WORST_CASE(Omega(n^1),O(n^1)) proof of input_0xtxxYaRQQ.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 20 ms] (4) BOUNDS(1, n^1) (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 8 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 280 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 744 ms] (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(nil) -> nil f(.(nil, y)) -> .(nil, f(y)) f(.(.(x, y), z)) -> f(.(x, .(y, z))) g(nil) -> nil g(.(x, nil)) -> .(g(x), nil) g(.(x, .(y, z))) -> g(.(.(x, y), z)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(nil) -> nil f(.(nil, y)) -> .(nil, f(y)) f(.(.(x, y), z)) -> f(.(x, .(y, z))) g(nil) -> nil g(.(x, nil)) -> .(g(x), nil) g(.(x, .(y, z))) -> g(.(.(x, y), z)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2] transitions: nil0() -> 0 .0(0, 0) -> 0 f0(0) -> 1 g0(0) -> 2 nil1() -> 1 nil1() -> 3 f1(0) -> 4 .1(3, 4) -> 1 .1(0, 0) -> 6 .1(0, 6) -> 5 f1(5) -> 1 nil1() -> 2 g1(0) -> 7 nil1() -> 8 .1(7, 8) -> 2 .1(0, 0) -> 10 .1(10, 0) -> 9 g1(9) -> 2 nil1() -> 4 .1(3, 4) -> 4 f1(6) -> 4 f1(5) -> 4 .1(0, 6) -> 6 nil1() -> 7 .1(7, 8) -> 7 g1(10) -> 7 g1(9) -> 7 .1(10, 0) -> 10 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(nil) -> nil f(.(nil, z0)) -> .(nil, f(z0)) f(.(.(z0, z1), z2)) -> f(.(z0, .(z1, z2))) g(nil) -> nil g(.(z0, nil)) -> .(g(z0), nil) g(.(z0, .(z1, z2))) -> g(.(.(z0, z1), z2)) Tuples: F(nil) -> c F(.(nil, z0)) -> c1(F(z0)) F(.(.(z0, z1), z2)) -> c2(F(.(z0, .(z1, z2)))) G(nil) -> c3 G(.(z0, nil)) -> c4(G(z0)) G(.(z0, .(z1, z2))) -> c5(G(.(.(z0, z1), z2))) S tuples: F(nil) -> c F(.(nil, z0)) -> c1(F(z0)) F(.(.(z0, z1), z2)) -> c2(F(.(z0, .(z1, z2)))) G(nil) -> c3 G(.(z0, nil)) -> c4(G(z0)) G(.(z0, .(z1, z2))) -> c5(G(.(.(z0, z1), z2))) K tuples:none Defined Rule Symbols: f_1, g_1 Defined Pair Symbols: F_1, G_1 Compound Symbols: c, c1_1, c2_1, c3, c4_1, c5_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(nil) -> c F(.(nil, z0)) -> c1(F(z0)) F(.(.(z0, z1), z2)) -> c2(F(.(z0, .(z1, z2)))) G(nil) -> c3 G(.(z0, nil)) -> c4(G(z0)) G(.(z0, .(z1, z2))) -> c5(G(.(.(z0, z1), z2))) The (relative) TRS S consists of the following rules: f(nil) -> nil f(.(nil, z0)) -> .(nil, f(z0)) f(.(.(z0, z1), z2)) -> f(.(z0, .(z1, z2))) g(nil) -> nil g(.(z0, nil)) -> .(g(z0), nil) g(.(z0, .(z1, z2))) -> g(.(.(z0, z1), z2)) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(nil) -> c F(.(nil, z0)) -> c1(F(z0)) F(.(.(z0, z1), z2)) -> c2(F(.(z0, .(z1, z2)))) G(nil) -> c3 G(.(z0, nil)) -> c4(G(z0)) G(.(z0, .(z1, z2))) -> c5(G(.(.(z0, z1), z2))) The (relative) TRS S consists of the following rules: f(nil) -> nil f(.(nil, z0)) -> .(nil, f(z0)) f(.(.(z0, z1), z2)) -> f(.(z0, .(z1, z2))) g(nil) -> nil g(.(z0, nil)) -> .(g(z0), nil) g(.(z0, .(z1, z2))) -> g(.(.(z0, z1), z2)) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: F(nil) -> c F(.(nil, z0)) -> c1(F(z0)) F(.(.(z0, z1), z2)) -> c2(F(.(z0, .(z1, z2)))) G(nil) -> c3 G(.(z0, nil)) -> c4(G(z0)) G(.(z0, .(z1, z2))) -> c5(G(.(.(z0, z1), z2))) f(nil) -> nil f(.(nil, z0)) -> .(nil, f(z0)) f(.(.(z0, z1), z2)) -> f(.(z0, .(z1, z2))) g(nil) -> nil g(.(z0, nil)) -> .(g(z0), nil) g(.(z0, .(z1, z2))) -> g(.(.(z0, z1), z2)) Types: F :: nil:. -> c:c1:c2 nil :: nil:. c :: c:c1:c2 . :: nil:. -> nil:. -> nil:. c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 G :: nil:. -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 -> c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 f :: nil:. -> nil:. g :: nil:. -> nil:. hole_c:c1:c21_6 :: c:c1:c2 hole_nil:.2_6 :: nil:. hole_c3:c4:c53_6 :: c3:c4:c5 gen_c:c1:c24_6 :: Nat -> c:c1:c2 gen_nil:.5_6 :: Nat -> nil:. gen_c3:c4:c56_6 :: Nat -> c3:c4:c5 ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: F, G, f, g ---------------------------------------- (14) Obligation: Innermost TRS: Rules: F(nil) -> c F(.(nil, z0)) -> c1(F(z0)) F(.(.(z0, z1), z2)) -> c2(F(.(z0, .(z1, z2)))) G(nil) -> c3 G(.(z0, nil)) -> c4(G(z0)) G(.(z0, .(z1, z2))) -> c5(G(.(.(z0, z1), z2))) f(nil) -> nil f(.(nil, z0)) -> .(nil, f(z0)) f(.(.(z0, z1), z2)) -> f(.(z0, .(z1, z2))) g(nil) -> nil g(.(z0, nil)) -> .(g(z0), nil) g(.(z0, .(z1, z2))) -> g(.(.(z0, z1), z2)) Types: F :: nil:. -> c:c1:c2 nil :: nil:. c :: c:c1:c2 . :: nil:. -> nil:. -> nil:. c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 G :: nil:. -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 -> c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 f :: nil:. -> nil:. g :: nil:. -> nil:. hole_c:c1:c21_6 :: c:c1:c2 hole_nil:.2_6 :: nil:. hole_c3:c4:c53_6 :: c3:c4:c5 gen_c:c1:c24_6 :: Nat -> c:c1:c2 gen_nil:.5_6 :: Nat -> nil:. gen_c3:c4:c56_6 :: Nat -> c3:c4:c5 Generator Equations: gen_c:c1:c24_6(0) <=> c gen_c:c1:c24_6(+(x, 1)) <=> c1(gen_c:c1:c24_6(x)) gen_nil:.5_6(0) <=> nil gen_nil:.5_6(+(x, 1)) <=> .(nil, gen_nil:.5_6(x)) gen_c3:c4:c56_6(0) <=> c3 gen_c3:c4:c56_6(+(x, 1)) <=> c4(gen_c3:c4:c56_6(x)) The following defined symbols remain to be analysed: F, G, f, g ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: F(gen_nil:.5_6(n8_6)) -> gen_c:c1:c24_6(n8_6), rt in Omega(1 + n8_6) Induction Base: F(gen_nil:.5_6(0)) ->_R^Omega(1) c Induction Step: F(gen_nil:.5_6(+(n8_6, 1))) ->_R^Omega(1) c1(F(gen_nil:.5_6(n8_6))) ->_IH c1(gen_c:c1:c24_6(c9_6)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: F(nil) -> c F(.(nil, z0)) -> c1(F(z0)) F(.(.(z0, z1), z2)) -> c2(F(.(z0, .(z1, z2)))) G(nil) -> c3 G(.(z0, nil)) -> c4(G(z0)) G(.(z0, .(z1, z2))) -> c5(G(.(.(z0, z1), z2))) f(nil) -> nil f(.(nil, z0)) -> .(nil, f(z0)) f(.(.(z0, z1), z2)) -> f(.(z0, .(z1, z2))) g(nil) -> nil g(.(z0, nil)) -> .(g(z0), nil) g(.(z0, .(z1, z2))) -> g(.(.(z0, z1), z2)) Types: F :: nil:. -> c:c1:c2 nil :: nil:. c :: c:c1:c2 . :: nil:. -> nil:. -> nil:. c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 G :: nil:. -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 -> c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 f :: nil:. -> nil:. g :: nil:. -> nil:. hole_c:c1:c21_6 :: c:c1:c2 hole_nil:.2_6 :: nil:. hole_c3:c4:c53_6 :: c3:c4:c5 gen_c:c1:c24_6 :: Nat -> c:c1:c2 gen_nil:.5_6 :: Nat -> nil:. gen_c3:c4:c56_6 :: Nat -> c3:c4:c5 Generator Equations: gen_c:c1:c24_6(0) <=> c gen_c:c1:c24_6(+(x, 1)) <=> c1(gen_c:c1:c24_6(x)) gen_nil:.5_6(0) <=> nil gen_nil:.5_6(+(x, 1)) <=> .(nil, gen_nil:.5_6(x)) gen_c3:c4:c56_6(0) <=> c3 gen_c3:c4:c56_6(+(x, 1)) <=> c4(gen_c3:c4:c56_6(x)) The following defined symbols remain to be analysed: F, G, f, g ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Innermost TRS: Rules: F(nil) -> c F(.(nil, z0)) -> c1(F(z0)) F(.(.(z0, z1), z2)) -> c2(F(.(z0, .(z1, z2)))) G(nil) -> c3 G(.(z0, nil)) -> c4(G(z0)) G(.(z0, .(z1, z2))) -> c5(G(.(.(z0, z1), z2))) f(nil) -> nil f(.(nil, z0)) -> .(nil, f(z0)) f(.(.(z0, z1), z2)) -> f(.(z0, .(z1, z2))) g(nil) -> nil g(.(z0, nil)) -> .(g(z0), nil) g(.(z0, .(z1, z2))) -> g(.(.(z0, z1), z2)) Types: F :: nil:. -> c:c1:c2 nil :: nil:. c :: c:c1:c2 . :: nil:. -> nil:. -> nil:. c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 G :: nil:. -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 -> c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 f :: nil:. -> nil:. g :: nil:. -> nil:. hole_c:c1:c21_6 :: c:c1:c2 hole_nil:.2_6 :: nil:. hole_c3:c4:c53_6 :: c3:c4:c5 gen_c:c1:c24_6 :: Nat -> c:c1:c2 gen_nil:.5_6 :: Nat -> nil:. gen_c3:c4:c56_6 :: Nat -> c3:c4:c5 Lemmas: F(gen_nil:.5_6(n8_6)) -> gen_c:c1:c24_6(n8_6), rt in Omega(1 + n8_6) Generator Equations: gen_c:c1:c24_6(0) <=> c gen_c:c1:c24_6(+(x, 1)) <=> c1(gen_c:c1:c24_6(x)) gen_nil:.5_6(0) <=> nil gen_nil:.5_6(+(x, 1)) <=> .(nil, gen_nil:.5_6(x)) gen_c3:c4:c56_6(0) <=> c3 gen_c3:c4:c56_6(+(x, 1)) <=> c4(gen_c3:c4:c56_6(x)) The following defined symbols remain to be analysed: G, f, g ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_nil:.5_6(n5779_6)) -> gen_nil:.5_6(n5779_6), rt in Omega(0) Induction Base: f(gen_nil:.5_6(0)) ->_R^Omega(0) nil Induction Step: f(gen_nil:.5_6(+(n5779_6, 1))) ->_R^Omega(0) .(nil, f(gen_nil:.5_6(n5779_6))) ->_IH .(nil, gen_nil:.5_6(c5780_6)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) Obligation: Innermost TRS: Rules: F(nil) -> c F(.(nil, z0)) -> c1(F(z0)) F(.(.(z0, z1), z2)) -> c2(F(.(z0, .(z1, z2)))) G(nil) -> c3 G(.(z0, nil)) -> c4(G(z0)) G(.(z0, .(z1, z2))) -> c5(G(.(.(z0, z1), z2))) f(nil) -> nil f(.(nil, z0)) -> .(nil, f(z0)) f(.(.(z0, z1), z2)) -> f(.(z0, .(z1, z2))) g(nil) -> nil g(.(z0, nil)) -> .(g(z0), nil) g(.(z0, .(z1, z2))) -> g(.(.(z0, z1), z2)) Types: F :: nil:. -> c:c1:c2 nil :: nil:. c :: c:c1:c2 . :: nil:. -> nil:. -> nil:. c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 G :: nil:. -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 -> c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 f :: nil:. -> nil:. g :: nil:. -> nil:. hole_c:c1:c21_6 :: c:c1:c2 hole_nil:.2_6 :: nil:. hole_c3:c4:c53_6 :: c3:c4:c5 gen_c:c1:c24_6 :: Nat -> c:c1:c2 gen_nil:.5_6 :: Nat -> nil:. gen_c3:c4:c56_6 :: Nat -> c3:c4:c5 Lemmas: F(gen_nil:.5_6(n8_6)) -> gen_c:c1:c24_6(n8_6), rt in Omega(1 + n8_6) f(gen_nil:.5_6(n5779_6)) -> gen_nil:.5_6(n5779_6), rt in Omega(0) Generator Equations: gen_c:c1:c24_6(0) <=> c gen_c:c1:c24_6(+(x, 1)) <=> c1(gen_c:c1:c24_6(x)) gen_nil:.5_6(0) <=> nil gen_nil:.5_6(+(x, 1)) <=> .(nil, gen_nil:.5_6(x)) gen_c3:c4:c56_6(0) <=> c3 gen_c3:c4:c56_6(+(x, 1)) <=> c4(gen_c3:c4:c56_6(x)) The following defined symbols remain to be analysed: g