KILLED proof of input_JMNp3qudlv.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 14 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 1306 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 28.9 s] (18) proven lower bound (19) LowerBoundPropagationProof [FINISHED, 0 ms] (20) BOUNDS(n^1, INF) (21) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (22) CdtProblem (23) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CdtProblem (25) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CdtProblem (27) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (28) CdtProblem (29) CdtKnowledgeProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CdtProblem (31) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (32) CdtProblem (33) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxRelTRS (35) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (36) CpxTRS (37) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxWeightedTrs (39) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxWeightedTrs (41) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (42) CpxTypedWeightedTrs (43) CompletionProof [UPPER BOUND(ID), 0 ms] (44) CpxTypedWeightedCompleteTrs (45) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CpxTypedWeightedCompleteTrs (47) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CpxRNTS (51) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 179 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 72 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 331 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 55 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (70) CpxRNTS (71) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 39 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 24 ms] (76) CpxRNTS (77) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (78) CpxRNTS (79) IntTrsBoundProof [UPPER BOUND(ID), 130 ms] (80) CpxRNTS (81) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (82) CpxRNTS (83) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (84) CpxRNTS (85) IntTrsBoundProof [UPPER BOUND(ID), 1505 ms] (86) CpxRNTS (87) IntTrsBoundProof [UPPER BOUND(ID), 117 ms] (88) CpxRNTS (89) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (90) CpxRNTS (91) IntTrsBoundProof [UPPER BOUND(ID), 274 ms] (92) CpxRNTS (93) IntTrsBoundProof [UPPER BOUND(ID), 67 ms] (94) CpxRNTS (95) CompletionProof [UPPER BOUND(ID), 0 ms] (96) CpxTypedWeightedCompleteTrs (97) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (98) CpxRNTS (99) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 141 ms] (100) CdtProblem (101) CdtKnowledgeProof [BOTH BOUNDS(ID, ID), 0 ms] (102) CdtProblem (103) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (104) CdtProblem (105) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (106) CdtProblem (107) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (108) CdtProblem (109) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 2 ms] (110) CdtProblem (111) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (112) CdtProblem (113) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (114) CdtProblem (115) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (116) CdtProblem (117) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (118) CdtProblem (119) CdtRewritingProof [BOTH BOUNDS(ID, ID), 0 ms] (120) CdtProblem (121) CdtRewritingProof [BOTH BOUNDS(ID, ID), 0 ms] (122) CdtProblem (123) CdtRewritingProof [BOTH BOUNDS(ID, ID), 0 ms] (124) CdtProblem (125) CdtRewritingProof [BOTH BOUNDS(ID, ID), 0 ms] (126) CdtProblem (127) CdtRewritingProof [BOTH BOUNDS(ID, ID), 0 ms] (128) CdtProblem (129) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (130) CdtProblem (131) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (132) CdtProblem (133) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (134) CdtProblem (135) CdtRewritingProof [BOTH BOUNDS(ID, ID), 0 ms] (136) CdtProblem (137) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (138) CdtProblem (139) CdtRewritingProof [BOTH BOUNDS(ID, ID), 0 ms] (140) CdtProblem (141) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (142) CdtProblem (143) CdtRewritingProof [BOTH BOUNDS(ID, ID), 0 ms] (144) CdtProblem (145) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (146) CdtProblem (147) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (148) CdtProblem (149) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (150) CdtProblem (151) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (152) CdtProblem (153) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (154) CdtProblem (155) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (156) CpxWeightedTrs (157) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (158) CpxWeightedTrs (159) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (160) CpxTypedWeightedTrs (161) CompletionProof [UPPER BOUND(ID), 0 ms] (162) CpxTypedWeightedCompleteTrs (163) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (164) CpxTypedWeightedCompleteTrs (165) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (166) CpxRNTS (167) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (168) CpxRNTS (169) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (170) CpxRNTS (171) ResultPropagationProof [UPPER BOUND(ID), 2 ms] (172) CpxRNTS (173) IntTrsBoundProof [UPPER BOUND(ID), 217 ms] (174) CpxRNTS (175) IntTrsBoundProof [UPPER BOUND(ID), 86 ms] (176) CpxRNTS (177) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (178) CpxRNTS (179) IntTrsBoundProof [UPPER BOUND(ID), 95 ms] (180) CpxRNTS (181) IntTrsBoundProof [UPPER BOUND(ID), 56 ms] (182) CpxRNTS (183) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (184) CpxRNTS (185) IntTrsBoundProof [UPPER BOUND(ID), 89 ms] (186) CpxRNTS (187) IntTrsBoundProof [UPPER BOUND(ID), 55 ms] (188) CpxRNTS (189) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (190) CpxRNTS (191) IntTrsBoundProof [UPPER BOUND(ID), 1504 ms] (192) CpxRNTS (193) IntTrsBoundProof [UPPER BOUND(ID), 94 ms] (194) CpxRNTS (195) CompletionProof [UPPER BOUND(ID), 0 ms] (196) CpxTypedWeightedCompleteTrs (197) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (198) CpxRNTS ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(x))) -> sp(g(x)) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(x)) -> np(g(x)) sp(pair(x, y)) -> +(x, y) np(pair(x, y)) -> pair(+(x, y), x) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(x))) -> sp(g(x)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(x)) -> np(g(x)) sp(pair(x, y)) -> +'(x, y) np(pair(x, y)) -> pair(+'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(x))) -> sp(g(x)) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(x)) -> np(g(x)) sp(pair(x, y)) -> +(x, y) np(pair(x, y)) -> pair(+(x, y), x) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(z0))) -> sp(g(z0)) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +(z0, z1) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(0))) -> c2 FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(0) -> c4 G(s(0)) -> c5 G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, 0) -> c9 +'(z0, s(z1)) -> c10(+'(z0, z1)) S tuples: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(0))) -> c2 FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(0) -> c4 G(s(0)) -> c5 G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, 0) -> c9 +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples:none Defined Rule Symbols: fib_1, g_1, sp_1, np_1, +_2 Defined Pair Symbols: FIB_1, G_1, SP_1, NP_1, +'_2 Compound Symbols: c, c1, c2, c3_2, c4, c5, c6_2, c7_1, c8_1, c9, c10_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(0))) -> c2 FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(0) -> c4 G(s(0)) -> c5 G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, 0) -> c9 +'(z0, s(z1)) -> c10(+'(z0, z1)) The (relative) TRS S consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(z0))) -> sp(g(z0)) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +(z0, z1) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FIB(0') -> c FIB(s(0')) -> c1 FIB(s(s(0'))) -> c2 FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(0') -> c4 G(s(0')) -> c5 G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, 0') -> c9 +'(z0, s(z1)) -> c10(+'(z0, z1)) The (relative) TRS S consists of the following rules: fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(z0))) -> sp(g(z0)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +'(z0, z1) np(pair(z0, z1)) -> pair(+'(z0, z1), z0) +'(z0, 0') -> z0 +'(z0, s(z1)) -> s(+'(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: FIB(0') -> c FIB(s(0')) -> c1 FIB(s(s(0'))) -> c2 FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(0') -> c4 G(s(0')) -> c5 G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, 0') -> c9 +'(z0, s(z1)) -> c10(+'(z0, z1)) fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(z0))) -> sp(g(z0)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +'(z0, z1) np(pair(z0, z1)) -> pair(+'(z0, z1), z0) +'(z0, 0') -> z0 +'(z0, s(z1)) -> s(+'(z0, z1)) Types: FIB :: 0':s:c9:c10 -> c:c1:c2:c3 0' :: 0':s:c9:c10 c :: c:c1:c2:c3 s :: 0':s:c9:c10 -> 0':s:c9:c10 c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 c3 :: c7 -> c4:c5:c6 -> c:c1:c2:c3 SP :: pair -> c7 g :: 0':s:c9:c10 -> pair G :: 0':s:c9:c10 -> c4:c5:c6 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c8 -> c4:c5:c6 -> c4:c5:c6 NP :: pair -> c8 pair :: 0':s:c9:c10 -> 0':s:c9:c10 -> pair c7 :: 0':s:c9:c10 -> c7 +' :: 0':s:c9:c10 -> 0':s:c9:c10 -> 0':s:c9:c10 c8 :: 0':s:c9:c10 -> c8 c9 :: 0':s:c9:c10 c10 :: 0':s:c9:c10 -> 0':s:c9:c10 fib :: 0':s:c9:c10 -> 0':s:c9:c10 sp :: pair -> 0':s:c9:c10 np :: pair -> pair hole_c:c1:c2:c31_11 :: c:c1:c2:c3 hole_0':s:c9:c102_11 :: 0':s:c9:c10 hole_c73_11 :: c7 hole_c4:c5:c64_11 :: c4:c5:c6 hole_pair5_11 :: pair hole_c86_11 :: c8 gen_0':s:c9:c107_11 :: Nat -> 0':s:c9:c10 gen_c4:c5:c68_11 :: Nat -> c4:c5:c6 ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g, G, +' They will be analysed ascendingly in the following order: g < G ---------------------------------------- (14) Obligation: Innermost TRS: Rules: FIB(0') -> c FIB(s(0')) -> c1 FIB(s(s(0'))) -> c2 FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(0') -> c4 G(s(0')) -> c5 G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, 0') -> c9 +'(z0, s(z1)) -> c10(+'(z0, z1)) fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(z0))) -> sp(g(z0)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +'(z0, z1) np(pair(z0, z1)) -> pair(+'(z0, z1), z0) +'(z0, 0') -> z0 +'(z0, s(z1)) -> s(+'(z0, z1)) Types: FIB :: 0':s:c9:c10 -> c:c1:c2:c3 0' :: 0':s:c9:c10 c :: c:c1:c2:c3 s :: 0':s:c9:c10 -> 0':s:c9:c10 c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 c3 :: c7 -> c4:c5:c6 -> c:c1:c2:c3 SP :: pair -> c7 g :: 0':s:c9:c10 -> pair G :: 0':s:c9:c10 -> c4:c5:c6 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c8 -> c4:c5:c6 -> c4:c5:c6 NP :: pair -> c8 pair :: 0':s:c9:c10 -> 0':s:c9:c10 -> pair c7 :: 0':s:c9:c10 -> c7 +' :: 0':s:c9:c10 -> 0':s:c9:c10 -> 0':s:c9:c10 c8 :: 0':s:c9:c10 -> c8 c9 :: 0':s:c9:c10 c10 :: 0':s:c9:c10 -> 0':s:c9:c10 fib :: 0':s:c9:c10 -> 0':s:c9:c10 sp :: pair -> 0':s:c9:c10 np :: pair -> pair hole_c:c1:c2:c31_11 :: c:c1:c2:c3 hole_0':s:c9:c102_11 :: 0':s:c9:c10 hole_c73_11 :: c7 hole_c4:c5:c64_11 :: c4:c5:c6 hole_pair5_11 :: pair hole_c86_11 :: c8 gen_0':s:c9:c107_11 :: Nat -> 0':s:c9:c10 gen_c4:c5:c68_11 :: Nat -> c4:c5:c6 Generator Equations: gen_0':s:c9:c107_11(0) <=> 0' gen_0':s:c9:c107_11(+(x, 1)) <=> s(gen_0':s:c9:c107_11(x)) gen_c4:c5:c68_11(0) <=> c4 gen_c4:c5:c68_11(+(x, 1)) <=> c6(c8(0'), gen_c4:c5:c68_11(x)) The following defined symbols remain to be analysed: g, G, +' They will be analysed ascendingly in the following order: g < G ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':s:c9:c107_11(+(1, n10_11))) -> *9_11, rt in Omega(0) Induction Base: g(gen_0':s:c9:c107_11(+(1, 0))) Induction Step: g(gen_0':s:c9:c107_11(+(1, +(n10_11, 1)))) ->_R^Omega(0) np(g(gen_0':s:c9:c107_11(+(1, n10_11)))) ->_IH np(*9_11) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (16) Obligation: Innermost TRS: Rules: FIB(0') -> c FIB(s(0')) -> c1 FIB(s(s(0'))) -> c2 FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(0') -> c4 G(s(0')) -> c5 G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, 0') -> c9 +'(z0, s(z1)) -> c10(+'(z0, z1)) fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(z0))) -> sp(g(z0)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +'(z0, z1) np(pair(z0, z1)) -> pair(+'(z0, z1), z0) +'(z0, 0') -> z0 +'(z0, s(z1)) -> s(+'(z0, z1)) Types: FIB :: 0':s:c9:c10 -> c:c1:c2:c3 0' :: 0':s:c9:c10 c :: c:c1:c2:c3 s :: 0':s:c9:c10 -> 0':s:c9:c10 c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 c3 :: c7 -> c4:c5:c6 -> c:c1:c2:c3 SP :: pair -> c7 g :: 0':s:c9:c10 -> pair G :: 0':s:c9:c10 -> c4:c5:c6 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c8 -> c4:c5:c6 -> c4:c5:c6 NP :: pair -> c8 pair :: 0':s:c9:c10 -> 0':s:c9:c10 -> pair c7 :: 0':s:c9:c10 -> c7 +' :: 0':s:c9:c10 -> 0':s:c9:c10 -> 0':s:c9:c10 c8 :: 0':s:c9:c10 -> c8 c9 :: 0':s:c9:c10 c10 :: 0':s:c9:c10 -> 0':s:c9:c10 fib :: 0':s:c9:c10 -> 0':s:c9:c10 sp :: pair -> 0':s:c9:c10 np :: pair -> pair hole_c:c1:c2:c31_11 :: c:c1:c2:c3 hole_0':s:c9:c102_11 :: 0':s:c9:c10 hole_c73_11 :: c7 hole_c4:c5:c64_11 :: c4:c5:c6 hole_pair5_11 :: pair hole_c86_11 :: c8 gen_0':s:c9:c107_11 :: Nat -> 0':s:c9:c10 gen_c4:c5:c68_11 :: Nat -> c4:c5:c6 Lemmas: g(gen_0':s:c9:c107_11(+(1, n10_11))) -> *9_11, rt in Omega(0) Generator Equations: gen_0':s:c9:c107_11(0) <=> 0' gen_0':s:c9:c107_11(+(x, 1)) <=> s(gen_0':s:c9:c107_11(x)) gen_c4:c5:c68_11(0) <=> c4 gen_c4:c5:c68_11(+(x, 1)) <=> c6(c8(0'), gen_c4:c5:c68_11(x)) The following defined symbols remain to be analysed: G, +' ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s:c9:c107_11(a), gen_0':s:c9:c107_11(+(1, n3411261_11))) -> *9_11, rt in Omega(n3411261_11) Induction Base: +'(gen_0':s:c9:c107_11(a), gen_0':s:c9:c107_11(+(1, 0))) Induction Step: +'(gen_0':s:c9:c107_11(a), gen_0':s:c9:c107_11(+(1, +(n3411261_11, 1)))) ->_R^Omega(1) c10(+'(gen_0':s:c9:c107_11(a), gen_0':s:c9:c107_11(+(1, n3411261_11)))) ->_IH c10(*9_11) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: FIB(0') -> c FIB(s(0')) -> c1 FIB(s(s(0'))) -> c2 FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(0') -> c4 G(s(0')) -> c5 G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, 0') -> c9 +'(z0, s(z1)) -> c10(+'(z0, z1)) fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(0'))) -> s(0') fib(s(s(z0))) -> sp(g(z0)) g(0') -> pair(s(0'), 0') g(s(0')) -> pair(s(0'), s(0')) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +'(z0, z1) np(pair(z0, z1)) -> pair(+'(z0, z1), z0) +'(z0, 0') -> z0 +'(z0, s(z1)) -> s(+'(z0, z1)) Types: FIB :: 0':s:c9:c10 -> c:c1:c2:c3 0' :: 0':s:c9:c10 c :: c:c1:c2:c3 s :: 0':s:c9:c10 -> 0':s:c9:c10 c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 c3 :: c7 -> c4:c5:c6 -> c:c1:c2:c3 SP :: pair -> c7 g :: 0':s:c9:c10 -> pair G :: 0':s:c9:c10 -> c4:c5:c6 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c8 -> c4:c5:c6 -> c4:c5:c6 NP :: pair -> c8 pair :: 0':s:c9:c10 -> 0':s:c9:c10 -> pair c7 :: 0':s:c9:c10 -> c7 +' :: 0':s:c9:c10 -> 0':s:c9:c10 -> 0':s:c9:c10 c8 :: 0':s:c9:c10 -> c8 c9 :: 0':s:c9:c10 c10 :: 0':s:c9:c10 -> 0':s:c9:c10 fib :: 0':s:c9:c10 -> 0':s:c9:c10 sp :: pair -> 0':s:c9:c10 np :: pair -> pair hole_c:c1:c2:c31_11 :: c:c1:c2:c3 hole_0':s:c9:c102_11 :: 0':s:c9:c10 hole_c73_11 :: c7 hole_c4:c5:c64_11 :: c4:c5:c6 hole_pair5_11 :: pair hole_c86_11 :: c8 gen_0':s:c9:c107_11 :: Nat -> 0':s:c9:c10 gen_c4:c5:c68_11 :: Nat -> c4:c5:c6 Lemmas: g(gen_0':s:c9:c107_11(+(1, n10_11))) -> *9_11, rt in Omega(0) Generator Equations: gen_0':s:c9:c107_11(0) <=> 0' gen_0':s:c9:c107_11(+(x, 1)) <=> s(gen_0':s:c9:c107_11(x)) gen_c4:c5:c68_11(0) <=> c4 gen_c4:c5:c68_11(+(x, 1)) <=> c6(c8(0'), gen_c4:c5:c68_11(x)) The following defined symbols remain to be analysed: +' ---------------------------------------- (19) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (20) BOUNDS(n^1, INF) ---------------------------------------- (21) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(z0))) -> sp(g(z0)) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +(z0, z1) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(0))) -> c2 FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(0) -> c4 G(s(0)) -> c5 G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, 0) -> c9 +'(z0, s(z1)) -> c10(+'(z0, z1)) S tuples: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(0))) -> c2 FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(0) -> c4 G(s(0)) -> c5 G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, 0) -> c9 +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples:none Defined Rule Symbols: fib_1, g_1, sp_1, np_1, +_2 Defined Pair Symbols: FIB_1, G_1, SP_1, NP_1, +'_2 Compound Symbols: c, c1, c2, c3_2, c4, c5, c6_2, c7_1, c8_1, c9, c10_1 ---------------------------------------- (23) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 6 trailing nodes: G(s(0)) -> c5 FIB(s(0)) -> c1 +'(z0, 0) -> c9 FIB(0) -> c FIB(s(s(0))) -> c2 G(0) -> c4 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(z0))) -> sp(g(z0)) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +(z0, z1) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) S tuples: FIB(s(s(z0))) -> c3(SP(g(z0)), G(z0)) G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples:none Defined Rule Symbols: fib_1, g_1, sp_1, np_1, +_2 Defined Pair Symbols: FIB_1, G_1, SP_1, NP_1, +'_2 Compound Symbols: c3_2, c6_2, c7_1, c8_1, c10_1 ---------------------------------------- (25) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(z0))) -> sp(g(z0)) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +(z0, z1) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) FIB(s(s(z0))) -> c(G(z0)) S tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) FIB(s(s(z0))) -> c(G(z0)) K tuples:none Defined Rule Symbols: fib_1, g_1, sp_1, np_1, +_2 Defined Pair Symbols: G_1, SP_1, NP_1, +'_2, FIB_1 Compound Symbols: c6_2, c7_1, c8_1, c10_1, c_1 ---------------------------------------- (27) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: FIB(s(s(z0))) -> c(G(z0)) ---------------------------------------- (28) Obligation: Complexity Dependency Tuples Problem Rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(z0))) -> sp(g(z0)) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +(z0, z1) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) S tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) K tuples:none Defined Rule Symbols: fib_1, g_1, sp_1, np_1, +_2 Defined Pair Symbols: G_1, SP_1, NP_1, +'_2, FIB_1 Compound Symbols: c6_2, c7_1, c8_1, c10_1, c_1 ---------------------------------------- (29) CdtKnowledgeProof (BOTH BOUNDS(ID, ID)) The following tuples could be moved from S to K by knowledge propagation: FIB(s(s(z0))) -> c(SP(g(z0))) SP(pair(z0, z1)) -> c7(+'(z0, z1)) ---------------------------------------- (30) Obligation: Complexity Dependency Tuples Problem Rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(z0))) -> sp(g(z0)) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) sp(pair(z0, z1)) -> +(z0, z1) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) S tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: FIB(s(s(z0))) -> c(SP(g(z0))) SP(pair(z0, z1)) -> c7(+'(z0, z1)) Defined Rule Symbols: fib_1, g_1, sp_1, np_1, +_2 Defined Pair Symbols: G_1, SP_1, NP_1, +'_2, FIB_1 Compound Symbols: c6_2, c7_1, c8_1, c10_1, c_1 ---------------------------------------- (31) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(0))) -> s(0) fib(s(s(z0))) -> sp(g(z0)) sp(pair(z0, z1)) -> +(z0, z1) ---------------------------------------- (32) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) S tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: FIB(s(s(z0))) -> c(SP(g(z0))) SP(pair(z0, z1)) -> c7(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, SP_1, NP_1, +'_2, FIB_1 Compound Symbols: c6_2, c7_1, c8_1, c10_1, c_1 ---------------------------------------- (33) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (34) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: G(s(z0)) -> c6(NP(g(z0)), G(z0)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) The (relative) TRS S consists of the following rules: SP(pair(z0, z1)) -> c7(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (35) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (36) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: G(s(z0)) -> c6(NP(g(z0)), G(z0)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (37) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (38) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: G(s(z0)) -> c6(NP(g(z0)), G(z0)) [1] NP(pair(z0, z1)) -> c8(+'(z0, z1)) [1] +'(z0, s(z1)) -> c10(+'(z0, z1)) [1] SP(pair(z0, z1)) -> c7(+'(z0, z1)) [0] FIB(s(s(z0))) -> c(SP(g(z0))) [0] g(0) -> pair(s(0), 0) [0] g(s(0)) -> pair(s(0), s(0)) [0] g(s(z0)) -> np(g(z0)) [0] np(pair(z0, z1)) -> pair(+(z0, z1), z0) [0] +(z0, 0) -> z0 [0] +(z0, s(z1)) -> s(+(z0, z1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (39) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: + => plus ---------------------------------------- (40) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: G(s(z0)) -> c6(NP(g(z0)), G(z0)) [1] NP(pair(z0, z1)) -> c8(+'(z0, z1)) [1] +'(z0, s(z1)) -> c10(+'(z0, z1)) [1] SP(pair(z0, z1)) -> c7(+'(z0, z1)) [0] FIB(s(s(z0))) -> c(SP(g(z0))) [0] g(0) -> pair(s(0), 0) [0] g(s(0)) -> pair(s(0), s(0)) [0] g(s(z0)) -> np(g(z0)) [0] np(pair(z0, z1)) -> pair(plus(z0, z1), z0) [0] plus(z0, 0) -> z0 [0] plus(z0, s(z1)) -> s(plus(z0, z1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (41) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (42) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: G(s(z0)) -> c6(NP(g(z0)), G(z0)) [1] NP(pair(z0, z1)) -> c8(+'(z0, z1)) [1] +'(z0, s(z1)) -> c10(+'(z0, z1)) [1] SP(pair(z0, z1)) -> c7(+'(z0, z1)) [0] FIB(s(s(z0))) -> c(SP(g(z0))) [0] g(0) -> pair(s(0), 0) [0] g(s(0)) -> pair(s(0), s(0)) [0] g(s(z0)) -> np(g(z0)) [0] np(pair(z0, z1)) -> pair(plus(z0, z1), z0) [0] plus(z0, 0) -> z0 [0] plus(z0, s(z1)) -> s(plus(z0, z1)) [0] The TRS has the following type information: G :: s:0 -> c6 s :: s:0 -> s:0 c6 :: c8 -> c6 -> c6 NP :: pair -> c8 g :: s:0 -> pair pair :: s:0 -> s:0 -> pair c8 :: c10 -> c8 +' :: s:0 -> s:0 -> c10 c10 :: c10 -> c10 SP :: pair -> c7 c7 :: c10 -> c7 FIB :: s:0 -> c c :: c7 -> c 0 :: s:0 np :: pair -> pair plus :: s:0 -> s:0 -> s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (43) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: G_1 NP_1 +'_2 (c) The following functions are completely defined: SP_1 FIB_1 g_1 np_1 plus_2 Due to the following rules being added: SP(v0) -> const4 [0] FIB(v0) -> const5 [0] g(v0) -> const2 [0] np(v0) -> const2 [0] plus(v0, v1) -> 0 [0] And the following fresh constants: const4, const5, const2, const, const1, const3 ---------------------------------------- (44) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: G(s(z0)) -> c6(NP(g(z0)), G(z0)) [1] NP(pair(z0, z1)) -> c8(+'(z0, z1)) [1] +'(z0, s(z1)) -> c10(+'(z0, z1)) [1] SP(pair(z0, z1)) -> c7(+'(z0, z1)) [0] FIB(s(s(z0))) -> c(SP(g(z0))) [0] g(0) -> pair(s(0), 0) [0] g(s(0)) -> pair(s(0), s(0)) [0] g(s(z0)) -> np(g(z0)) [0] np(pair(z0, z1)) -> pair(plus(z0, z1), z0) [0] plus(z0, 0) -> z0 [0] plus(z0, s(z1)) -> s(plus(z0, z1)) [0] SP(v0) -> const4 [0] FIB(v0) -> const5 [0] g(v0) -> const2 [0] np(v0) -> const2 [0] plus(v0, v1) -> 0 [0] The TRS has the following type information: G :: s:0 -> c6 s :: s:0 -> s:0 c6 :: c8 -> c6 -> c6 NP :: pair:const2 -> c8 g :: s:0 -> pair:const2 pair :: s:0 -> s:0 -> pair:const2 c8 :: c10 -> c8 +' :: s:0 -> s:0 -> c10 c10 :: c10 -> c10 SP :: pair:const2 -> c7:const4 c7 :: c10 -> c7:const4 FIB :: s:0 -> c:const5 c :: c7:const4 -> c:const5 0 :: s:0 np :: pair:const2 -> pair:const2 plus :: s:0 -> s:0 -> s:0 const4 :: c7:const4 const5 :: c:const5 const2 :: pair:const2 const :: c6 const1 :: c8 const3 :: c10 Rewrite Strategy: INNERMOST ---------------------------------------- (45) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (46) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: G(s(0)) -> c6(NP(pair(s(0), 0)), G(0)) [1] G(s(s(0))) -> c6(NP(pair(s(0), s(0))), G(s(0))) [1] G(s(s(z0'))) -> c6(NP(np(g(z0'))), G(s(z0'))) [1] G(s(z0)) -> c6(NP(const2), G(z0)) [1] NP(pair(z0, z1)) -> c8(+'(z0, z1)) [1] +'(z0, s(z1)) -> c10(+'(z0, z1)) [1] SP(pair(z0, z1)) -> c7(+'(z0, z1)) [0] FIB(s(s(0))) -> c(SP(pair(s(0), 0))) [0] FIB(s(s(s(0)))) -> c(SP(pair(s(0), s(0)))) [0] FIB(s(s(s(z0'')))) -> c(SP(np(g(z0'')))) [0] FIB(s(s(z0))) -> c(SP(const2)) [0] g(0) -> pair(s(0), 0) [0] g(s(0)) -> pair(s(0), s(0)) [0] g(s(0)) -> np(pair(s(0), 0)) [0] g(s(s(0))) -> np(pair(s(0), s(0))) [0] g(s(s(z01))) -> np(np(g(z01))) [0] g(s(z0)) -> np(const2) [0] np(pair(z0, z1)) -> pair(plus(z0, z1), z0) [0] plus(z0, 0) -> z0 [0] plus(z0, s(z1)) -> s(plus(z0, z1)) [0] SP(v0) -> const4 [0] FIB(v0) -> const5 [0] g(v0) -> const2 [0] np(v0) -> const2 [0] plus(v0, v1) -> 0 [0] The TRS has the following type information: G :: s:0 -> c6 s :: s:0 -> s:0 c6 :: c8 -> c6 -> c6 NP :: pair:const2 -> c8 g :: s:0 -> pair:const2 pair :: s:0 -> s:0 -> pair:const2 c8 :: c10 -> c8 +' :: s:0 -> s:0 -> c10 c10 :: c10 -> c10 SP :: pair:const2 -> c7:const4 c7 :: c10 -> c7:const4 FIB :: s:0 -> c:const5 c :: c7:const4 -> c:const5 0 :: s:0 np :: pair:const2 -> pair:const2 plus :: s:0 -> s:0 -> s:0 const4 :: c7:const4 const5 :: c:const5 const2 :: pair:const2 const :: c6 const1 :: c8 const3 :: c10 Rewrite Strategy: INNERMOST ---------------------------------------- (47) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const4 => 0 const5 => 0 const2 => 0 const => 0 const1 => 0 const3 => 0 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ 1 }-> 1 + +'(z0, z1) :|: z = z0, z1 >= 0, z0 >= 0, z' = 1 + z1 FIB(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 FIB(z) -{ 0 }-> 1 + SP(np(g(z0''))) :|: z = 1 + (1 + (1 + z0'')), z0'' >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z0 >= 0, z = 1 + (1 + z0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z0'))) + G(1 + z0') :|: z = 1 + (1 + z0'), z0' >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z0) :|: z = 1 + z0, z0 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 SP(z) -{ 0 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z01))) :|: z = 1 + (1 + z01), z01 >= 0 g(z) -{ 0 }-> np(0) :|: z = 1 + z0, z0 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 np(z) -{ 0 }-> 1 + plus(z0, z1) + z0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z0 :|: z = z0, z0 >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 plus(z, z') -{ 0 }-> 1 + plus(z0, z1) :|: z = z0, z1 >= 0, z0 >= 0, z' = 1 + z1 ---------------------------------------- (49) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ 1 }-> 1 + +'(z, z' - 1) :|: z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ 0 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + plus(z0, z1) + z0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 ---------------------------------------- (51) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { +' } { plus } { SP } { NP } { np } { g } { FIB } { G } ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ 1 }-> 1 + +'(z, z' - 1) :|: z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ 0 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + plus(z0, z1) + z0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {+'}, {plus}, {SP}, {NP}, {np}, {g}, {FIB}, {G} ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ 1 }-> 1 + +'(z, z' - 1) :|: z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ 0 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + plus(z0, z1) + z0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {+'}, {plus}, {SP}, {NP}, {np}, {g}, {FIB}, {G} ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: +' after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ 1 }-> 1 + +'(z, z' - 1) :|: z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ 0 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + plus(z0, z1) + z0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {+'}, {plus}, {SP}, {NP}, {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: ?, size: O(1) [0] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: +' after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ 1 }-> 1 + +'(z, z' - 1) :|: z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ 0 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + plus(z0, z1) + z0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {SP}, {NP}, {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + plus(z0, z1) + z0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {SP}, {NP}, {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + plus(z0, z1) + z0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {SP}, {NP}, {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + plus(z0, z1) + z0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {SP}, {NP}, {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {SP}, {NP}, {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: SP after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {SP}, {NP}, {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: ?, size: O(1) [1] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: SP after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 FIB(z) -{ 0 }-> 1 + SP(0) :|: z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) FIB(z) -{ 0 }-> 1 + SP(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {NP}, {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] ---------------------------------------- (71) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {NP}, {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: NP after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {NP}, {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: ?, size: O(1) [1] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: NP after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 G(z) -{ 1 }-> 1 + NP(0) + G(z - 1) :|: z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + 0) + G(0) :|: z = 1 + 0 G(z) -{ 1 }-> 1 + NP(1 + (1 + 0) + (1 + 0)) + G(1 + 0) :|: z = 1 + (1 + 0) NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: O(n^1) [z], size: O(1) [1] ---------------------------------------- (77) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 G(z) -{ 3 }-> 1 + s6 + G(0) :|: s6 >= 0, s6 <= 1, z = 1 + 0 G(z) -{ 4 }-> 1 + s7 + G(1 + 0) :|: s7 >= 0, s7 <= 1, z = 1 + (1 + 0) G(z) -{ 1 }-> 1 + s8 + G(z - 1) :|: s8 >= 0, s8 <= 1, z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: O(n^1) [z], size: O(1) [1] ---------------------------------------- (79) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: np after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (80) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 G(z) -{ 3 }-> 1 + s6 + G(0) :|: s6 >= 0, s6 <= 1, z = 1 + 0 G(z) -{ 4 }-> 1 + s7 + G(1 + 0) :|: s7 >= 0, s7 <= 1, z = 1 + (1 + 0) G(z) -{ 1 }-> 1 + s8 + G(z - 1) :|: s8 >= 0, s8 <= 1, z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {np}, {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: O(n^1) [z], size: O(1) [1] np: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (81) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: np after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 G(z) -{ 3 }-> 1 + s6 + G(0) :|: s6 >= 0, s6 <= 1, z = 1 + 0 G(z) -{ 4 }-> 1 + s7 + G(1 + 0) :|: s7 >= 0, s7 <= 1, z = 1 + (1 + 0) G(z) -{ 1 }-> 1 + s8 + G(z - 1) :|: s8 >= 0, s8 <= 1, z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> np(0) :|: z - 1 >= 0 g(z) -{ 0 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 0 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: O(n^1) [z], size: O(1) [1] np: runtime: O(1) [0], size: O(n^1) [2*z] ---------------------------------------- (83) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 G(z) -{ 3 }-> 1 + s6 + G(0) :|: s6 >= 0, s6 <= 1, z = 1 + 0 G(z) -{ 4 }-> 1 + s7 + G(1 + 0) :|: s7 >= 0, s7 <= 1, z = 1 + (1 + 0) G(z) -{ 1 }-> 1 + s8 + G(z - 1) :|: s8 >= 0, s8 <= 1, z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> s10 :|: s10 >= 0, s10 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 0 }-> s11 :|: s11 >= 0, s11 <= 2 * 0, z - 1 >= 0 g(z) -{ 0 }-> s9 :|: s9 >= 0, s9 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: O(n^1) [z], size: O(1) [1] np: runtime: O(1) [0], size: O(n^1) [2*z] ---------------------------------------- (85) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: g after applying outer abstraction to obtain an ITS, resulting in: EXP with polynomial bound: ? ---------------------------------------- (86) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 G(z) -{ 3 }-> 1 + s6 + G(0) :|: s6 >= 0, s6 <= 1, z = 1 + 0 G(z) -{ 4 }-> 1 + s7 + G(1 + 0) :|: s7 >= 0, s7 <= 1, z = 1 + (1 + 0) G(z) -{ 1 }-> 1 + s8 + G(z - 1) :|: s8 >= 0, s8 <= 1, z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> s10 :|: s10 >= 0, s10 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 0 }-> s11 :|: s11 >= 0, s11 <= 2 * 0, z - 1 >= 0 g(z) -{ 0 }-> s9 :|: s9 >= 0, s9 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: O(n^1) [z], size: O(1) [1] np: runtime: O(1) [0], size: O(n^1) [2*z] g: runtime: ?, size: EXP ---------------------------------------- (87) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (88) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 FIB(z) -{ 0 }-> 1 + SP(np(g(z - 3))) :|: z - 3 >= 0 G(z) -{ 3 }-> 1 + s6 + G(0) :|: s6 >= 0, s6 <= 1, z = 1 + 0 G(z) -{ 4 }-> 1 + s7 + G(1 + 0) :|: s7 >= 0, s7 <= 1, z = 1 + (1 + 0) G(z) -{ 1 }-> 1 + s8 + G(z - 1) :|: s8 >= 0, s8 <= 1, z - 1 >= 0 G(z) -{ 1 }-> 1 + NP(np(g(z - 2))) + G(1 + (z - 2)) :|: z - 2 >= 0 NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> s10 :|: s10 >= 0, s10 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 0 }-> s11 :|: s11 >= 0, s11 <= 2 * 0, z - 1 >= 0 g(z) -{ 0 }-> s9 :|: s9 >= 0, s9 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 0 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: O(n^1) [z], size: O(1) [1] np: runtime: O(1) [0], size: O(n^1) [2*z] g: runtime: O(1) [0], size: EXP ---------------------------------------- (89) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (90) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ s16 }-> 1 + s17 :|: s15 >= 0, s15 <= inf', s16 >= 0, s16 <= 2 * s15, s17 >= 0, s17 <= 1, z - 3 >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 G(z) -{ 1 + s13 }-> 1 + s14 + G(1 + (z - 2)) :|: s12 >= 0, s12 <= inf, s13 >= 0, s13 <= 2 * s12, s14 >= 0, s14 <= 1, z - 2 >= 0 G(z) -{ 3 }-> 1 + s6 + G(0) :|: s6 >= 0, s6 <= 1, z = 1 + 0 G(z) -{ 4 }-> 1 + s7 + G(1 + 0) :|: s7 >= 0, s7 <= 1, z = 1 + (1 + 0) G(z) -{ 1 }-> 1 + s8 + G(z - 1) :|: s8 >= 0, s8 <= 1, z - 1 >= 0 NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> s10 :|: s10 >= 0, s10 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 0 }-> s11 :|: s11 >= 0, s11 <= 2 * 0, z - 1 >= 0 g(z) -{ 0 }-> s20 :|: s18 >= 0, s18 <= inf'', s19 >= 0, s19 <= 2 * s18, s20 >= 0, s20 <= 2 * s19, z - 2 >= 0 g(z) -{ 0 }-> s9 :|: s9 >= 0, s9 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: O(n^1) [z], size: O(1) [1] np: runtime: O(1) [0], size: O(n^1) [2*z] g: runtime: O(1) [0], size: EXP ---------------------------------------- (91) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: FIB after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (92) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ s16 }-> 1 + s17 :|: s15 >= 0, s15 <= inf', s16 >= 0, s16 <= 2 * s15, s17 >= 0, s17 <= 1, z - 3 >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 G(z) -{ 1 + s13 }-> 1 + s14 + G(1 + (z - 2)) :|: s12 >= 0, s12 <= inf, s13 >= 0, s13 <= 2 * s12, s14 >= 0, s14 <= 1, z - 2 >= 0 G(z) -{ 3 }-> 1 + s6 + G(0) :|: s6 >= 0, s6 <= 1, z = 1 + 0 G(z) -{ 4 }-> 1 + s7 + G(1 + 0) :|: s7 >= 0, s7 <= 1, z = 1 + (1 + 0) G(z) -{ 1 }-> 1 + s8 + G(z - 1) :|: s8 >= 0, s8 <= 1, z - 1 >= 0 NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> s10 :|: s10 >= 0, s10 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 0 }-> s11 :|: s11 >= 0, s11 <= 2 * 0, z - 1 >= 0 g(z) -{ 0 }-> s20 :|: s18 >= 0, s18 <= inf'', s19 >= 0, s19 <= 2 * s18, s20 >= 0, s20 <= 2 * s19, z - 2 >= 0 g(z) -{ 0 }-> s9 :|: s9 >= 0, s9 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: O(n^1) [z], size: O(1) [1] np: runtime: O(1) [0], size: O(n^1) [2*z] g: runtime: O(1) [0], size: EXP FIB: runtime: ?, size: O(1) [2] ---------------------------------------- (93) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: FIB after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (94) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ z' }-> 1 + s' :|: s' >= 0, s' <= 0, z' - 1 >= 0, z >= 0 FIB(z) -{ 0 }-> 0 :|: z >= 0 FIB(z) -{ s16 }-> 1 + s17 :|: s15 >= 0, s15 <= inf', s16 >= 0, s16 <= 2 * s15, s17 >= 0, s17 <= 1, z - 3 >= 0 FIB(z) -{ 2 }-> 1 + s3 :|: s3 >= 0, s3 <= 1, z = 1 + (1 + 0) FIB(z) -{ 3 }-> 1 + s4 :|: s4 >= 0, s4 <= 1, z = 1 + (1 + (1 + 0)) FIB(z) -{ 0 }-> 1 + s5 :|: s5 >= 0, s5 <= 1, z - 2 >= 0 G(z) -{ 1 + s13 }-> 1 + s14 + G(1 + (z - 2)) :|: s12 >= 0, s12 <= inf, s13 >= 0, s13 <= 2 * s12, s14 >= 0, s14 <= 1, z - 2 >= 0 G(z) -{ 3 }-> 1 + s6 + G(0) :|: s6 >= 0, s6 <= 1, z = 1 + 0 G(z) -{ 4 }-> 1 + s7 + G(1 + 0) :|: s7 >= 0, s7 <= 1, z = 1 + (1 + 0) G(z) -{ 1 }-> 1 + s8 + G(z - 1) :|: s8 >= 0, s8 <= 1, z - 1 >= 0 NP(z) -{ 1 + z1 }-> 1 + s :|: s >= 0, s <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: z >= 0 SP(z) -{ z1 }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> s10 :|: s10 >= 0, s10 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 0 }-> s11 :|: s11 >= 0, s11 <= 2 * 0, z - 1 >= 0 g(z) -{ 0 }-> s20 :|: s18 >= 0, s18 <= inf'', s19 >= 0, s19 <= 2 * s18, s20 >= 0, s20 <= 2 * s19, z - 2 >= 0 g(z) -{ 0 }-> s9 :|: s9 >= 0, s9 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 0 }-> 1 + s1 + z0 :|: s1 >= 0, s1 <= z0 + z1, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 0 }-> 1 + s2 :|: s2 >= 0, s2 <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {FIB}, {G} Previous analysis results are: +': runtime: O(n^1) [z'], size: O(1) [0] plus: runtime: O(1) [0], size: O(n^1) [z + z'] SP: runtime: O(n^1) [z], size: O(1) [1] NP: runtime: O(n^1) [z], size: O(1) [1] np: runtime: O(1) [0], size: O(n^1) [2*z] g: runtime: O(1) [0], size: EXP FIB: runtime: INF, size: O(1) [2] ---------------------------------------- (95) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: SP(v0) -> null_SP [0] FIB(v0) -> null_FIB [0] g(v0) -> null_g [0] np(v0) -> null_np [0] plus(v0, v1) -> null_plus [0] G(v0) -> null_G [0] NP(v0) -> null_NP [0] +'(v0, v1) -> null_+' [0] And the following fresh constants: null_SP, null_FIB, null_g, null_np, null_plus, null_G, null_NP, null_+' ---------------------------------------- (96) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: G(s(z0)) -> c6(NP(g(z0)), G(z0)) [1] NP(pair(z0, z1)) -> c8(+'(z0, z1)) [1] +'(z0, s(z1)) -> c10(+'(z0, z1)) [1] SP(pair(z0, z1)) -> c7(+'(z0, z1)) [0] FIB(s(s(z0))) -> c(SP(g(z0))) [0] g(0) -> pair(s(0), 0) [0] g(s(0)) -> pair(s(0), s(0)) [0] g(s(z0)) -> np(g(z0)) [0] np(pair(z0, z1)) -> pair(plus(z0, z1), z0) [0] plus(z0, 0) -> z0 [0] plus(z0, s(z1)) -> s(plus(z0, z1)) [0] SP(v0) -> null_SP [0] FIB(v0) -> null_FIB [0] g(v0) -> null_g [0] np(v0) -> null_np [0] plus(v0, v1) -> null_plus [0] G(v0) -> null_G [0] NP(v0) -> null_NP [0] +'(v0, v1) -> null_+' [0] The TRS has the following type information: G :: s:0:null_plus -> c6:null_G s :: s:0:null_plus -> s:0:null_plus c6 :: c8:null_NP -> c6:null_G -> c6:null_G NP :: pair:null_g:null_np -> c8:null_NP g :: s:0:null_plus -> pair:null_g:null_np pair :: s:0:null_plus -> s:0:null_plus -> pair:null_g:null_np c8 :: c10:null_+' -> c8:null_NP +' :: s:0:null_plus -> s:0:null_plus -> c10:null_+' c10 :: c10:null_+' -> c10:null_+' SP :: pair:null_g:null_np -> c7:null_SP c7 :: c10:null_+' -> c7:null_SP FIB :: s:0:null_plus -> c:null_FIB c :: c7:null_SP -> c:null_FIB 0 :: s:0:null_plus np :: pair:null_g:null_np -> pair:null_g:null_np plus :: s:0:null_plus -> s:0:null_plus -> s:0:null_plus null_SP :: c7:null_SP null_FIB :: c:null_FIB null_g :: pair:null_g:null_np null_np :: pair:null_g:null_np null_plus :: s:0:null_plus null_G :: c6:null_G null_NP :: c8:null_NP null_+' :: c10:null_+' Rewrite Strategy: INNERMOST ---------------------------------------- (97) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 null_SP => 0 null_FIB => 0 null_g => 0 null_np => 0 null_plus => 0 null_G => 0 null_NP => 0 null_+' => 0 ---------------------------------------- (98) Obligation: Complexity RNTS consisting of the following rules: +'(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 +'(z, z') -{ 1 }-> 1 + +'(z0, z1) :|: z = z0, z1 >= 0, z0 >= 0, z' = 1 + z1 FIB(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 FIB(z) -{ 0 }-> 1 + SP(g(z0)) :|: z0 >= 0, z = 1 + (1 + z0) G(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 G(z) -{ 1 }-> 1 + NP(g(z0)) + G(z0) :|: z = 1 + z0, z0 >= 0 NP(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 NP(z) -{ 1 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 SP(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 SP(z) -{ 0 }-> 1 + +'(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 g(z) -{ 0 }-> np(g(z0)) :|: z = 1 + z0, z0 >= 0 g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 0 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 0 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 np(z) -{ 0 }-> 1 + plus(z0, z1) + z0 :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 plus(z, z') -{ 0 }-> z0 :|: z = z0, z0 >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 plus(z, z') -{ 0 }-> 1 + plus(z0, z1) :|: z = z0, z1 >= 0, z0 >= 0, z' = 1 + z1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (99) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(s(z0)) -> c6(NP(g(z0)), G(z0)) We considered the (Usable) Rules:none And the Tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(+(x_1, x_2)) = [1] + x_1 + x_2 + x_2^2 + x_1*x_2 + x_1^2 + x_1^3 + x_1^2*x_2 + x_1*x_2^2 + x_2^3 POL(+'(x_1, x_2)) = 0 POL(0) = 0 POL(FIB(x_1)) = x_1 + x_1^3 POL(G(x_1)) = x_1 POL(NP(x_1)) = 0 POL(SP(x_1)) = 0 POL(c(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1)) = x_1 POL(g(x_1)) = x_1^3 POL(np(x_1)) = [1] POL(pair(x_1, x_2)) = 0 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (100) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) S tuples: NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: FIB(s(s(z0))) -> c(SP(g(z0))) SP(pair(z0, z1)) -> c7(+'(z0, z1)) G(s(z0)) -> c6(NP(g(z0)), G(z0)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, SP_1, NP_1, +'_2, FIB_1 Compound Symbols: c6_2, c7_1, c8_1, c10_1, c_1 ---------------------------------------- (101) CdtKnowledgeProof (BOTH BOUNDS(ID, ID)) The following tuples could be moved from S to K by knowledge propagation: NP(pair(z0, z1)) -> c8(+'(z0, z1)) ---------------------------------------- (102) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(z0)) -> c6(NP(g(z0)), G(z0)) SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: FIB(s(s(z0))) -> c(SP(g(z0))) SP(pair(z0, z1)) -> c7(+'(z0, z1)) G(s(z0)) -> c6(NP(g(z0)), G(z0)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, SP_1, NP_1, +'_2, FIB_1 Compound Symbols: c6_2, c7_1, c8_1, c10_1, c_1 ---------------------------------------- (103) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace G(s(z0)) -> c6(NP(g(z0)), G(z0)) by G(s(0)) -> c6(NP(pair(s(0), 0)), G(0)) G(s(s(0))) -> c6(NP(pair(s(0), s(0))), G(s(0))) G(s(s(z0))) -> c6(NP(np(g(z0))), G(s(z0))) ---------------------------------------- (104) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) G(s(0)) -> c6(NP(pair(s(0), 0)), G(0)) G(s(s(0))) -> c6(NP(pair(s(0), s(0))), G(s(0))) G(s(s(z0))) -> c6(NP(np(g(z0))), G(s(z0))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: FIB(s(s(z0))) -> c(SP(g(z0))) SP(pair(z0, z1)) -> c7(+'(z0, z1)) G(s(z0)) -> c6(NP(g(z0)), G(z0)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, FIB_1, G_1 Compound Symbols: c7_1, c8_1, c10_1, c_1, c6_2 ---------------------------------------- (105) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (106) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) G(s(s(0))) -> c6(NP(pair(s(0), s(0))), G(s(0))) G(s(s(z0))) -> c6(NP(np(g(z0))), G(s(z0))) G(s(0)) -> c6(NP(pair(s(0), 0))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: FIB(s(s(z0))) -> c(SP(g(z0))) SP(pair(z0, z1)) -> c7(+'(z0, z1)) G(s(z0)) -> c6(NP(g(z0)), G(z0)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, FIB_1, G_1 Compound Symbols: c7_1, c8_1, c10_1, c_1, c6_2, c6_1 ---------------------------------------- (107) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (108) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) FIB(s(s(z0))) -> c(SP(g(z0))) G(s(s(z0))) -> c6(NP(np(g(z0))), G(s(z0))) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: FIB(s(s(z0))) -> c(SP(g(z0))) SP(pair(z0, z1)) -> c7(+'(z0, z1)) G(s(z0)) -> c6(NP(g(z0)), G(z0)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, FIB_1, G_1 Compound Symbols: c7_1, c8_1, c10_1, c_1, c6_2, c6_1, c1_1 ---------------------------------------- (109) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace FIB(s(s(z0))) -> c(SP(g(z0))) by FIB(s(s(0))) -> c(SP(pair(s(0), 0))) FIB(s(s(s(0)))) -> c(SP(pair(s(0), s(0)))) FIB(s(s(s(z0)))) -> c(SP(np(g(z0)))) ---------------------------------------- (110) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(s(z0))) -> c6(NP(np(g(z0))), G(s(z0))) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) FIB(s(s(0))) -> c(SP(pair(s(0), 0))) FIB(s(s(s(0)))) -> c(SP(pair(s(0), s(0)))) FIB(s(s(s(z0)))) -> c(SP(np(g(z0)))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: FIB(s(s(z0))) -> c(SP(g(z0))) SP(pair(z0, z1)) -> c7(+'(z0, z1)) G(s(z0)) -> c6(NP(g(z0)), G(z0)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, G_1, FIB_1 Compound Symbols: c7_1, c8_1, c10_1, c6_2, c6_1, c1_1, c_1 ---------------------------------------- (111) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: FIB(s(s(0))) -> c(SP(pair(s(0), 0))) FIB(s(s(s(0)))) -> c(SP(pair(s(0), s(0)))) ---------------------------------------- (112) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(s(z0))) -> c6(NP(np(g(z0))), G(s(z0))) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) FIB(s(s(s(z0)))) -> c(SP(np(g(z0)))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, G_1, FIB_1 Compound Symbols: c7_1, c8_1, c10_1, c6_2, c6_1, c1_1, c_1 ---------------------------------------- (113) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace G(s(s(z0))) -> c6(NP(np(g(z0))), G(s(z0))) by G(s(s(0))) -> c6(NP(np(pair(s(0), 0))), G(s(0))) G(s(s(s(0)))) -> c6(NP(np(pair(s(0), s(0)))), G(s(s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) ---------------------------------------- (114) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) FIB(s(s(s(z0)))) -> c(SP(np(g(z0)))) G(s(s(0))) -> c6(NP(np(pair(s(0), 0))), G(s(0))) G(s(s(s(0)))) -> c6(NP(np(pair(s(0), s(0)))), G(s(s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, G_1, FIB_1 Compound Symbols: c7_1, c8_1, c10_1, c6_1, c1_1, c_1, c6_2 ---------------------------------------- (115) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (116) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) FIB(s(s(s(z0)))) -> c(SP(np(g(z0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(0))) -> c2(NP(np(pair(s(0), 0)))) G(s(s(0))) -> c2(G(s(0))) G(s(s(s(0)))) -> c2(NP(np(pair(s(0), s(0))))) G(s(s(s(0)))) -> c2(G(s(s(0)))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, G_1, FIB_1 Compound Symbols: c7_1, c8_1, c10_1, c6_1, c1_1, c_1, c6_2, c2_1 ---------------------------------------- (117) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace FIB(s(s(s(z0)))) -> c(SP(np(g(z0)))) by FIB(s(s(s(0)))) -> c(SP(np(pair(s(0), 0)))) FIB(s(s(s(s(0))))) -> c(SP(np(pair(s(0), s(0))))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) ---------------------------------------- (118) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(0))) -> c2(NP(np(pair(s(0), 0)))) G(s(s(0))) -> c2(G(s(0))) G(s(s(s(0)))) -> c2(NP(np(pair(s(0), s(0))))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(0)))) -> c(SP(np(pair(s(0), 0)))) FIB(s(s(s(s(0))))) -> c(SP(np(pair(s(0), s(0))))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, G_1, FIB_1 Compound Symbols: c7_1, c8_1, c10_1, c6_1, c1_1, c6_2, c2_1, c_1 ---------------------------------------- (119) CdtRewritingProof (BOTH BOUNDS(ID, ID)) Used rewriting to replace G(s(s(0))) -> c2(NP(np(pair(s(0), 0)))) by G(s(s(0))) -> c2(NP(pair(+(s(0), 0), s(0)))) ---------------------------------------- (120) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(0))) -> c2(G(s(0))) G(s(s(s(0)))) -> c2(NP(np(pair(s(0), s(0))))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(0)))) -> c(SP(np(pair(s(0), 0)))) FIB(s(s(s(s(0))))) -> c(SP(np(pair(s(0), s(0))))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(0))) -> c2(NP(pair(+(s(0), 0), s(0)))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, G_1, FIB_1 Compound Symbols: c7_1, c8_1, c10_1, c6_1, c1_1, c6_2, c2_1, c_1 ---------------------------------------- (121) CdtRewritingProof (BOTH BOUNDS(ID, ID)) Used rewriting to replace G(s(s(s(0)))) -> c2(NP(np(pair(s(0), s(0))))) by G(s(s(s(0)))) -> c2(NP(pair(+(s(0), s(0)), s(0)))) ---------------------------------------- (122) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(0))) -> c2(G(s(0))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(0)))) -> c(SP(np(pair(s(0), 0)))) FIB(s(s(s(s(0))))) -> c(SP(np(pair(s(0), s(0))))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(0))) -> c2(NP(pair(+(s(0), 0), s(0)))) G(s(s(s(0)))) -> c2(NP(pair(+(s(0), s(0)), s(0)))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, G_1, FIB_1 Compound Symbols: c7_1, c8_1, c10_1, c6_1, c1_1, c6_2, c2_1, c_1 ---------------------------------------- (123) CdtRewritingProof (BOTH BOUNDS(ID, ID)) Used rewriting to replace FIB(s(s(s(0)))) -> c(SP(np(pair(s(0), 0)))) by FIB(s(s(s(0)))) -> c(SP(pair(+(s(0), 0), s(0)))) ---------------------------------------- (124) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(0))) -> c2(G(s(0))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(0))))) -> c(SP(np(pair(s(0), s(0))))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(0))) -> c2(NP(pair(+(s(0), 0), s(0)))) G(s(s(s(0)))) -> c2(NP(pair(+(s(0), s(0)), s(0)))) FIB(s(s(s(0)))) -> c(SP(pair(+(s(0), 0), s(0)))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, G_1, FIB_1 Compound Symbols: c7_1, c8_1, c10_1, c6_1, c1_1, c6_2, c2_1, c_1 ---------------------------------------- (125) CdtRewritingProof (BOTH BOUNDS(ID, ID)) Used rewriting to replace FIB(s(s(s(s(0))))) -> c(SP(np(pair(s(0), s(0))))) by FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) ---------------------------------------- (126) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(0))) -> c2(G(s(0))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(0))) -> c2(NP(pair(+(s(0), 0), s(0)))) G(s(s(s(0)))) -> c2(NP(pair(+(s(0), s(0)), s(0)))) FIB(s(s(s(0)))) -> c(SP(pair(+(s(0), 0), s(0)))) FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, G_1, FIB_1 Compound Symbols: c7_1, c8_1, c10_1, c6_1, c1_1, c6_2, c2_1, c_1 ---------------------------------------- (127) CdtRewritingProof (BOTH BOUNDS(ID, ID)) Used rewriting to replace G(s(s(0))) -> c2(NP(pair(+(s(0), 0), s(0)))) by G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) ---------------------------------------- (128) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(0))) -> c2(G(s(0))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(s(0)))) -> c2(NP(pair(+(s(0), s(0)), s(0)))) FIB(s(s(s(0)))) -> c(SP(pair(+(s(0), 0), s(0)))) FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, z1)) -> c7(+'(z0, z1)) NP(pair(z0, z1)) -> c8(+'(z0, z1)) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: SP_1, NP_1, +'_2, G_1, FIB_1 Compound Symbols: c7_1, c8_1, c10_1, c6_1, c1_1, c6_2, c2_1, c_1 ---------------------------------------- (129) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace SP(pair(z0, z1)) -> c7(+'(z0, z1)) by SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) ---------------------------------------- (130) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: NP(pair(z0, z1)) -> c8(+'(z0, z1)) +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(0))) -> c2(G(s(0))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(s(0)))) -> c2(NP(pair(+(s(0), s(0)), s(0)))) FIB(s(s(s(0)))) -> c(SP(pair(+(s(0), 0), s(0)))) FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: NP(pair(z0, z1)) -> c8(+'(z0, z1)) SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: NP_1, +'_2, G_1, FIB_1, SP_1 Compound Symbols: c8_1, c10_1, c6_1, c1_1, c6_2, c2_1, c_1, c7_1 ---------------------------------------- (131) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace NP(pair(z0, z1)) -> c8(+'(z0, z1)) by NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) ---------------------------------------- (132) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(0)) -> c6(NP(pair(s(0), 0))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(0))) -> c1(G(s(0))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(0))) -> c2(G(s(0))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(s(0)))) -> c2(NP(pair(+(s(0), s(0)), s(0)))) FIB(s(s(s(0)))) -> c(SP(pair(+(s(0), 0), s(0)))) FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: +'_2, G_1, FIB_1, SP_1, NP_1 Compound Symbols: c10_1, c6_1, c1_1, c6_2, c2_1, c_1, c7_1, c8_1 ---------------------------------------- (133) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing nodes: G(s(s(0))) -> c2(G(s(0))) G(s(s(0))) -> c1(G(s(0))) G(s(0)) -> c6(NP(pair(s(0), 0))) ---------------------------------------- (134) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(s(0)))) -> c2(NP(pair(+(s(0), s(0)), s(0)))) FIB(s(s(s(0)))) -> c(SP(pair(+(s(0), 0), s(0)))) FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: +'_2, G_1, FIB_1, SP_1, NP_1 Compound Symbols: c10_1, c1_1, c6_2, c2_1, c_1, c7_1, c8_1 ---------------------------------------- (135) CdtRewritingProof (BOTH BOUNDS(ID, ID)) Used rewriting to replace G(s(s(s(0)))) -> c2(NP(pair(+(s(0), s(0)), s(0)))) by G(s(s(s(0)))) -> c2(NP(pair(s(+(s(0), 0)), s(0)))) ---------------------------------------- (136) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) FIB(s(s(s(0)))) -> c(SP(pair(+(s(0), 0), s(0)))) FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) G(s(s(s(0)))) -> c2(NP(pair(s(+(s(0), 0)), s(0)))) S tuples: +'(z0, s(z1)) -> c10(+'(z0, z1)) K tuples: SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: +'_2, G_1, FIB_1, SP_1, NP_1 Compound Symbols: c10_1, c1_1, c6_2, c2_1, c_1, c7_1, c8_1 ---------------------------------------- (137) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace +'(z0, s(z1)) -> c10(+'(z0, z1)) by +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) ---------------------------------------- (138) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) FIB(s(s(s(0)))) -> c(SP(pair(+(s(0), 0), s(0)))) FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) G(s(s(s(0)))) -> c2(NP(pair(s(+(s(0), 0)), s(0)))) +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) S tuples: +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) K tuples: SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, FIB_1, SP_1, NP_1, +'_2 Compound Symbols: c1_1, c6_2, c2_1, c_1, c7_1, c8_1, c10_1 ---------------------------------------- (139) CdtRewritingProof (BOTH BOUNDS(ID, ID)) Used rewriting to replace FIB(s(s(s(0)))) -> c(SP(pair(+(s(0), 0), s(0)))) by FIB(s(s(s(0)))) -> c(SP(pair(s(0), s(0)))) ---------------------------------------- (140) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) G(s(s(s(0)))) -> c2(NP(pair(s(+(s(0), 0)), s(0)))) +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) FIB(s(s(s(0)))) -> c(SP(pair(s(0), s(0)))) S tuples: +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) K tuples: SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, FIB_1, SP_1, NP_1, +'_2 Compound Symbols: c1_1, c6_2, c2_1, c_1, c7_1, c8_1, c10_1 ---------------------------------------- (141) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: FIB(s(s(s(0)))) -> c(SP(pair(s(0), s(0)))) ---------------------------------------- (142) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) G(s(s(s(0)))) -> c2(NP(pair(s(+(s(0), 0)), s(0)))) +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) S tuples: +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) K tuples: SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, FIB_1, SP_1, NP_1, +'_2 Compound Symbols: c1_1, c6_2, c2_1, c_1, c7_1, c8_1, c10_1 ---------------------------------------- (143) CdtRewritingProof (BOTH BOUNDS(ID, ID)) Used rewriting to replace FIB(s(s(s(s(0))))) -> c(SP(pair(+(s(0), s(0)), s(0)))) by FIB(s(s(s(s(0))))) -> c(SP(pair(s(+(s(0), 0)), s(0)))) ---------------------------------------- (144) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) G(s(s(s(0)))) -> c2(NP(pair(s(+(s(0), 0)), s(0)))) +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) FIB(s(s(s(s(0))))) -> c(SP(pair(s(+(s(0), 0)), s(0)))) S tuples: +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) K tuples: SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, FIB_1, SP_1, NP_1, +'_2 Compound Symbols: c1_1, c6_2, c2_1, c_1, c7_1, c8_1, c10_1 ---------------------------------------- (145) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace SP(pair(z0, s(y1))) -> c7(+'(z0, s(y1))) by SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) ---------------------------------------- (146) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) G(s(s(s(0)))) -> c2(NP(pair(s(+(s(0), 0)), s(0)))) +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) FIB(s(s(s(s(0))))) -> c(SP(pair(s(+(s(0), 0)), s(0)))) SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) S tuples: +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) K tuples: NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, FIB_1, NP_1, +'_2, SP_1 Compound Symbols: c1_1, c6_2, c2_1, c_1, c8_1, c10_1, c7_1 ---------------------------------------- (147) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: FIB(s(s(s(s(0))))) -> c(SP(pair(s(+(s(0), 0)), s(0)))) ---------------------------------------- (148) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) G(s(s(s(0)))) -> c2(NP(pair(s(+(s(0), 0)), s(0)))) +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) S tuples: +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) K tuples: NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, FIB_1, NP_1, +'_2, SP_1 Compound Symbols: c1_1, c6_2, c2_1, c_1, c8_1, c10_1, c7_1 ---------------------------------------- (149) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace NP(pair(z0, s(y1))) -> c8(+'(z0, s(y1))) by NP(pair(z0, s(s(y1)))) -> c8(+'(z0, s(s(y1)))) ---------------------------------------- (150) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) G(s(s(s(0)))) -> c2(G(s(s(0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) G(s(s(s(0)))) -> c2(NP(pair(s(+(s(0), 0)), s(0)))) +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) NP(pair(z0, s(s(y1)))) -> c8(+'(z0, s(s(y1)))) S tuples: +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) K tuples: SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) NP(pair(z0, s(s(y1)))) -> c8(+'(z0, s(s(y1)))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, FIB_1, +'_2, SP_1, NP_1 Compound Symbols: c1_1, c6_2, c2_1, c_1, c10_1, c7_1, c8_1 ---------------------------------------- (151) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: G(s(s(0))) -> c2(NP(pair(s(0), s(0)))) G(s(s(s(0)))) -> c2(G(s(s(0)))) G(s(s(s(0)))) -> c2(NP(pair(s(+(s(0), 0)), s(0)))) G(s(s(0))) -> c1(NP(pair(s(0), s(0)))) ---------------------------------------- (152) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) NP(pair(z0, s(s(y1)))) -> c8(+'(z0, s(s(y1)))) S tuples: +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) K tuples: SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) NP(pair(z0, s(s(y1)))) -> c8(+'(z0, s(s(y1)))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, FIB_1, +'_2, SP_1, NP_1 Compound Symbols: c6_2, c_1, c10_1, c7_1, c8_1 ---------------------------------------- (153) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace +'(z0, s(s(y1))) -> c10(+'(z0, s(y1))) by +'(z0, s(s(s(y1)))) -> c10(+'(z0, s(s(y1)))) ---------------------------------------- (154) Obligation: Complexity Dependency Tuples Problem Rules: g(0) -> pair(s(0), 0) g(s(0)) -> pair(s(0), s(0)) g(s(z0)) -> np(g(z0)) np(pair(z0, z1)) -> pair(+(z0, z1), z0) +(z0, 0) -> z0 +(z0, s(z1)) -> s(+(z0, z1)) Tuples: G(s(s(s(z0)))) -> c6(NP(np(np(g(z0)))), G(s(s(z0)))) FIB(s(s(s(s(z0))))) -> c(SP(np(np(g(z0))))) SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) NP(pair(z0, s(s(y1)))) -> c8(+'(z0, s(s(y1)))) +'(z0, s(s(s(y1)))) -> c10(+'(z0, s(s(y1)))) S tuples: +'(z0, s(s(s(y1)))) -> c10(+'(z0, s(s(y1)))) K tuples: SP(pair(z0, s(s(y1)))) -> c7(+'(z0, s(s(y1)))) NP(pair(z0, s(s(y1)))) -> c8(+'(z0, s(s(y1)))) Defined Rule Symbols: g_1, np_1, +_2 Defined Pair Symbols: G_1, FIB_1, SP_1, NP_1, +'_2 Compound Symbols: c6_2, c_1, c7_1, c8_1, c10_1 ---------------------------------------- (155) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (156) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: fib(0) -> 0 [1] fib(s(0)) -> s(0) [1] fib(s(s(0))) -> s(0) [1] fib(s(s(x))) -> sp(g(x)) [1] g(0) -> pair(s(0), 0) [1] g(s(0)) -> pair(s(0), s(0)) [1] g(s(x)) -> np(g(x)) [1] sp(pair(x, y)) -> +(x, y) [1] np(pair(x, y)) -> pair(+(x, y), x) [1] +(x, 0) -> x [1] +(x, s(y)) -> s(+(x, y)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (157) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: + => plus ---------------------------------------- (158) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: fib(0) -> 0 [1] fib(s(0)) -> s(0) [1] fib(s(s(0))) -> s(0) [1] fib(s(s(x))) -> sp(g(x)) [1] g(0) -> pair(s(0), 0) [1] g(s(0)) -> pair(s(0), s(0)) [1] g(s(x)) -> np(g(x)) [1] sp(pair(x, y)) -> plus(x, y) [1] np(pair(x, y)) -> pair(plus(x, y), x) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (159) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (160) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: fib(0) -> 0 [1] fib(s(0)) -> s(0) [1] fib(s(s(0))) -> s(0) [1] fib(s(s(x))) -> sp(g(x)) [1] g(0) -> pair(s(0), 0) [1] g(s(0)) -> pair(s(0), s(0)) [1] g(s(x)) -> np(g(x)) [1] sp(pair(x, y)) -> plus(x, y) [1] np(pair(x, y)) -> pair(plus(x, y), x) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] The TRS has the following type information: fib :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s sp :: pair -> 0:s g :: 0:s -> pair pair :: 0:s -> 0:s -> pair np :: pair -> pair plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (161) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: fib_1 sp_1 (c) The following functions are completely defined: g_1 np_1 plus_2 Due to the following rules being added: np(v0) -> const [0] And the following fresh constants: const ---------------------------------------- (162) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: fib(0) -> 0 [1] fib(s(0)) -> s(0) [1] fib(s(s(0))) -> s(0) [1] fib(s(s(x))) -> sp(g(x)) [1] g(0) -> pair(s(0), 0) [1] g(s(0)) -> pair(s(0), s(0)) [1] g(s(x)) -> np(g(x)) [1] sp(pair(x, y)) -> plus(x, y) [1] np(pair(x, y)) -> pair(plus(x, y), x) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] np(v0) -> const [0] The TRS has the following type information: fib :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s sp :: pair:const -> 0:s g :: 0:s -> pair:const pair :: 0:s -> 0:s -> pair:const np :: pair:const -> pair:const plus :: 0:s -> 0:s -> 0:s const :: pair:const Rewrite Strategy: INNERMOST ---------------------------------------- (163) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (164) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: fib(0) -> 0 [1] fib(s(0)) -> s(0) [1] fib(s(s(0))) -> s(0) [1] fib(s(s(0))) -> sp(pair(s(0), 0)) [2] fib(s(s(s(0)))) -> sp(pair(s(0), s(0))) [2] fib(s(s(s(x')))) -> sp(np(g(x'))) [2] g(0) -> pair(s(0), 0) [1] g(s(0)) -> pair(s(0), s(0)) [1] g(s(0)) -> np(pair(s(0), 0)) [2] g(s(s(0))) -> np(pair(s(0), s(0))) [2] g(s(s(x''))) -> np(np(g(x''))) [2] sp(pair(x, y)) -> plus(x, y) [1] np(pair(x, y)) -> pair(plus(x, y), x) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] np(v0) -> const [0] The TRS has the following type information: fib :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s sp :: pair:const -> 0:s g :: 0:s -> pair:const pair :: 0:s -> 0:s -> pair:const np :: pair:const -> pair:const plus :: 0:s -> 0:s -> 0:s const :: pair:const Rewrite Strategy: INNERMOST ---------------------------------------- (165) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const => 0 ---------------------------------------- (166) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(x'))) :|: z = 1 + (1 + (1 + x')), x' >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(x''))) :|: x'' >= 0, z = 1 + (1 + x'') g(z) -{ 2 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 2 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 np(z) -{ 1 }-> 1 + plus(x, y) + x :|: z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x sp(z) -{ 1 }-> plus(x, y) :|: z = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (167) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (168) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 2 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 2 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 1 }-> 1 + plus(x, y) + x :|: z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sp(z) -{ 1 }-> plus(x, y) :|: z = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (169) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { plus } { np } { sp } { g } { fib } ---------------------------------------- (170) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 2 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 2 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 1 }-> 1 + plus(x, y) + x :|: z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sp(z) -{ 1 }-> plus(x, y) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {plus}, {np}, {sp}, {g}, {fib} ---------------------------------------- (171) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (172) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 2 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 2 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 1 }-> 1 + plus(x, y) + x :|: z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sp(z) -{ 1 }-> plus(x, y) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {plus}, {np}, {sp}, {g}, {fib} ---------------------------------------- (173) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (174) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 2 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 2 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 1 }-> 1 + plus(x, y) + x :|: z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sp(z) -{ 1 }-> plus(x, y) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {plus}, {np}, {sp}, {g}, {fib} Previous analysis results are: plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (175) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (176) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 2 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 2 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 1 }-> 1 + plus(x, y) + x :|: z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sp(z) -{ 1 }-> plus(x, y) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {np}, {sp}, {g}, {fib} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (177) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (178) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 2 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 2 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 2 + y }-> 1 + s' + x :|: s' >= 0, s' <= x + y, z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sp(z) -{ 2 + y }-> s :|: s >= 0, s <= x + y, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {np}, {sp}, {g}, {fib} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (179) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: np after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (180) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 2 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 2 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 2 + y }-> 1 + s' + x :|: s' >= 0, s' <= x + y, z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sp(z) -{ 2 + y }-> s :|: s >= 0, s <= x + y, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {np}, {sp}, {g}, {fib} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] np: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (181) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: np after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (182) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 2 }-> np(1 + (1 + 0) + 0) :|: z = 1 + 0 g(z) -{ 2 }-> np(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + 0) g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 2 + y }-> 1 + s' + x :|: s' >= 0, s' <= x + y, z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sp(z) -{ 2 + y }-> s :|: s >= 0, s <= x + y, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {sp}, {g}, {fib} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] np: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] ---------------------------------------- (183) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (184) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 5 }-> s1 :|: s1 >= 0, s1 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 6 }-> s2 :|: s2 >= 0, s2 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 2 + y }-> 1 + s' + x :|: s' >= 0, s' <= x + y, z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sp(z) -{ 2 + y }-> s :|: s >= 0, s <= x + y, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {sp}, {g}, {fib} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] np: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] ---------------------------------------- (185) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: sp after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (186) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 5 }-> s1 :|: s1 >= 0, s1 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 6 }-> s2 :|: s2 >= 0, s2 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 2 + y }-> 1 + s' + x :|: s' >= 0, s' <= x + y, z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sp(z) -{ 2 + y }-> s :|: s >= 0, s <= x + y, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {sp}, {g}, {fib} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] np: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] sp: runtime: ?, size: O(n^1) [z] ---------------------------------------- (187) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: sp after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (188) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 2 }-> sp(1 + (1 + 0) + 0) :|: z = 1 + (1 + 0) fib(z) -{ 2 }-> sp(1 + (1 + 0) + (1 + 0)) :|: z = 1 + (1 + (1 + 0)) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 5 }-> s1 :|: s1 >= 0, s1 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 6 }-> s2 :|: s2 >= 0, s2 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 2 + y }-> 1 + s' + x :|: s' >= 0, s' <= x + y, z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sp(z) -{ 2 + y }-> s :|: s >= 0, s <= x + y, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {g}, {fib} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] np: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] sp: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (189) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (190) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 5 }-> s3 :|: s3 >= 0, s3 <= 1 + (1 + 0) + 0, z = 1 + (1 + 0) fib(z) -{ 6 }-> s4 :|: s4 >= 0, s4 <= 1 + (1 + 0) + (1 + 0), z = 1 + (1 + (1 + 0)) fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 5 }-> s1 :|: s1 >= 0, s1 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 6 }-> s2 :|: s2 >= 0, s2 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 2 + y }-> 1 + s' + x :|: s' >= 0, s' <= x + y, z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sp(z) -{ 2 + y }-> s :|: s >= 0, s <= x + y, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {g}, {fib} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] np: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] sp: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (191) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: g after applying outer abstraction to obtain an ITS, resulting in: EXP with polynomial bound: ? ---------------------------------------- (192) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 5 }-> s3 :|: s3 >= 0, s3 <= 1 + (1 + 0) + 0, z = 1 + (1 + 0) fib(z) -{ 6 }-> s4 :|: s4 >= 0, s4 <= 1 + (1 + 0) + (1 + 0), z = 1 + (1 + (1 + 0)) fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 5 }-> s1 :|: s1 >= 0, s1 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 6 }-> s2 :|: s2 >= 0, s2 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 2 + y }-> 1 + s' + x :|: s' >= 0, s' <= x + y, z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sp(z) -{ 2 + y }-> s :|: s >= 0, s <= x + y, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {g}, {fib} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] np: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] sp: runtime: O(n^1) [1 + z], size: O(n^1) [z] g: runtime: ?, size: EXP ---------------------------------------- (193) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (194) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 5 }-> s3 :|: s3 >= 0, s3 <= 1 + (1 + 0) + 0, z = 1 + (1 + 0) fib(z) -{ 6 }-> s4 :|: s4 >= 0, s4 <= 1 + (1 + 0) + (1 + 0), z = 1 + (1 + (1 + 0)) fib(z) -{ 2 }-> sp(np(g(z - 3))) :|: z - 3 >= 0 fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 5 }-> s1 :|: s1 >= 0, s1 <= 2 * (1 + (1 + 0) + 0), z = 1 + 0 g(z) -{ 6 }-> s2 :|: s2 >= 0, s2 <= 2 * (1 + (1 + 0) + (1 + 0)), z = 1 + (1 + 0) g(z) -{ 2 }-> np(np(g(z - 2))) :|: z - 2 >= 0 g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: z >= 0 np(z) -{ 2 + y }-> 1 + s' + x :|: s' >= 0, s' <= x + y, z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s'' :|: s'' >= 0, s'' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sp(z) -{ 2 + y }-> s :|: s >= 0, s <= x + y, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {g}, {fib} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] np: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] sp: runtime: O(n^1) [1 + z], size: O(n^1) [z] g: runtime: INF, size: EXP ---------------------------------------- (195) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: sp(v0) -> null_sp [0] np(v0) -> null_np [0] fib(v0) -> null_fib [0] g(v0) -> null_g [0] plus(v0, v1) -> null_plus [0] And the following fresh constants: null_sp, null_np, null_fib, null_g, null_plus ---------------------------------------- (196) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: fib(0) -> 0 [1] fib(s(0)) -> s(0) [1] fib(s(s(0))) -> s(0) [1] fib(s(s(x))) -> sp(g(x)) [1] g(0) -> pair(s(0), 0) [1] g(s(0)) -> pair(s(0), s(0)) [1] g(s(x)) -> np(g(x)) [1] sp(pair(x, y)) -> plus(x, y) [1] np(pair(x, y)) -> pair(plus(x, y), x) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] sp(v0) -> null_sp [0] np(v0) -> null_np [0] fib(v0) -> null_fib [0] g(v0) -> null_g [0] plus(v0, v1) -> null_plus [0] The TRS has the following type information: fib :: 0:s:null_sp:null_fib:null_plus -> 0:s:null_sp:null_fib:null_plus 0 :: 0:s:null_sp:null_fib:null_plus s :: 0:s:null_sp:null_fib:null_plus -> 0:s:null_sp:null_fib:null_plus sp :: pair:null_np:null_g -> 0:s:null_sp:null_fib:null_plus g :: 0:s:null_sp:null_fib:null_plus -> pair:null_np:null_g pair :: 0:s:null_sp:null_fib:null_plus -> 0:s:null_sp:null_fib:null_plus -> pair:null_np:null_g np :: pair:null_np:null_g -> pair:null_np:null_g plus :: 0:s:null_sp:null_fib:null_plus -> 0:s:null_sp:null_fib:null_plus -> 0:s:null_sp:null_fib:null_plus null_sp :: 0:s:null_sp:null_fib:null_plus null_np :: pair:null_np:null_g null_fib :: 0:s:null_sp:null_fib:null_plus null_g :: pair:null_np:null_g null_plus :: 0:s:null_sp:null_fib:null_plus Rewrite Strategy: INNERMOST ---------------------------------------- (197) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 null_sp => 0 null_np => 0 null_fib => 0 null_g => 0 null_plus => 0 ---------------------------------------- (198) Obligation: Complexity RNTS consisting of the following rules: fib(z) -{ 1 }-> sp(g(x)) :|: x >= 0, z = 1 + (1 + x) fib(z) -{ 1 }-> 0 :|: z = 0 fib(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 1 }-> 1 + 0 :|: z = 1 + (1 + 0) g(z) -{ 1 }-> np(g(x)) :|: x >= 0, z = 1 + x g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 1 }-> 1 + (1 + 0) + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + 0) + (1 + 0) :|: z = 1 + 0 np(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 np(z) -{ 1 }-> 1 + plus(x, y) + x :|: z = 1 + x + y, x >= 0, y >= 0 plus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x sp(z) -{ 1 }-> plus(x, y) :|: z = 1 + x + y, x >= 0, y >= 0 sp(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 Only complete derivations are relevant for the runtime complexity.