WORST_CASE(Omega(n^1),O(n^1)) proof of input_odLemvaU2b.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (10) CpxTRS (11) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] (12) BOUNDS(1, n^1) (13) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRelTRS (19) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (20) typed CpxTrs (21) OrderProof [LOWER BOUND(ID), 0 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 95.4 s] (24) BEST (25) proven lower bound (26) LowerBoundPropagationProof [FINISHED, 0 ms] (27) BOUNDS(n^1, INF) (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 616 ms] (30) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(x))) -> +(fib(s(x)), fib(x)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) Tuples: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) S tuples: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) K tuples:none Defined Rule Symbols: fib_1 Defined Pair Symbols: FIB_1 Compound Symbols: c, c1, c2_1, c3_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: FIB(s(0)) -> c1 FIB(0) -> c ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) Tuples: FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) S tuples: FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) K tuples:none Defined Rule Symbols: fib_1 Defined Pair Symbols: FIB_1 Compound Symbols: c2_1, c3_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) S tuples: FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: FIB_1 Compound Symbols: c2_1, c3_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1] transitions: s0(0) -> 0 c20(0) -> 0 c30(0) -> 0 FIB0(0) -> 1 s1(0) -> 3 FIB1(3) -> 2 c21(2) -> 1 FIB1(0) -> 4 c31(4) -> 1 c21(2) -> 4 c21(2) -> 2 c31(4) -> 4 c31(4) -> 2 ---------------------------------------- (12) BOUNDS(1, n^1) ---------------------------------------- (13) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) Tuples: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) S tuples: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) K tuples:none Defined Rule Symbols: fib_1 Defined Pair Symbols: FIB_1 Compound Symbols: c, c1, c2_1, c3_1 ---------------------------------------- (15) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) The (relative) TRS S consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (17) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (18) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FIB(0') -> c FIB(s(0')) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) The (relative) TRS S consists of the following rules: fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(z0))) -> +'(fib(s(z0)), fib(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (19) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (20) Obligation: Innermost TRS: Rules: FIB(0') -> c FIB(s(0')) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(z0))) -> +'(fib(s(z0)), fib(z0)) Types: FIB :: 0':s:+' -> c:c1:c2:c3 0' :: 0':s:+' c :: c:c1:c2:c3 s :: 0':s:+' -> 0':s:+' c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 -> c:c1:c2:c3 c3 :: c:c1:c2:c3 -> c:c1:c2:c3 fib :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' -> 0':s:+' hole_c:c1:c2:c31_4 :: c:c1:c2:c3 hole_0':s:+'2_4 :: 0':s:+' gen_c:c1:c2:c33_4 :: Nat -> c:c1:c2:c3 gen_0':s:+'4_4 :: Nat -> 0':s:+' ---------------------------------------- (21) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: FIB, fib ---------------------------------------- (22) Obligation: Innermost TRS: Rules: FIB(0') -> c FIB(s(0')) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(z0))) -> +'(fib(s(z0)), fib(z0)) Types: FIB :: 0':s:+' -> c:c1:c2:c3 0' :: 0':s:+' c :: c:c1:c2:c3 s :: 0':s:+' -> 0':s:+' c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 -> c:c1:c2:c3 c3 :: c:c1:c2:c3 -> c:c1:c2:c3 fib :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' -> 0':s:+' hole_c:c1:c2:c31_4 :: c:c1:c2:c3 hole_0':s:+'2_4 :: 0':s:+' gen_c:c1:c2:c33_4 :: Nat -> c:c1:c2:c3 gen_0':s:+'4_4 :: Nat -> 0':s:+' Generator Equations: gen_c:c1:c2:c33_4(0) <=> c gen_c:c1:c2:c33_4(+(x, 1)) <=> c2(gen_c:c1:c2:c33_4(x)) gen_0':s:+'4_4(0) <=> 0' gen_0':s:+'4_4(+(x, 1)) <=> s(gen_0':s:+'4_4(x)) The following defined symbols remain to be analysed: FIB, fib ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: FIB(gen_0':s:+'4_4(+(2, n6_4))) -> *5_4, rt in Omega(n6_4) Induction Base: FIB(gen_0':s:+'4_4(+(2, 0))) Induction Step: FIB(gen_0':s:+'4_4(+(2, +(n6_4, 1)))) ->_R^Omega(1) c2(FIB(s(gen_0':s:+'4_4(+(1, n6_4))))) ->_IH c2(*5_4) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Complex Obligation (BEST) ---------------------------------------- (25) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: FIB(0') -> c FIB(s(0')) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(z0))) -> +'(fib(s(z0)), fib(z0)) Types: FIB :: 0':s:+' -> c:c1:c2:c3 0' :: 0':s:+' c :: c:c1:c2:c3 s :: 0':s:+' -> 0':s:+' c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 -> c:c1:c2:c3 c3 :: c:c1:c2:c3 -> c:c1:c2:c3 fib :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' -> 0':s:+' hole_c:c1:c2:c31_4 :: c:c1:c2:c3 hole_0':s:+'2_4 :: 0':s:+' gen_c:c1:c2:c33_4 :: Nat -> c:c1:c2:c3 gen_0':s:+'4_4 :: Nat -> 0':s:+' Generator Equations: gen_c:c1:c2:c33_4(0) <=> c gen_c:c1:c2:c33_4(+(x, 1)) <=> c2(gen_c:c1:c2:c33_4(x)) gen_0':s:+'4_4(0) <=> 0' gen_0':s:+'4_4(+(x, 1)) <=> s(gen_0':s:+'4_4(x)) The following defined symbols remain to be analysed: FIB, fib ---------------------------------------- (26) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (27) BOUNDS(n^1, INF) ---------------------------------------- (28) Obligation: Innermost TRS: Rules: FIB(0') -> c FIB(s(0')) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) fib(0') -> 0' fib(s(0')) -> s(0') fib(s(s(z0))) -> +'(fib(s(z0)), fib(z0)) Types: FIB :: 0':s:+' -> c:c1:c2:c3 0' :: 0':s:+' c :: c:c1:c2:c3 s :: 0':s:+' -> 0':s:+' c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 -> c:c1:c2:c3 c3 :: c:c1:c2:c3 -> c:c1:c2:c3 fib :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' -> 0':s:+' hole_c:c1:c2:c31_4 :: c:c1:c2:c3 hole_0':s:+'2_4 :: 0':s:+' gen_c:c1:c2:c33_4 :: Nat -> c:c1:c2:c3 gen_0':s:+'4_4 :: Nat -> 0':s:+' Lemmas: FIB(gen_0':s:+'4_4(+(2, n6_4))) -> *5_4, rt in Omega(n6_4) Generator Equations: gen_c:c1:c2:c33_4(0) <=> c gen_c:c1:c2:c33_4(+(x, 1)) <=> c2(gen_c:c1:c2:c33_4(x)) gen_0':s:+'4_4(0) <=> 0' gen_0':s:+'4_4(+(x, 1)) <=> s(gen_0':s:+'4_4(x)) The following defined symbols remain to be analysed: fib ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fib(gen_0':s:+'4_4(+(2, n73396_4))) -> *5_4, rt in Omega(0) Induction Base: fib(gen_0':s:+'4_4(+(2, 0))) Induction Step: fib(gen_0':s:+'4_4(+(2, +(n73396_4, 1)))) ->_R^Omega(0) +'(fib(s(gen_0':s:+'4_4(+(1, n73396_4)))), fib(gen_0':s:+'4_4(+(1, n73396_4)))) ->_IH +'(*5_4, fib(gen_0':s:+'4_4(+(1, n73396_4)))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (30) BOUNDS(1, INF)