_9(+(x, 1)) <=> s(gen_s:0'8_9(x)) gen_c4:c5:c69_9(0) <=> c4 gen_c4:c5:c69_9(+(x, 1)) <=> c6(gen_c4:c5:c69_9(x)) gen_c7:c810_9(0) <=> c7 gen_c7:c810_9(+(x, 1)) <=> c8(gen_c7:c810_9(x)) The following defined symbols remain to be analysed: D, d