WORST_CASE(?,O(n^2)) proof of input_izDxwugT2s.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxWeightedTrs (11) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxWeightedTrs (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedTrs (15) CompletionProof [UPPER BOUND(ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxTypedWeightedCompleteTrs (19) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 252 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 63 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 188 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 147 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 74 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 1002 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 106 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 283 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 206 ms] (54) CpxRNTS (55) FinalProof [FINISHED, 0 ms] (56) BOUNDS(1, n^2) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: exp(x, 0) -> s(0) exp(x, s(y)) -> *(x, exp(x, y)) *(0, y) -> 0 *(s(x), y) -> +(y, *(x, y)) -(0, y) -> 0 -(x, 0) -> x -(s(x), s(y)) -> -(x, y) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: exp(z0, 0) -> s(0) exp(z0, s(z1)) -> *(z0, exp(z0, z1)) *(0, z0) -> 0 *(s(z0), z1) -> +(z1, *(z0, z1)) -(0, z0) -> 0 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) Tuples: EXP(z0, 0) -> c EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) *'(0, z0) -> c2 *'(s(z0), z1) -> c3(*'(z0, z1)) -'(0, z0) -> c4 -'(z0, 0) -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) S tuples: EXP(z0, 0) -> c EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) *'(0, z0) -> c2 *'(s(z0), z1) -> c3(*'(z0, z1)) -'(0, z0) -> c4 -'(z0, 0) -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) K tuples:none Defined Rule Symbols: exp_2, *_2, -_2 Defined Pair Symbols: EXP_2, *'_2, -'_2 Compound Symbols: c, c1_2, c2, c3_1, c4, c5, c6_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: -'(z0, 0) -> c5 EXP(z0, 0) -> c -'(0, z0) -> c4 *'(0, z0) -> c2 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: exp(z0, 0) -> s(0) exp(z0, s(z1)) -> *(z0, exp(z0, z1)) *(0, z0) -> 0 *(s(z0), z1) -> +(z1, *(z0, z1)) -(0, z0) -> 0 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) Tuples: EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) *'(s(z0), z1) -> c3(*'(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) S tuples: EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) *'(s(z0), z1) -> c3(*'(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) K tuples:none Defined Rule Symbols: exp_2, *_2, -_2 Defined Pair Symbols: EXP_2, *'_2, -'_2 Compound Symbols: c1_2, c3_1, c6_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: -(0, z0) -> 0 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: exp(z0, 0) -> s(0) exp(z0, s(z1)) -> *(z0, exp(z0, z1)) *(0, z0) -> 0 *(s(z0), z1) -> +(z1, *(z0, z1)) Tuples: EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) *'(s(z0), z1) -> c3(*'(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) S tuples: EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) *'(s(z0), z1) -> c3(*'(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) K tuples:none Defined Rule Symbols: exp_2, *_2 Defined Pair Symbols: EXP_2, *'_2, -'_2 Compound Symbols: c1_2, c3_1, c6_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) *'(s(z0), z1) -> c3(*'(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) The (relative) TRS S consists of the following rules: exp(z0, 0) -> s(0) exp(z0, s(z1)) -> *(z0, exp(z0, z1)) *(0, z0) -> 0 *(s(z0), z1) -> +(z1, *(z0, z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) [1] *'(s(z0), z1) -> c3(*'(z0, z1)) [1] -'(s(z0), s(z1)) -> c6(-'(z0, z1)) [1] exp(z0, 0) -> s(0) [0] exp(z0, s(z1)) -> *(z0, exp(z0, z1)) [0] *(0, z0) -> 0 [0] *(s(z0), z1) -> +(z1, *(z0, z1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: * => times ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) [1] *'(s(z0), z1) -> c3(*'(z0, z1)) [1] -'(s(z0), s(z1)) -> c6(-'(z0, z1)) [1] exp(z0, 0) -> s(0) [0] exp(z0, s(z1)) -> times(z0, exp(z0, z1)) [0] times(0, z0) -> 0 [0] times(s(z0), z1) -> +(z1, times(z0, z1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) [1] *'(s(z0), z1) -> c3(*'(z0, z1)) [1] -'(s(z0), s(z1)) -> c6(-'(z0, z1)) [1] exp(z0, 0) -> s(0) [0] exp(z0, s(z1)) -> times(z0, exp(z0, z1)) [0] times(0, z0) -> 0 [0] times(s(z0), z1) -> +(z1, times(z0, z1)) [0] The TRS has the following type information: EXP :: s:0:+ -> s:0:+ -> c1 s :: s:0:+ -> s:0:+ c1 :: c3 -> c1 -> c1 *' :: s:0:+ -> s:0:+ -> c3 exp :: s:0:+ -> s:0:+ -> s:0:+ c3 :: c3 -> c3 -' :: s:0:+ -> s:0:+ -> c6 c6 :: c6 -> c6 0 :: s:0:+ times :: s:0:+ -> s:0:+ -> s:0:+ + :: s:0:+ -> s:0:+ -> s:0:+ Rewrite Strategy: INNERMOST ---------------------------------------- (15) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: EXP_2 *'_2 -'_2 (c) The following functions are completely defined: exp_2 times_2 Due to the following rules being added: exp(v0, v1) -> 0 [0] times(v0, v1) -> 0 [0] And the following fresh constants: const, const1, const2 ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: EXP(z0, s(z1)) -> c1(*'(z0, exp(z0, z1)), EXP(z0, z1)) [1] *'(s(z0), z1) -> c3(*'(z0, z1)) [1] -'(s(z0), s(z1)) -> c6(-'(z0, z1)) [1] exp(z0, 0) -> s(0) [0] exp(z0, s(z1)) -> times(z0, exp(z0, z1)) [0] times(0, z0) -> 0 [0] times(s(z0), z1) -> +(z1, times(z0, z1)) [0] exp(v0, v1) -> 0 [0] times(v0, v1) -> 0 [0] The TRS has the following type information: EXP :: s:0:+ -> s:0:+ -> c1 s :: s:0:+ -> s:0:+ c1 :: c3 -> c1 -> c1 *' :: s:0:+ -> s:0:+ -> c3 exp :: s:0:+ -> s:0:+ -> s:0:+ c3 :: c3 -> c3 -' :: s:0:+ -> s:0:+ -> c6 c6 :: c6 -> c6 0 :: s:0:+ times :: s:0:+ -> s:0:+ -> s:0:+ + :: s:0:+ -> s:0:+ -> s:0:+ const :: c1 const1 :: c3 const2 :: c6 Rewrite Strategy: INNERMOST ---------------------------------------- (17) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (18) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: EXP(z0, s(0)) -> c1(*'(z0, s(0)), EXP(z0, 0)) [1] EXP(z0, s(s(z1'))) -> c1(*'(z0, times(z0, exp(z0, z1'))), EXP(z0, s(z1'))) [1] EXP(z0, s(z1)) -> c1(*'(z0, 0), EXP(z0, z1)) [1] *'(s(z0), z1) -> c3(*'(z0, z1)) [1] -'(s(z0), s(z1)) -> c6(-'(z0, z1)) [1] exp(z0, 0) -> s(0) [0] exp(z0, s(0)) -> times(z0, s(0)) [0] exp(z0, s(s(z1''))) -> times(z0, times(z0, exp(z0, z1''))) [0] exp(z0, s(z1)) -> times(z0, 0) [0] times(0, z0) -> 0 [0] times(s(z0), z1) -> +(z1, times(z0, z1)) [0] exp(v0, v1) -> 0 [0] times(v0, v1) -> 0 [0] The TRS has the following type information: EXP :: s:0:+ -> s:0:+ -> c1 s :: s:0:+ -> s:0:+ c1 :: c3 -> c1 -> c1 *' :: s:0:+ -> s:0:+ -> c3 exp :: s:0:+ -> s:0:+ -> s:0:+ c3 :: c3 -> c3 -' :: s:0:+ -> s:0:+ -> c6 c6 :: c6 -> c6 0 :: s:0:+ times :: s:0:+ -> s:0:+ -> s:0:+ + :: s:0:+ -> s:0:+ -> s:0:+ const :: c1 const1 :: c3 const2 :: c6 Rewrite Strategy: INNERMOST ---------------------------------------- (19) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const => 0 const1 => 0 const2 => 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 -'(z, z') -{ 1 }-> 1 + -'(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 EXP(z, z') -{ 1 }-> 1 + *'(z0, times(z0, exp(z0, z1'))) + EXP(z0, 1 + z1') :|: z' = 1 + (1 + z1'), z = z0, z1' >= 0, z0 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z0, 0) + EXP(z0, z1) :|: z = z0, z1 >= 0, z0 >= 0, z' = 1 + z1 EXP(z, z') -{ 1 }-> 1 + *'(z0, 1 + 0) + EXP(z0, 0) :|: z = z0, z' = 1 + 0, z0 >= 0 exp(z, z') -{ 0 }-> times(z0, times(z0, exp(z0, z1''))) :|: z = z0, z' = 1 + (1 + z1''), z0 >= 0, z1'' >= 0 exp(z, z') -{ 0 }-> times(z0, 0) :|: z = z0, z1 >= 0, z0 >= 0, z' = 1 + z1 exp(z, z') -{ 0 }-> times(z0, 1 + 0) :|: z = z0, z' = 1 + 0, z0 >= 0 exp(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 exp(z, z') -{ 0 }-> 1 + 0 :|: z = z0, z0 >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z0 >= 0, z = 0, z' = z0 times(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 times(z, z') -{ 0 }-> 1 + z1 + times(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 ---------------------------------------- (21) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ 1 }-> 1 + -'(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> times(z, 0) :|: z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, 1 + 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + times(z - 1, z') :|: z' >= 0, z - 1 >= 0 ---------------------------------------- (23) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { times } { -' } { *' } { exp } { EXP } ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ 1 }-> 1 + -'(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> times(z, 0) :|: z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, 1 + 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + times(z - 1, z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {times}, {-'}, {*'}, {exp}, {EXP} ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ 1 }-> 1 + -'(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> times(z, 0) :|: z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, 1 + 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + times(z - 1, z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {times}, {-'}, {*'}, {exp}, {EXP} ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: times after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + z*z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ 1 }-> 1 + -'(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> times(z, 0) :|: z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, 1 + 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + times(z - 1, z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {times}, {-'}, {*'}, {exp}, {EXP} Previous analysis results are: times: runtime: ?, size: O(n^2) [z + z*z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: times after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ 1 }-> 1 + -'(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> times(z, 0) :|: z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, 1 + 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + times(z - 1, z') :|: z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {-'}, {*'}, {exp}, {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ 1 }-> 1 + -'(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {-'}, {*'}, {exp}, {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: -' after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ 1 }-> 1 + -'(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {-'}, {*'}, {exp}, {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: ?, size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: -' after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ 1 }-> 1 + -'(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {*'}, {exp}, {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: O(n^1) [z'], size: O(1) [0] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ z' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {*'}, {exp}, {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: O(n^1) [z'], size: O(1) [0] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: *' after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ z' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {*'}, {exp}, {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: O(n^1) [z'], size: O(1) [0] *': runtime: ?, size: O(1) [0] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: *' after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ 1 }-> 1 + *'(z - 1, z') :|: z' >= 0, z - 1 >= 0 -'(z, z') -{ z' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 0) + EXP(z, z' - 1) :|: z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, 1 + 0) + EXP(z, 0) :|: z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {exp}, {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: O(n^1) [z'], size: O(1) [0] *': runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ z }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z - 1 >= 0 -'(z, z') -{ z' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 + z }-> 1 + s2 + EXP(z, 0) :|: s2 >= 0, s2 <= 0, z' = 1 + 0, z >= 0 EXP(z, z') -{ 1 + z }-> 1 + s3 + EXP(z, z' - 1) :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {exp}, {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: O(n^1) [z'], size: O(1) [0] *': runtime: O(n^1) [z], size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: exp after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ z }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z - 1 >= 0 -'(z, z') -{ z' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 + z }-> 1 + s2 + EXP(z, 0) :|: s2 >= 0, s2 <= 0, z' = 1 + 0, z >= 0 EXP(z, z') -{ 1 + z }-> 1 + s3 + EXP(z, z' - 1) :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {exp}, {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: O(n^1) [z'], size: O(1) [0] *': runtime: O(n^1) [z], size: O(1) [0] exp: runtime: ?, size: INF ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: exp after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ z }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z - 1 >= 0 -'(z, z') -{ z' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 + z }-> 1 + s2 + EXP(z, 0) :|: s2 >= 0, s2 <= 0, z' = 1 + 0, z >= 0 EXP(z, z') -{ 1 + z }-> 1 + s3 + EXP(z, z' - 1) :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 }-> 1 + *'(z, times(z, exp(z, z' - 2))) + EXP(z, 1 + (z' - 2)) :|: z' - 2 >= 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: O(n^1) [z'], size: O(1) [0] *': runtime: O(n^1) [z], size: O(1) [0] exp: runtime: O(1) [0], size: INF ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ z }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z - 1 >= 0 -'(z, z') -{ z' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 + z }-> 1 + s2 + EXP(z, 0) :|: s2 >= 0, s2 <= 0, z' = 1 + 0, z >= 0 EXP(z, z') -{ 1 + z }-> 1 + s3 + EXP(z, z' - 1) :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 + z }-> 1 + s7 + EXP(z, 1 + (z' - 2)) :|: s5 >= 0, s5 <= inf, s6 >= 0, s6 <= s5 * z + z, s7 >= 0, s7 <= 0, z' - 2 >= 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> s10 :|: s8 >= 0, s8 <= inf', s9 >= 0, s9 <= s8 * z + z, s10 >= 0, s10 <= s9 * z + z, z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: O(n^1) [z'], size: O(1) [0] *': runtime: O(n^1) [z], size: O(1) [0] exp: runtime: O(1) [0], size: INF ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: EXP after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ z }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z - 1 >= 0 -'(z, z') -{ z' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 + z }-> 1 + s2 + EXP(z, 0) :|: s2 >= 0, s2 <= 0, z' = 1 + 0, z >= 0 EXP(z, z') -{ 1 + z }-> 1 + s3 + EXP(z, z' - 1) :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 + z }-> 1 + s7 + EXP(z, 1 + (z' - 2)) :|: s5 >= 0, s5 <= inf, s6 >= 0, s6 <= s5 * z + z, s7 >= 0, s7 <= 0, z' - 2 >= 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> s10 :|: s8 >= 0, s8 <= inf', s9 >= 0, s9 <= s8 * z + z, s10 >= 0, s10 <= s9 * z + z, z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: {EXP} Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: O(n^1) [z'], size: O(1) [0] *': runtime: O(n^1) [z], size: O(1) [0] exp: runtime: O(1) [0], size: INF EXP: runtime: ?, size: O(1) [0] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: EXP after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 3*z*z' + 3*z' ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: *'(z, z') -{ z }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z - 1 >= 0 -'(z, z') -{ z' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z - 1 >= 0 EXP(z, z') -{ 1 + z }-> 1 + s2 + EXP(z, 0) :|: s2 >= 0, s2 <= 0, z' = 1 + 0, z >= 0 EXP(z, z') -{ 1 + z }-> 1 + s3 + EXP(z, z' - 1) :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z >= 0 EXP(z, z') -{ 1 + z }-> 1 + s7 + EXP(z, 1 + (z' - 2)) :|: s5 >= 0, s5 <= inf, s6 >= 0, s6 <= s5 * z + z, s7 >= 0, s7 <= 0, z' - 2 >= 0, z >= 0 exp(z, z') -{ 0 }-> s :|: s >= 0, s <= (1 + 0) * z + z, z' = 1 + 0, z >= 0 exp(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 0 * z + z, z' - 1 >= 0, z >= 0 exp(z, z') -{ 0 }-> s10 :|: s8 >= 0, s8 <= inf', s9 >= 0, s9 <= s8 * z + z, s10 >= 0, s10 <= s9 * z + z, z >= 0, z' - 2 >= 0 exp(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 exp(z, z') -{ 0 }-> 1 + 0 :|: z >= 0, z' = 0 times(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 times(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 times(z, z') -{ 0 }-> 1 + z' + s'' :|: s'' >= 0, s'' <= z' * (z - 1) + (z - 1), z' >= 0, z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: times: runtime: O(1) [0], size: O(n^2) [z + z*z'] -': runtime: O(n^1) [z'], size: O(1) [0] *': runtime: O(n^1) [z], size: O(1) [0] exp: runtime: O(1) [0], size: INF EXP: runtime: O(n^2) [3*z*z' + 3*z'], size: O(1) [0] ---------------------------------------- (55) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (56) BOUNDS(1, n^2)