WORST_CASE(Omega(n^1),O(n^1)) proof of input_BazT9QciQL.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 1 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (10) CpxTRS (11) CpxTrsMatchBoundsTAProof [FINISHED, 16 ms] (12) BOUNDS(1, n^1) (13) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRelTRS (19) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (20) typed CpxTrs (21) OrderProof [LOWER BOUND(ID), 19 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 93.4 s] (24) BEST (25) proven lower bound (26) LowerBoundPropagationProof [FINISHED, 0 ms] (27) BOUNDS(n^1, INF) (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 24.1 s] (30) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: prime(0) -> false prime(s(0)) -> false prime(s(s(x))) -> prime1(s(s(x)), s(x)) prime1(x, 0) -> false prime1(x, s(0)) -> true prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) divp(x, y) -> =(rem(x, y), 0) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: prime(0) -> false prime(s(0)) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0) -> false prime1(z0, s(0)) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> =(rem(z0, z1), 0) Tuples: PRIME(0) -> c PRIME(s(0)) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0) -> c3 PRIME1(z0, s(0)) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) DIVP(z0, z1) -> c7 S tuples: PRIME(0) -> c PRIME(s(0)) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0) -> c3 PRIME1(z0, s(0)) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) DIVP(z0, z1) -> c7 K tuples:none Defined Rule Symbols: prime_1, prime1_2, divp_2 Defined Pair Symbols: PRIME_1, PRIME1_2, DIVP_2 Compound Symbols: c, c1, c2_1, c3, c4, c5_1, c6_1, c7 ---------------------------------------- (3) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) Removed 6 trailing nodes: PRIME(0) -> c PRIME1(z0, 0) -> c3 PRIME1(z0, s(0)) -> c4 DIVP(z0, z1) -> c7 PRIME(s(0)) -> c1 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: prime(0) -> false prime(s(0)) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0) -> false prime1(z0, s(0)) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> =(rem(z0, z1), 0) Tuples: PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) S tuples: PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) K tuples:none Defined Rule Symbols: prime_1, prime1_2, divp_2 Defined Pair Symbols: PRIME1_2 Compound Symbols: c6_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: prime(0) -> false prime(s(0)) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0) -> false prime1(z0, s(0)) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> =(rem(z0, z1), 0) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) S tuples: PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: PRIME1_2 Compound Symbols: c6_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1] transitions: s0(0) -> 0 c60(0) -> 0 PRIME10(0, 0) -> 1 s1(0) -> 3 PRIME11(0, 3) -> 2 c61(2) -> 1 c61(2) -> 2 ---------------------------------------- (12) BOUNDS(1, n^1) ---------------------------------------- (13) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: prime(0) -> false prime(s(0)) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0) -> false prime1(z0, s(0)) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> =(rem(z0, z1), 0) Tuples: PRIME(0) -> c PRIME(s(0)) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0) -> c3 PRIME1(z0, s(0)) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) DIVP(z0, z1) -> c7 S tuples: PRIME(0) -> c PRIME(s(0)) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0) -> c3 PRIME1(z0, s(0)) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) DIVP(z0, z1) -> c7 K tuples:none Defined Rule Symbols: prime_1, prime1_2, divp_2 Defined Pair Symbols: PRIME_1, PRIME1_2, DIVP_2 Compound Symbols: c, c1, c2_1, c3, c4, c5_1, c6_1, c7 ---------------------------------------- (15) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: PRIME(0) -> c PRIME(s(0)) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0) -> c3 PRIME1(z0, s(0)) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) DIVP(z0, z1) -> c7 The (relative) TRS S consists of the following rules: prime(0) -> false prime(s(0)) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0) -> false prime1(z0, s(0)) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> =(rem(z0, z1), 0) Rewrite Strategy: INNERMOST ---------------------------------------- (17) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (18) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: PRIME(0') -> c PRIME(s(0')) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0') -> c3 PRIME1(z0, s(0')) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) DIVP(z0, z1) -> c7 The (relative) TRS S consists of the following rules: prime(0') -> false prime(s(0')) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0') -> false prime1(z0, s(0')) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> ='(rem(z0, z1), 0') Rewrite Strategy: INNERMOST ---------------------------------------- (19) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (20) Obligation: Innermost TRS: Rules: PRIME(0') -> c PRIME(s(0')) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0') -> c3 PRIME1(z0, s(0')) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) DIVP(z0, z1) -> c7 prime(0') -> false prime(s(0')) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0') -> false prime1(z0, s(0')) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> ='(rem(z0, z1), 0') Types: PRIME :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c3:c4:c5:c6 -> c:c1:c2 PRIME1 :: 0':s -> 0':s -> c3:c4:c5:c6 c3 :: c3:c4:c5:c6 c4 :: c3:c4:c5:c6 c5 :: c7 -> c3:c4:c5:c6 DIVP :: 0':s -> 0':s -> c7 c6 :: c3:c4:c5:c6 -> c3:c4:c5:c6 c7 :: c7 prime :: 0':s -> false:true:and false :: false:true:and prime1 :: 0':s -> 0':s -> false:true:and true :: false:true:and and :: not -> false:true:and -> false:true:and not :: =' -> not divp :: 0':s -> 0':s -> =' =' :: rem -> 0':s -> =' rem :: 0':s -> 0':s -> rem hole_c:c1:c21_8 :: c:c1:c2 hole_0':s2_8 :: 0':s hole_c3:c4:c5:c63_8 :: c3:c4:c5:c6 hole_c74_8 :: c7 hole_false:true:and5_8 :: false:true:and hole_not6_8 :: not hole_='7_8 :: =' hole_rem8_8 :: rem gen_0':s9_8 :: Nat -> 0':s gen_c3:c4:c5:c610_8 :: Nat -> c3:c4:c5:c6 gen_false:true:and11_8 :: Nat -> false:true:and ---------------------------------------- (21) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: PRIME1, prime1 ---------------------------------------- (22) Obligation: Innermost TRS: Rules: PRIME(0') -> c PRIME(s(0')) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0') -> c3 PRIME1(z0, s(0')) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) DIVP(z0, z1) -> c7 prime(0') -> false prime(s(0')) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0') -> false prime1(z0, s(0')) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> ='(rem(z0, z1), 0') Types: PRIME :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c3:c4:c5:c6 -> c:c1:c2 PRIME1 :: 0':s -> 0':s -> c3:c4:c5:c6 c3 :: c3:c4:c5:c6 c4 :: c3:c4:c5:c6 c5 :: c7 -> c3:c4:c5:c6 DIVP :: 0':s -> 0':s -> c7 c6 :: c3:c4:c5:c6 -> c3:c4:c5:c6 c7 :: c7 prime :: 0':s -> false:true:and false :: false:true:and prime1 :: 0':s -> 0':s -> false:true:and true :: false:true:and and :: not -> false:true:and -> false:true:and not :: =' -> not divp :: 0':s -> 0':s -> =' =' :: rem -> 0':s -> =' rem :: 0':s -> 0':s -> rem hole_c:c1:c21_8 :: c:c1:c2 hole_0':s2_8 :: 0':s hole_c3:c4:c5:c63_8 :: c3:c4:c5:c6 hole_c74_8 :: c7 hole_false:true:and5_8 :: false:true:and hole_not6_8 :: not hole_='7_8 :: =' hole_rem8_8 :: rem gen_0':s9_8 :: Nat -> 0':s gen_c3:c4:c5:c610_8 :: Nat -> c3:c4:c5:c6 gen_false:true:and11_8 :: Nat -> false:true:and Generator Equations: gen_0':s9_8(0) <=> 0' gen_0':s9_8(+(x, 1)) <=> s(gen_0':s9_8(x)) gen_c3:c4:c5:c610_8(0) <=> c3 gen_c3:c4:c5:c610_8(+(x, 1)) <=> c6(gen_c3:c4:c5:c610_8(x)) gen_false:true:and11_8(0) <=> false gen_false:true:and11_8(+(x, 1)) <=> and(not(='(rem(0', 0'), 0')), gen_false:true:and11_8(x)) The following defined symbols remain to be analysed: PRIME1, prime1 ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: PRIME1(gen_0':s9_8(a), gen_0':s9_8(+(2, n13_8))) -> *12_8, rt in Omega(n13_8) Induction Base: PRIME1(gen_0':s9_8(a), gen_0':s9_8(+(2, 0))) Induction Step: PRIME1(gen_0':s9_8(a), gen_0':s9_8(+(2, +(n13_8, 1)))) ->_R^Omega(1) c6(PRIME1(gen_0':s9_8(a), s(gen_0':s9_8(+(1, n13_8))))) ->_IH c6(*12_8) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Complex Obligation (BEST) ---------------------------------------- (25) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: PRIME(0') -> c PRIME(s(0')) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0') -> c3 PRIME1(z0, s(0')) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) DIVP(z0, z1) -> c7 prime(0') -> false prime(s(0')) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0') -> false prime1(z0, s(0')) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> ='(rem(z0, z1), 0') Types: PRIME :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c3:c4:c5:c6 -> c:c1:c2 PRIME1 :: 0':s -> 0':s -> c3:c4:c5:c6 c3 :: c3:c4:c5:c6 c4 :: c3:c4:c5:c6 c5 :: c7 -> c3:c4:c5:c6 DIVP :: 0':s -> 0':s -> c7 c6 :: c3:c4:c5:c6 -> c3:c4:c5:c6 c7 :: c7 prime :: 0':s -> false:true:and false :: false:true:and prime1 :: 0':s -> 0':s -> false:true:and true :: false:true:and and :: not -> false:true:and -> false:true:and not :: =' -> not divp :: 0':s -> 0':s -> =' =' :: rem -> 0':s -> =' rem :: 0':s -> 0':s -> rem hole_c:c1:c21_8 :: c:c1:c2 hole_0':s2_8 :: 0':s hole_c3:c4:c5:c63_8 :: c3:c4:c5:c6 hole_c74_8 :: c7 hole_false:true:and5_8 :: false:true:and hole_not6_8 :: not hole_='7_8 :: =' hole_rem8_8 :: rem gen_0':s9_8 :: Nat -> 0':s gen_c3:c4:c5:c610_8 :: Nat -> c3:c4:c5:c6 gen_false:true:and11_8 :: Nat -> false:true:and Generator Equations: gen_0':s9_8(0) <=> 0' gen_0':s9_8(+(x, 1)) <=> s(gen_0':s9_8(x)) gen_c3:c4:c5:c610_8(0) <=> c3 gen_c3:c4:c5:c610_8(+(x, 1)) <=> c6(gen_c3:c4:c5:c610_8(x)) gen_false:true:and11_8(0) <=> false gen_false:true:and11_8(+(x, 1)) <=> and(not(='(rem(0', 0'), 0')), gen_false:true:and11_8(x)) The following defined symbols remain to be analysed: PRIME1, prime1 ---------------------------------------- (26) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (27) BOUNDS(n^1, INF) ---------------------------------------- (28) Obligation: Innermost TRS: Rules: PRIME(0') -> c PRIME(s(0')) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0') -> c3 PRIME1(z0, s(0')) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0)) PRIME1(z0, s(s(z1))) -> c6(PRIME1(z0, s(z1))) DIVP(z0, z1) -> c7 prime(0') -> false prime(s(0')) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0') -> false prime1(z0, s(0')) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> ='(rem(z0, z1), 0') Types: PRIME :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c3:c4:c5:c6 -> c:c1:c2 PRIME1 :: 0':s -> 0':s -> c3:c4:c5:c6 c3 :: c3:c4:c5:c6 c4 :: c3:c4:c5:c6 c5 :: c7 -> c3:c4:c5:c6 DIVP :: 0':s -> 0':s -> c7 c6 :: c3:c4:c5:c6 -> c3:c4:c5:c6 c7 :: c7 prime :: 0':s -> false:true:and false :: false:true:and prime1 :: 0':s -> 0':s -> false:true:and true :: false:true:and and :: not -> false:true:and -> false:true:and not :: =' -> not divp :: 0':s -> 0':s -> =' =' :: rem -> 0':s -> =' rem :: 0':s -> 0':s -> rem hole_c:c1:c21_8 :: c:c1:c2 hole_0':s2_8 :: 0':s hole_c3:c4:c5:c63_8 :: c3:c4:c5:c6 hole_c74_8 :: c7 hole_false:true:and5_8 :: false:true:and hole_not6_8 :: not hole_='7_8 :: =' hole_rem8_8 :: rem gen_0':s9_8 :: Nat -> 0':s gen_c3:c4:c5:c610_8 :: Nat -> c3:c4:c5:c6 gen_false:true:and11_8 :: Nat -> false:true:and Lemmas: PRIME1(gen_0':s9_8(a), gen_0':s9_8(+(2, n13_8))) -> *12_8, rt in Omega(n13_8) Generator Equations: gen_0':s9_8(0) <=> 0' gen_0':s9_8(+(x, 1)) <=> s(gen_0':s9_8(x)) gen_c3:c4:c5:c610_8(0) <=> c3 gen_c3:c4:c5:c610_8(+(x, 1)) <=> c6(gen_c3:c4:c5:c610_8(x)) gen_false:true:and11_8(0) <=> false gen_false:true:and11_8(+(x, 1)) <=> and(not(='(rem(0', 0'), 0')), gen_false:true:and11_8(x)) The following defined symbols remain to be analysed: prime1 ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: prime1(gen_0':s9_8(a), gen_0':s9_8(+(1, n74700_8))) -> *12_8, rt in Omega(0) Induction Base: prime1(gen_0':s9_8(a), gen_0':s9_8(+(1, 0))) Induction Step: prime1(gen_0':s9_8(a), gen_0':s9_8(+(1, +(n74700_8, 1)))) ->_R^Omega(0) and(not(divp(s(s(gen_0':s9_8(n74700_8))), gen_0':s9_8(a))), prime1(gen_0':s9_8(a), s(gen_0':s9_8(n74700_8)))) ->_R^Omega(0) and(not(='(rem(s(s(gen_0':s9_8(n74700_8))), gen_0':s9_8(a)), 0')), prime1(gen_0':s9_8(a), s(gen_0':s9_8(n74700_8)))) ->_IH and(not(='(rem(s(s(gen_0':s9_8(n74700_8))), gen_0':s9_8(a)), 0')), *12_8) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (30) BOUNDS(1, INF)